IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 3, 2019, accepted February 5, 2019, date of publication February 11, 2019, date of current version March 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2898693

Learning Graph Topological Features via GAN

WEIYI LIU“ 12, PIN-YU CHEN“2, FUCAI YU'!, TOYOTARO SUZUMURA2, AND GUANGMIN HU'

!'School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

2Big Data Analytic Group, IBM Watson Research Center, Yorktown Heights, NY 10598, USA

Corresponding author: Fucai Yu (fcyu@uestc.edu.cn)

This work was supported by the National Natural Science Foundation of China, under Grant 61571094.

ABSTRACT Inspired by the generation power of generative adversarial networks (GANs) in image domains,
we introduce a novel hierarchical architecture for learning characteristic topological features from a single
arbitrary input graph via GANs. The hierarchical architecture consisting of multiple GANs preserves both
local and global topological features and automatically partitions the input graph into representative “‘stages”
for feature learning. The stages facilitate reconstruction and can be used as indicators of the importance of
the associated topological structures. The experiments show that our method produces subgraphs retaining a
wide range of topological features, even in early reconstruction stages (unlike a single GAN, which cannot
easily identify such features, let alone reconstruct the original graph). This paper is the firstline research on

combining the use of GANs and graph topological analysis.

INDEX TERMS Generative adversarial nets, graph analysis, graph generation.

I. INTRODUCTION

Graphs have great versatility, able to represent complex sys-
tems with diverse relationships between objects and data.
With the rise of social networking, and the importance of
relational properties to the “big data” phenomenon, it has
become increasingly important to develop ways to automat-
ically identify key structures present in graph data. Identifi-
cation of such structures is crucial in understanding how a
social network forms, or in making predictions about future
network behavior. To this end, a large number of graph analy-
sis methods have been proposed to analyze the topology of the
target network at the node [1], community [2], [3], and global
levels [4], and perform certain data analysis and machine
learning tasks.

Unfortunately, each level of analysis is greatly influenced
by the underlying network topology, and so far no algorithm
can be effectively and automatically adapted to arbitrary and
complex network structures. For example, modularity-based
community detection [5] works well for networks with sep-
arate clusters, whereas edge-based methods [6] prevail in
dense networks. Similarly, when performing graph sam-
pling, Random Walk (RW) is suitable for sampling paths [7],
whereas Forrest Fire (FF) is useful for sampling clusters [8].
When it comes to graph generation, Watts-Strogatz (WS)
graph models [9] can generate graphs with small world

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhong-Ke Gao.

features, whereas Barabasi-Albert (BA) graph models [10]
can simulate super hubs and regular nodes according to the
scale-free features of the network.

However, real-world networks typically have multiple
and potentially complex topological features, which may be
beyond the expressive power of a graph model. Moreover,
taking real-world networks into consideration also introduces
another issue that traditional graph analysis methods have
been struggling with: one may only have a single instance
of a graph (e.g. the transaction graph for a particular bank),
making it difficult to identify the key topological properties in
the first place. In particular, many graph mining and analysis
problems are often associated with both ‘“local topological
features™ such as the presence of subgraph structures like
triangles and “‘global topological features” such as degree
distribution.

In this paper, we propose an unsupervised method,
the Graph Topology Interpolater (GTI), to facilitate graph
analysis with an aim of bypassing the aforementioned issues.
GTI is a novel approach combining techniques from graph
analysis and GAN based image processing techniques. In Fig-
ure 1, we demonstrate that naively feeding the full graph
(here, a 20 node BA network [10]) into a standard GAN
implementation (the DCGAN [11]) is unsuccessful; such a
GAN structure is unable to learn to reproduce the original
graph, and instead stuck in undesirable local minima.

Therefore, instead of directly and naively analyzing the
entire topology of a graph as an image, GTI first divides the

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

21834

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4180-4489
https://orcid.org/0000-0003-1039-8369

W. Liu et al.: Learning Graph Topological Features via GAN

IEEE Access

DCGAN Output Graph gt

GTI Oulput Graph

:IﬁURE 1. How GTI recovers the original graph while naive GAN methods
ail.

graph into several hierarchical layers. A hierarchical view of a
graph can split the graph by local and global topological fea-
tures, giving a better understanding of the graph [12]. As dif-
ferent layers have different topological features, GTI uses
separate GANSs to learn each layer and the associated fea-
tures. By leveraging GAN’s renowned feature identification
capability [13], [14] on each layer, GTI has the ability to
automatically capture arbitrary topological features from a
single input graph.

In addition to learning topological features from the input
graph, the GTI method defines a reconstruction process for
reproducing the original graph via a series of reconstruction
stages (the number of which is automatically learned during
training). As stages are ranked in the order of their contribu-
tion to the full topology of the original graph, early stages
can be used as indicators of the most important topological
features. This work is the firstline research in leveraging GAN
to learn hierarchical topological features given a single input
graph. We will demonstrate its ability to efficiently learn
important topological features to retain critical structures and
make comparisons to graph sampling methods.

Our proposed GTI method has three core contributions:

1) GTI is a model-agnostic graph topology analysis tool,
which means it can analyze any arbitrary kinds of
topology, rank the edge set, and outputs representative
stages for this graph.

2) For each stage, it can preserve both local and global
topological features of the input graph.

3) The input of GTI is only one single graph, which
renders this method applicable to a wide range of appli-
cations with unique but rare graphs.

Il. METHOD
In this section, we demonstrate the work flow of our Graph
Topology Interpolater (GTI) (Figure 2), with a particular
focus on the GAN, Sum-up and Stage Identification modules.
At a high level, the GTI method takes an input graph, learns
it’s hierarchical layers, trains a separate GAN on each layer,
and autonomously combines their output to reconstruct stages
of the graph. Here we give a brief overview of each module.

Hierarchical Identification Module: This module detects
the hierarchical structure of the original graph using the Lou-
vain hierarchical community detection method [15]. Let L
denote the number of layers. The average size of communities
in each layer is used as a criterion for how many subgraphs a
layer should pass to the next module.

Layer Partition Module: The main purpose of this mod-
ule is to partition a given layer into M non-overlapping
subgraphs, where M is the number of subgraphs. The reason

VOLUME 7, 2019

why we do not use the learned communities from the Louvain
method is that we cannot constrain the size of any community.
We instead balance the communities into fixed size subgraphs
using the METIS approach [16].

Layer GAN Module: Here we apply the GAN methodol-
ogy to graph analysis. Rather than directly using one GAN
to learn the whole graph, we use different GANs to learn
features for each layer separately. If we use a single GAN to
learn features for the whole graph, some topological features
may be diluted or even ignored. See Section II-B for more
details.

Layer Regeneration Module: Here, for a given layer,
the corresponding GAN has learned all the properties of each
subgraph, meaning we can use the generator in this GAN
to regenerate the topology of the layer by generating M
subgraphs consisting of k nodes. Note that this reconstruction
only restores edges within each non-overlapping subgraph,
and does not include edges between subgraphs.

All-layer Sum-up Module: By summing up the results
from reconstructed layers, along with the edges that were not
considered in the Regeneration Module, the purpose of this
module is to output a weighted graph, where the “weight”
represents the importance of an edge during the reconstruct-
ing process. Indeed, we rely upon these weights to identify the
reconstruction stages for the original graph. For more details,
see Section II-C.

Stage Identification Module: By analyzing the weighted
adjacency matrix of the Sum-up Module, we can regenerate
the graph by controlling different thresholds to generate an
edge on a node-pair with respect to the value of the previously
obtained weighted adjacency matrix. Here, we use the term
“stage” to indicate a regenerate graph where the weights of
edges are equal or larger than a given threshold. Note that
these stages can be interpreted as steps for graph reconstruc-
tion, and can be automatically determined by the weights of
edges. See Section II-D for details.

A. LAYER IDENTIFICATION AND LAYER PARTITION
MODULE
In this module, we introduce a well-known hierarchical com-
munity detection method “Louvain” to identify the number
of hierarchical layers in a graph [15]. By introducing a local
optimization function ‘“Incremental Modularity AQ,” this
approach calculates the AQ of a node and its neighbors, and
selects one with the largest AQ. When AQ > 0, the cor-
responding neighbor(s) are merged to the local community
where the current node belongs to. The selection process
will stop when local community in the graph is no longer
changing. After that, Louvain method begins a new iteration
by merging these local communities into a new layer in
the hierarchy, and by re-using “finding maximum AQ” to
detect new local communities in this layer. Consequently, this
algorithm will automatically construct hierarchical layers for
a graph.

As Louvain method helps to determine hierarchical struc-
ture and communities of the input graph in an unsupervised

21835

IEEE Access

W. Liu et al.: Learning Graph Topological Features via GAN

Layer 1

Layer 1
Regenerate

Stage

Layer 2

Identification
z Reconstruction
Stages

Layer 2
Regenerate

Layer L

Layer L
Regenerate

[
I
1| Layer 1
1| Partition X GAN
1
1 |
1
igi Layer 2
Original | er
Grgph Hierarchical)| Partition ! GAN
Identification 1 ” '
|
1 |
I| LayerL
1| Partition /| 6&AN
|
~ - /

Inter Subgraph Edges

FIGURE 2. Work flow for graph topology interpolater (GTI).

Original

Graph

Hierarchical Layers

+> Layer I: M! o) D 5{‘& sub-graphs in Layer /
Louva:in » Layer 2: M’) D W sub-graphs in Layer 2

=% Layer L: ML 1) D g@ sub-graphs in Layer L

FIGURE 3. An example of Layer Identification and Layer Partition module.

manner, we use these two information — (a) number of
hierarchies; (b) number of communities in the corresponding
layer — as the prior information for guiding the algorithm to
generate training samples for each layer. The reason to use
the number of communities instead of communities them-
selves is because the input tensor for convolution neural
network requires the same size of inputs. Hence, we need
to unify the size of input samples for an generator to learn.
In practice, this harsh requirement can be easily satisfied by
adding isolated node(s) to the subgraph, or padding zeros
to the adjacent matrix of the subgraph. We note that adding
isolated nodes into a subgraph will definitely introduce extra
noise. Nonetheless, we argue that ensuring a basically same
subgraph size can maximally reduce the impact on the whole
algorithm from the padding process. However, if we directly
use the identified community as a subgraph, given the fact that
one cannot ensure Louvain method will detect communities
of the same size, one needs to add more isolated nodes
to make same-sized communities and will inevitably incur
unnecessary noise in the learning process. To tackle this chal-
lenge, we use METIS method to achieve this requirement.
METIS method takes a graph as its input, and partitions
the nodes in a balanced way so that each partition has the
same number of nodes while minimizing the number of
cut edges. Consequently, in the task of community detec-
tion with a known number of communities, METIS method
finds same-sized communities with strong within-community
connections.

The overall procedure on layer identification and layer
partition module is summarized in Fig.3. First, by conducting
Louvain method on the input graph, we can obtain the hier-
archical structure. Here, each hierarchy stands for an layer,

21836

[Generator Architecture]

Input Random Vector .
Two Deconvolutional Layers

size: kx1

v |— _______ 1 FETEETEEEEEEEEE A |
% vy g el
s Um iy gy // !
7GR i %l
% Z__ 7y v T swekxk

Two Fully Connected Layers
size: FCx1

[Discriminator Architecture]

) Two Fully Connected Layers
Two Convolutional Layers

g _————

—_—-

sigmoid ! !
9.
)

One-hot Vector

linear

% B
LR %7 % BN,LR 7
% size: Ex k size:%x%

size: kxk 22

RO
|2
RN

FIGURE 4. Generator and discriminator architecture.

and we can also obtain the number of communities in this
layer (i.e. M', M? ... M" for layer 1, 2, and I, respectively).
Then, for each layer, we use METIS method, along with
the corresponding number of communities, to partition the
original graph into same-sized communities (sub-graphs).
We also note that higher layer in the hierarchy will have a
larger community size.

B. LAYER GAN MODULE

Figure 4 shows the architectures for the generator and
discriminator of the GAN. The generator is a deconvolu-
tional neural network with the purpose of restoring a k x
k adjacency matrix from the standard normal distribution.

VOLUME 7, 2019

W. Liu et al.: Learning Graph Topological Features via GAN

IEEE Access

The discriminator is instead a CNN whose purpose is to
estimate if the input adjacency matrix is from a real dataset
or from a generator. Here, BN is short for batch normal-
ization which is used instead of max pooling because max
pooling selects the maximum value in the feature map and
ignores other values, whereas BN will synthesize all avail-
able information. LR stands for the leaky ReLU activation
function (LR = max(x,0.2 x x)). Its value O carries a
specific meaning for adjacency matrices (aka no edges).
In addition, k represents the size of a subgraph, and FC is
the length of a fully connected layer. We set the stride for the
convolutional/deconvolutional layers to be 2. We adopt the
same loss function and optimization strategy (1000 iterations
of ADAM [17] with a learning rate of 0.0002), as used in
DCGAN [11].

C. SUM-UP MODULE

In this module, we use a linear function (see Equation 1) to
add the graphs from all layers together. reg stands for the
reconstructed adjacency matrix (with inputs from all layers),
G; (i € L) represents the reconstructed adjacency matrix
for each layer (with G representing the full original graph
with N nodes), E refers to all the inter-subgraph (community)
edges identified by the Louvain method from each hierarchy,
and b represents a bias. Note that while each layer of the
reconstruction may lose certain edge information, summing
up the hierarchical layers along with E will have the ability
to reconstruct the entire graph:

L
rec =Y wiGj+wE +b 1)

i=1

To obtain the weight w for each layer and the bias b, we use
Equation 2 as the loss function (where we add ¢ = 1076
to avoid taking log(0) or division by 0), use 500 iterations of
SGD with learning rate 0.1 to minimize this loss function and
find suitable parameters. We note that Equation 2 is similar
to a KL divergence, though of course reg and G are not
probability distributions.
vec(G + €);

Loss (reg, G) = vec(G + €); - log————— (2)
ieg\lz ' vec(reg + €);

D. STAGE IDENTIFICATION

After the above calculations, we obtain the weighted
adjacency matrix reg, where weights on edges represent
how each edge contributes to the entire topology. Clearly,
different weights represent different degrees of contribution
to the topology. Therefore, according to these weights, we can
divide the network into several stages, with each stage repre-
senting a collection of edges greater than a certain weight.
We introduce the concept of a “cut-value” to turn reg into
a binary adjacency matrix. We observe that many edges in
reg share the same weight, which implies these edges share
the same importance. Furthermore, the number of unique
weights can define different reconstruction stages, with the

VOLUME 7, 2019

most important set of edges sharing the highest weight. Each
stage will include edges with weights greater than or equal
to the corresponding weight of that stage. Hence, we define
an ordering of stages by decreasing weight, giving insight
on how to reconstruct the original graph in terms of edge
importance. We denote the ith largest unique weight-value
as CV; (for ““cut value’) and thereby denote the stages as in
Equation 3 (an element-wise product), where I[w > CV;] is
an indicator function for each weight being equal or larger
than the CV;:

reiG = regl[w > CVj] 3)

In Section IV, we use synthetic and real networks to show
that each stage preserves identifiable topological features of
the original graph during the graph reconstruction process.
As each stage contains a subset of the original graphs edges,
we can interpret each stage as a sub-sampling of the origi-
nal graph. This allows us to compare with prominent graph
sampling methodologies to emphasize our ability to retain
important topological features.

By comparing GTI with some state-of-the-art graph sam-
pling methodologies, we have found that the stages in
GTTI have similar performance for most metrics. Moreover,
we note that since the number of stages in the reconstruction
and the size of the graph in each stage are learned automat-
ically, we do not have precise control over the size of the
“sampled” graphs.

Ill. RELATED WORK

The development of deep learning and the growing maturity
of graph topology analysis has led to more attention on the
ability to use the former for the latter [18]. A number of
supervised and semi-supervised learning method have been
developed for graph analysis. A particular focus is on the use
of CNNs [19]-[22]. These new methods have shown promis-
ing results on their respective tasks in comparison to tradi-
tional graph analysis methods (such as kernel-based methods,
graph-based regularization techniques, etc). Kipf er al. has
discussed the above methods in detail [22], [23], pointing out
the strengths and drawbacks of various approaches. Recently,
Sahar et al. [24] have proposed a naive method to generate the
graph topology using GAN, by randomly perturbing the input
graph 10,000 times, and feed these graphs into a DCGAN.
It simply treats the adjacency matrix of a graph as an image,
and uses random permutation to generate enough samples to
train a DCGAN, without taking any topological information
of the graph into consideration.

A key difference between GTI and other methods is that
GTlI is an unsupervised learning tool (facilitated by the use of
GAN:S5), that leverages the hierarchical structure of a graph.
GTI can automatically capture both local and global topo-
logical features of a network. To the best of the authors’
knowledge, this is the first unsupervised method in such
manner.

Since GANs were first introduced [13] in 2014, its the-
ory and application has expanded greatly. Many advances

21837

IEEE Access

W. Liu et al.: Learning Graph Topological Features via GAN

TABLE 1. Size of original datasets, hyper-parameters for synthetic graphs, and corresponding reconstruction stages.

Graph #Nodes #Edges #Stages Retained edge percentage for ordered stages (%)

BA (m=2) 500 996 7 19.48,26.31, 36.04, 39.36, 41.57, 57.43, 100

ER (p=0.2) 500 25103 4 4.32,21.73,94.91, 100

WS-1 (p=0.2,k=3) 500 500 7 11.20, 11.40, 16.00, 18.00, 54.60, 97.80, 100

WS-2 (p=0.2, k=6) 500 1500 8 15.60, 16.30, 21.04, 25.18, 38.62, 73.21, 98.13, 100

Kronecker 2178 25103 10 87.77, 88.65, 91.76, 91.89, 92.47, 93.32, 96.06, 97.05, 98.57, 100

Facebook 4039 88234 7 52.28, 83.33, 87.49, 91.41,90.31, 91.95, 100

Wiki-Vote 7115 103689 4 58.31, 73.79, 85.60, 100

RoadNet 5371 7590 12 0.62, 3.87, 26.64, 27.98, 31.79, 32.42, 34.22, 34.65, 34.80, 64.06, 76.81, 100
P2P 3334 6627 7 49.04, 53.90, 70.32, 87.54, 88.40, 89.65, 100

in training methods [25]-[28] have been proposed in recent
years, and this has facilitated their use in a number of
applications. For example, GAN has been used for art-
work synthesis [29], text classification [30], image-to-image
translation [31], imitation of driver behavior [32], identifica-
tion of cancers [33], etc. The GTI method expands the use of
GAN:Ss into the graph topology analysis area.

IV. EVALUATION

All experiments in this paper were conducted locally on CPU
using a Mac Book Pro with an Intel Core 17 2.5GHz processor
and 16GB of 1600MHz RAM. Though this limits the size of
our experiments in this preliminary work, the extensive GAN
literature (see Section WorkslIII) and the ability to parallelize
GAN training based on hierarchical layers suggests that our
method can be efficiently scaled to much larger systems.
To study the benefit of the proposed GTI method, in this
section we will also provide both qualitative and quantitative
evaluations of the stages identified by GTL

A. DATASETS

We use a combination of synthetic and real datasets. Through
the use of synthetic datasets with particular topological prop-
erties, we are able to demonstrate the ability of retaining these
easily identifiable properties across the reconstruction stages
using GTIL. In addition to validation on synthetic datasets
with known topological properties, we also demonstrate our
method on a number of real-world datasets with varying sizes.

We use the ER graph model [34], the BA graph
model [10], the WS graph model [12] and the Kronecker
graph model [35] to generate our synthetic graphs. Here,
we have observed that for WS network, the hyper-parameter
k will affect the clustering coefficient, as k controls the
number of neighbors a node may connect in a WS network
(WS-1). That is, if we set k < 3, the clustering coefficient
for each node in WS network is 0. Hence, we add an extra
WS network (WS-2) with k = 6 to avoid this case. For all
synthetic networks, we use python package “‘networkx-2.0”
to generate the corresponding graph.

For real datasets, we use data available from the Stanford
Network Analysis Project (SNAP) [36]. In particular, we use
the Facebook network, the wiki-Vote network, and the
P2P-Gnutella network. The Facebook [37] dataset consists
of “friends lists”, collected from survey participants accord-
ing to the connections between user-accounts on the online

21838

social network. It includes node features, circles, and ego
networks; all of which has been anonymized by replacing
the Facebook-internal ids. Wiki-vote [38] is a voting net-
work (who votes for whom etc) that is used by Wikipedia
to elect page administrators; P2P-Gnutella [39] is a peer-
to-peer file-sharing network: Nodes represent hosts in the
Gnutella network topology, with edges representing connec-
tions between the hosts. RoadNet [40] is the road network
of Pennsylvania. Intersections and endpoints are represented
by nodes, and the roads connecting them are edges. As this
graph is of a size prohibitive to the computing resources used
in work, we choose a connected component of appropriate
size (note that the full network is not connected because
nodes may be connected in the real-world by roads outside
of Pennsylvania).

Detailed information for synthetic graphs as well as
real-world datasets are outlined in Table 1.

B. LOCAL TOPOLOGICAL FEATURES

As discussed in Section II, GTI automatically ranks edge
sets based on their contribution to the reconstruction of the
original graph. Here we use two examples to demonstrate
how this process retains important local topological structure
during each reconstruction stage. By applying GTI to the
BA network, the method learns that there are six stages for
reconstruction of the original topology (with stages 1,3, and
5 shown in Figure 5). In our second example, we demon-
strate GTI reconstruction for the real-world RoadNet dataset.
Similarly, Figure 6 demonstrates the learned reconstruction
stages 4, 8, and 11.

Stage 3

FIGURE 5. The topology of original graph and corresponding stages of BA
network.

1) BA NETWORK STAGE ANALYSIS

We demonstrate the reconstruction process of a BA network
in Figure 5, with the top row demonstrating the entire recon-
struction process of the full network. We clearly observe that

VOLUME 7, 2019

W. Liu et al.: Learning Graph Topological Features via GAN

IEEE Access

each reconstructed network becomes denser and denser as
additional stages are added. The bottom row of Figure 5
shows the subgraphs corresponding to nodes 0 to 19 at each
reconstruction stage. We observe that these subgraphs retain
the most important feature of the original subgraph (the star
structures at node 0), even during the first reconstruction
stage. In addition, we observe that the final stage exactly cor-
responds to the original stage. We again note that as illustrated
in Figure 1, this reconstruction is extremely difficult when
training a single GAN directly on the original graph.

2) ROAD NETWORK STAGES ANALYSIS

We observe in Table 1 that the retained edge percentages
of the RoadNet reconstruction decrease more consistently
with each stage than in the BA network. This is reasonable,
because geographical distance constraints naturally result in
fewer super hubs, with each node having less variability in
its degree. In Figure 6, we observe the reconstruction of the
full network, and the node 0 to node 19 subgraph of RoadNet.
We observe in the bottom row of Figure 6 that the dominant
cycle structure of the original node 0-19 subgraph clearly
emerges.

Stage 4 Stage Stage 11

o @ o @

e o600 Fow W) 0 0.e
® o -8 [@ %@ ® o @a@
8\@ e 0o © H o @ o e - @ d e N Py @"")
o o O o %
e o ©g 8, o ® y G g ©o

FIGURE 6. The topology of original graph and corresponding stages of
road network.

We also observe an interesting property of the stages of
the original graph in the top row of Figure 6. As SNAP does
not provide the latitude and longitude of nodes, we cannot
use physical locations. We instead calculate the modularity of
each stage, where modularity represents how well connected
the community is [41]. The tighter the community, the larger
the modularity. We found that the modularity deceases from
0.98 to 0.92 approximately linearly. This suggests that the
GTI stages first prioritize the clustering of nodes (through
edge connections) over connections between clusters. This
indicates that GTI views the dense connections between local
neighborhoods as a particularly representative topological
property of road networks.

C. GLOBAL TOPOLOGICAL FEATURES

In this section, we demonstrate the ability of GTI
reconstruction stages to preserve global topological features,
focusing on degree distribution and the distribution of cluster
coefficients.

Figure 7 and Figure 8 respectively show the log-log degree
distributions and log-log cluster coefficient distributions for
each of the datasets given in Table 1. In Figure 7 (8), the hor-
izontal axis in each degree distribution represents the ordered

VOLUME 7, 2019

degrees (ordered cluster coefficient), with the vertical axis
representing the density of each degree (the density of each
cluster coefficient). For each sub-figure, we use a red line to
demonstrate the (degree or cluster coefficient) distribution of
the original graph, and use a set of colors (gradient from green
to blue) to represent the corresponding distributions of the
ordered stages.

We observe that with the exception of the ER network,
the degree distributions and the cluster coefficient distribu-
tions of early stages are similar to the original graphs, and
only become more accurate as we progress through the recon-
struction stages. Although the degree distributions and cluster
coefficient distributions for the early stages of the ER network
reconstruction are shifted, we observe that GTI quickly learns
the Poisson like shape in degree distribution, and also learns
the “peak-like’” shape in the cluster coefficient distribution.
This is particularly noteworthy given that the ER model has
no true underlying structure (as graphs are chosen uniformly
at random). Finally, we note that the cluster coefficient for
each node in WS-1 is zero, and we have observed that GTI
learns this feature very quickly, even in the first few stages.
However, as we cannot take the log of zero in the subplot,
we plot the behavior of GTI on WS-2 instead in Figure 8. The
results show that in both cases (zero or non-zero cluster coef-
ficient), GT1is able to learn the corresponding characteristics.

In addition, we also use Frobenius norm [42]
(see Equation 4) and average node-node similarity [43]
(see Equation 5) to evaluate the similarity between gener-
ated stages and the original graph. Let A = G — G}_,,
where G} _, is the adjacency matrix of the penultimate stage.
The notation AT denotes the matrix transpose of A, and
sim <niGL“,nJG represents the node-node similarity with
mismatch penalty [44] between node i € G;_, and node
jeaG.]N G| is the total number of nodes in original graph.
Here, F-norm calculates the distance between two adjacency
matrices, and average node-node similarity indicates how

G, _, resembles G.

N N

Z Z al = /trace(ATA) (4)

F_norm =

sim(G;_,, G) = 5)

For comparison, we use the same model parameters to gen-
erate 100 ensembles of BA, ER, Kronecker and WS networks.
These newly generated networks serve as base models to
help us evaluate the similarity between the penultimate stage
and the original graph. Table 2 and 3 respectively display
the F-norm and the average node-node similarity between
the penultimate stage and original graph. Here, bold letters
imply best values between the penultimate stage and the mean
value of corresponding base models for each dataset. As for
each base model, we have generated 100 samples. Hence, for

21839

IEEE Access

W. Liu et al.: Learning Graph Topological Features via GAN

BA ER

Log of Density

o

2
Log of Degrees

2
Log of Degrees

Facebook P2P

2

Log of Density

2 . 2 .
Log of Degrees Log of Degrees

Initial Stage

FIGURE 7. Degree distributions for 8 datasets.

ER

Log of Density

® @ Penultimate Stage

W

- 2 - Ery e =T
Log of Cluster Coef Log of Cluster Coef

Facebook P2P

Log of Density

= 2 -
Log of Cluster Coef

= 2 -1
Log of Cluster Coef

Initial Stage

FIGURE 8. Cluster coefficient distributions for 8 datasets.

BaseModel and Penultimate Stage Column in Table 2 and 3,
we add the standard error for each generated network.

o Table 2 shows that 3 of 4 penultimate stages (i.e. BA,
Kronecker, WS) have smaller F-norm distance, which
means GTI successfully maintains the topological infor-
mation of the original graph.

o Table 3 shows that penultimate stage of BA has larger
average node-node similarity with the original graph,
and penultimate stages of Kronecker and WS and the
corresponding base model have identical similarity to
the original graph. These results give a solid evidence
that GTI also has the ability to attain good node-level
similarity to the original graph.

o The ER network is a totally random graph model and
hence GTI performs slightly worse than base models

21840

® @ Penultimate Stage

Kron

s 00 05 1o
Log of Degrees

Wiki-vote

2 .
Log of Degrees

0s 10
Log of Degrees

@ Final Stage = Original Graph

Kron Ws-2

35 30 25 25 20 15

- 2 =
Log of Cluster Coef Log of Cluster Coet

__roadNet Wiki-vote

3 r = B 2 -1
Log of Cluster Coef Log of Cluster Coef

@ Final Stage = Original Graph

(i.e., lack of important topological structure for GTI to
learn).

D. COMPARISON WITH GRAPH SAMPLING

The graphs generated by GTI can be considered as samples
of the original graph in the sense that they are repre-
sentative subgraphs of a large input graph. We compare
the performance of GTI with that of other widely used
graph sampling algorithms (Random Walk, Forest Fire and
Random Jump) with respect to the ability to retain topo-
logical structures [7]. We benchmark on the subgraph struc-
tures of the BA and Facebook datasets to compare the
stage 1 of GTI against the graph sampling algorithms
(designed to terminate with the same number of nodes as the
GTI stage).

VOLUME 7, 2019

IEEE Access

W. Liu et al.: Learning Graph Topological Features via GAN

TABLE 2. F-norm distance numerical evaluation on penultimate stage and original graph.

Graph Penultimate Stage ~ BaseModel BaseModel_min BaseModel_mean BaseModel _max
BA 53.0283+0.0436 62.9031£0.0859 62.8172 62.9031 62.9762

ER 285.8566+0.6287 282.92524+0.5637 282.3615 282.9252 283.4431

WS-1 44.4522+40.0372 44.609440.0448 44.5646 44.6094 44.6542

WS-2 44.3101+0.0218 44.510340.0463 44.4640 44.5103 44.5566
kronecker 124.9320+0.2698 125.32340.2757 125.1987 125.1987 125.5987

TABLE 3. Average node-node similarity numerical evaluation on penultimate stage and original graph.

Graph Penultimate Stage BaseModel BaseModel_min BaseModel_mean BaseModel_max

BA 99.9707 % +0.0047% 99.96401+0.0068% 99.9573% 99.9640% 99.9681%
ER 99.6372%+0.0196% 99.6590+0.0277% 99.6338% 99.6590 % 99.6867%
WS-1 99.9994% +0.0001% 99.99944+0.0001% 99.9993% 99.9994 % 99.9995%
WS-2 99.9994% +0.0001% 99.99944+0.0001% 99.9993% 99.9994 % 99.9995%
kronecker 99.2240%+0.0593% 99.224140.0650% 99.1606% 99.2240 % 99.2889%

Original Graph First 20 nodes GTI First 20 nodes Random Walk First 20 nodes Random Jump First 20 nodes Forest Fire First 20 nodes

. . ’ . 2 \ -
/ 3
4 | ~——_ | | 4
e —o_ : A N
// Ve : 5 . AN
First 50 nodes First 50 nodes First 50 nodes First 50 nodes First 50 nodes
a? 28?2 0 208 s, 3, EPY 0 e 0 B o o Qe g,) o
39/3“:;;— WX $ WE& // ~ s ! oo ¢ \ 7 o e s %
o Codrwy - N7 | N \ S e
g o= zé% * 1% o S0
n////\ e .
FIGURE 9. Comparison with graph sampling methods on the BA subgraphs.
Original Graph First 20 nodes GTI First 20 nodes Random Walk First 20 nodes Random Jump First 20 nodes Forest Fire First 20 nodes

18 " [E] 5

-)
— g— 0

TR || NS e

First 50 nodes First 50 nodes First 50 nodes First 50 nodes First 50 nodes

a EEN 5 n 13 5
\ / \ | ® / 16
[210 | 16
. \ . | ~_ 2 i / "
[| — .
i \ 'S — B r// 5
7

A 5
33 ¢ aa® P | 2

5 5
3 a®® 33 1 » ; i
[y \® 12 B o/
", ‘ @ / / . 8 v e ® \ 7\ a8 1
B \‘ 1,/31 30,,) ® 2 /// a 2 o @ \ ,é R J e ® o
V s . ?

wu/“ zo 9

£ 0
4 g0 | a—\ =28 g \1;,9
,146\“ [\36 _— \35 Q w7 2625 £ %255 £
% %A\ \’53‘35 - g \ "53%9 a \/26,25 ® E2] a }0—' s @ 2] o g ®
i
)

b \
Rty a5 N e \ 4
18 = w* S 19 R) % @ \ 18 5 ® ®
@

FIGURE 10. Comparison with graph sampling methods on the Facebook subgraphs.

To avoid messy graph plots, we show each of subgraphs other methods on the Facebook dataset, which has a num-
from BA and Facebook networks (nodes 0-19 and ber of highly dense clusters with very sparse inter-cluster
nodes 0-49) to visually compare the ability of the first stage connections.
of GTI to retain topological features in comparison to the
three graph sampling methods. In Figure 9, we observe V. DISCUSSION AND FUTURE WORK
that the stage 1 of GTI has retained a similar amount of This paper aims to leverage the success of GANs in
structure in the 20 node BA subgraph as Forest Fire [8], (unsupervised) image generation to tackle a fundamen-
while demonstrating considerably better retention than either tal challenge in graph topology analysis: a model-agnostic
Random Walk or Random Jump. However, for 50 node BA approach for learning graph topological features. By using
subgraph, only GTI has the ability to retain the two super a GAN for each hierarchical layer of the graph, our method
hubs presenting the original graph. In Figure 10, we observe allows us to effectively reconstruct input graph, preserv-
that GTI demonstrates vastly superior performance to the ing both local and global topological features. In addition,

VOLUME 7, 2019 21841

IEEE Access

W. Liu et al.: Learning Graph Topological Features via GAN

our method is able to automatically learn the number of
stages required to reconstruct stages and the graph itself non-
parametrically. This is potentially advantageous in terms of
understanding the distinct stages of graph reconstruction.

Our experimental results show promising results on the
capability of GTI for learning distinct topological features
from different graphs. To the best of our knowledge, there
is not a single graph model that can capture these distinct
topological features. A clear direction of future research is in
extending the approach to allow the input graph to be directed
and weighted, or with node attributions.

REFERENCES

[1] S. Muppidi and V. N. Koraganji, “Survey of contemporary ranking algo-
rithms,” Int. J. Appl. Eng. Res., vol. 11, no. 1, pp. 322-325, 2016.

[2] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,
nos. 3-5, pp. 75-174, 2010.

[3] V. Martinez, F. Berzal, and J.-C. Cubero, ““A survey of link prediction in
complex networks,” ACM Comput. Surv. (CSUR), vol. 49, no. 4, p. 69,
2016.

[4] Y. Wu, N. Cao, D. Archambault, Q. Shen, H. Qu, and W. Cui, “Evaluation
of graph sampling: A visualization perspective,” IEEE Trans. Vis. Comput.
Graphics, vol. 23, no. 1, pp. 401-410, Jan. 2016.

[5] J. Xiang et al., “Local modularity for community detection in complex
networks,” Phys. A, Stat. Mech. Appl., vol. 443, pp. 451-459, Feb. 2016.

[6] A. Delis, A. Ntoulas, and P. Liakos, “Scalable link community detec-
tion: A local dispersion-aware approach,” in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2016, pp. 716-725.

[7] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proc.
12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2006,
pp. 631-636.

[8] J. Leskovec, J. Kleinberg, and C. Faloutsos, ““Graphs over time: Densi-
fication laws, shrinking diameters and possible explanations,” in Proc.
11th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2005,
pp. 177-187.

[9] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world
networks,” Nature, vol. 393, no. 6684, pp. 440—442, 1998.

[10] A.-L. Barabdsi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509-512, 1999.

[11] A. Radford, L. Metz, and S. Chintala. (2015). “Unsupervised represen-
tation learning with deep convolutional generative adversarial networks.”
[Online]. Available: https://arxiv.org/abs/1511.06434

[12] D.J. Watts, P. S. Dodds, and M. E. Newman, “‘Identity and search in social
networks,” Science, vol. 296, no. 5571, pp. 1302-1305, 2002.

[13] I. Goodfellow et al., “Generative adversarial nets,” in Proc. NIPS, 2014,
pp. 2672-2680.

[14] 1. Goodfellow. (2016). “NIPS 2016 tutorial: Generative adversarial net-
works.” [Online]. Available: https://arxiv.org/abs/1701.00160

[15] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech., Theory Exp.,
vol. 2008, no. 10, 2008, Art. no. P10008.

[16] G. Karypis and V. Kumar, “Metis—Unstructured graph partitioning and
sparse matrix ordering system, version 2.0,” Dept. Comput. Sci., Univ.
Minnesota, Minneapolis, MN, USA, Tech. Rep., 1995.

[17] D.P.Kingma andJ. Ba. (2014). ““Adam: A method for stochastic optimiza-
tion.” [Online]. Available: https://arxiv.org/abs/1412.6980

[18] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. (2015). “Gated
graph sequence neural networks.” [Online]. Available: https://arxiv.
org/abs/1511.05493

[19] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and
locally connected networks on graphs,” in Proc. Int. Conf. Learn. Repre-
sent. (ICLR). Banft, AB, Canada: CBLS, Apr. 2014, pp. 3837-3845.

[20] M. Henaff, J. Bruna, and Y. LeCun. (2015). “Deep convolutional
networks on graph-structured data.” [Online]. Available: https://arxiv.
org/abs/1506.05163

[21] D. K. Duvenaud et al., “Convolutional networks on graphs for learning
molecular fingerprints,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 2224-2232.

21842

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]
(34]

(35]

(36]
(371
(38]
(39]
(40]

[41]

[42]

[43]

[44]

M. Defferrard, X. Bresson, and P. Vandergheynst, ‘“Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3837-3845.

T. N. Kipf and M. Welling. (2016). “Semi-supervised classification
with graph convolutional networks.” [Online]. Available: https://arxiv.
org/abs/1609.02907

S. Tavakoli, A. Hajibagheri, and G. Sukthankar, ‘“Learning social graph
topologies using generative adversarial neural networks,” Tech. Rep.,
2017.

E. L. Denton et al., “Deep generative image models using a laplacian
pyramid of adversarial networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2015, pp. 1486-1494.

X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
“InfoGAN: Interpretable representation learning by information maximiz-
ing generative adversarial nets,” in Proc. Neural Inf. Process. Syst. (NIPS),
2016, pp. 2172-2180.

J. Zhao, M. Mathieu, and Y. LeCun. (2016). “Energy-based
generative adversarial network.” [Online]. Available: https://arxiv.
org/abs/1609.03126

S. Nowozin, B. Cseke, and R. Tomioka, “f-GAN: Training generative
neural samplers using variational divergence minimization,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 271-279.

W. R. Tan, C. S. Chan, H. Aguirre, and K. Tanaka. (2017). “ArtGAN:
Artwork synthesis with conditional categorical GANs.” [Online].
Available: https://arxiv.org/abs/1702.03410

T. Miyato, A. M. Dai, and I. Goodfellow. (2016). “Adversarial train-
ing methods for semi-supervised text classification.” [Online]. Available:
https://arxiv.org/abs/1605.07725

Z. Yi, H. Zhang, P. Tan, and M. Gong. (2017). “DualGAN: Unsuper-
vised dual learning for image-to-image translation.” [Online]. Available:
https://arxiv.org/abs/1704.02510

A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer. (2017). “Imi-
tating driver behavior with generative adversarial networks.” [Online].
Available: https://arxiv.org/abs/1701.06699

S. Kohl et al. (2017). “Adversarial networks for the detection of aggressive
prostate cancer.” [Online]. Available: https://arxiv.org/abs/1702.08014
Wikipedia. (2017) Erdos/-Renyi/Model [Online]. Available:
https://en.wikipedia.org/wiki/ErdosRenyi_model

J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and
Z. Ghahramani, “Kronecker graphs: An approach to modeling networks,”
J. Mach. Learn. Res., vol. 11, pp. 985-1042, Feb. 2010.

SNAP. (2017). Stanford Network Analysis Project. [Online]. Available:
http://snap.stanford.edu/

SNAP. (2012). Social circles: Facebook. [Online]. Available:
http://snap.stanford.edu/data/egonets-Facebook.html

SNAP. (2010). Wikipedia Vote Network. [Online]. Available:
http://snap.stanford.edu/data/wiki-Vote.html

SNAP. (2007). Gnutella Peer-to-Peer Network. Accessed: Aug. 4 2002.
[Online]. Available: http://snap.stanford.edu/data/p2p-Gnutella04.html
SNAP. (2009). Pennsylvania Road Network. [Online]. Available:
http://snap.stanford.edu/data/roadNet-PA .html

M. E. J. Newman, “Modularity and community structure in networks,”
Proc. Nat. Acad. Sci. United States Amer., vol. 103, no. 23, pp. 8577-8582,
2006.

C. D. Meyer, Matrix Analysis and Applied Linear Algebra, vol. 2.
Philadelphia, PA, USA: STAM, 2000.

V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren,
“A measure of similarity between graph vertices: Applications to synonym
extraction and Web searching,” SIAM Rev., vol. 46, no. 4, pp. 647-666,
2004.

M. Heymans and A. K. Singh, “Deriving phylogenetic trees from the
similarity analysis of metabolic pathways,” Bioinformatics, vol. 19,
pp. 1138-i146, Jul. 2003.

WEIYI LIU is currently pursuing the Ph.D.
degree in communication and information sys-
tems with the University of Electronic Science
and Technology of China (UESTC). His current
interests include multilayer network embedding,
community detection algorithms, and social net-
work analysis. Currently, he is a recipient of the
Chinese Government Scholarship, and has applied
a two-year vising scholar with the IBM Watson
Research Center, New York, NY, USA.

VOLUME 7, 2019

W. Liu et al.: Learning Graph Topological Features via GAN

IEEE Access

PIN-YU CHEN received the B.S. degree in electri-
cal engineering and computer science (undergrad-
uate honors program) from National Chiao Tung
University, Taiwan, in 2009; the M.S. degree in
communication engineering from National Taiwan
University, Taiwan, in 2011; and the Ph.D. degree
in electrical engineering and computer science,
and the M.A. degree in statistics from the Univer-
sity of Michigan, Ann Arbor, MI, USA, in 2016.
He is currently a Research Staff Member with the
Al Foundations Learning Group, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, USA. His recent research is on adversarial machine
learning and robustness analysis of neural networks; moreover, his research
interests include graph and network data analytics and their applications to
data mining, machine learning, signal processing, and cyber security. He is a
member of the Tau Beta Pi Honor Society and the Phi Kappa Phi Honor Soci-
ety. He was a recipient of the Chia-Lun Lo Fellowship from the University
of Michigan Ann Arbor. He received the NIPS 2017 Best Reviewer Award,
and was also a recipient of the [IEEE GLOBECOM 2010 GOLD Best Paper
Award and several travel grants, including the IEEE ICASSP 2014 (NSF),
the IEEE ICASSP 2015 (SPS), the IEEE Security and Privacy Symposium,
the NSF Graph Signal Processing Workshop 2016, and the ACM KDD 2016.

FUCAI YU received the degree from the Lanzhou
Railway College, in 1999, with a major in commu-
nication engineering, and the master’s and Ph.D.
degrees in computer communication and secu-
rity from Chungnam University, South Korea,
in 2006 and 2010, respectively. Since 2009, he has
been with the School of Communication and
Information Engineering, University of Electronic
Science and Technology of China. In 2011, he was
appointed as an Associate Professor by the Uni-
versity of Electronic Science and Technology. The main research directions
include geographic location routing protocol, IP network traffic classifica-
tion, backbone network anomaly event identification and analysis, and fault
link diagnosis in sensor networks. At the current position, as the first author,
he has published 6 SCI papers and 13 EI papers, such as the Journal of
Communications and Networks, IEICE Transactions on Communications,
IEEE ComMmuNIcATIONS LETTERS, IET Communications Magazine, and IEEE
ICC, Globecom, WCNC, and other well-known international conferences.
The main courses are Exchange Principle and Communication Network
Security.

VOLUME 7, 2019

TOYOTARO SUZUMURA is currently a Research
Scientist, and also the Manager of the Graph
Computing Department, IBM Research Division,
Thomas J. Watson Research Center, Yorktown
Heights, NY, USA. He has also served as a Visiting
Full Professor with the Barcelona Supercomputing
Center, Spain, and as a Visiting Researcher with
The University of Tokyo, Japan. In 2017, he has
served as the Program Committee Chair for the
largest Big Data Conference and the IEEE BigData
2017. He and his team have kept winning the world championship in super-
computing competition called Graph500, for seven times, since 2014.

GUANGMIN HU received the degree from the
Department of Computer Science and Technol-
ogy, Nanjing University, in 1986, and the master’s
and Ph.D. degrees from the Chengdu University
of Technology, in 1992 and 2000, respectively.
He was a Postdoctoral Researcher with the Univer-
sity of Electronic Science and Technology, from
2000 to 2003, and also a visiting scholar with The
Hong Kong Polytechnic University, from 2002 to
2003. He is mainly involved in the research of
computer communication networks and signal and information processing.
As the Principal Researcher or the Person in Charge of the research project,
he has undertaken more than 50 research projects, including major projects
of the Natural Science Foundation of China, the National Natural Science
Foundation of China, the National 973 Program, and the National Science
and Technology Research Projects and various horizontal topics. He has been
selected for the New Century Excellent Talents Program of the Ministry of
Education. He is the backup candidate for the academic and technical leaders
in Sichuan Province.

21843

	INTRODUCTION
	METHOD
	LAYER IDENTIFICATION AND LAYER PARTITION MODULE
	LAYER GAN MODULE
	SUM-UP MODULE
	STAGE IDENTIFICATION

	RELATED WORK
	EVALUATION
	DATASETS
	LOCAL TOPOLOGICAL FEATURES
	BA NETWORK STAGE ANALYSIS
	ROAD NETWORK STAGES ANALYSIS

	GLOBAL TOPOLOGICAL FEATURES
	COMPARISON WITH GRAPH SAMPLING

	DISCUSSION AND FUTURE WORK
	REFERENCES
	Biographies
	WEIYI LIU
	PIN-YU CHEN
	FUCAI YU
	TOYOTARO SUZUMURA
	GUANGMIN HU

