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ABSTRACT This paper addresses the waveform design problem to estimate the target impulse response
(TIR) of the temporally correlated extended target in a cognitive radar, subject to a detection constraint and a
peak-to-average power ratio constraint. Owing to these types of constraints and the convolution operation of
the waveform in the time domain, the formulated optimization problem for minimizing the mean square error
of the estimated TIR based on Kalman filtering is a complex non-convex problem. To this end, an auxiliary
variable is first introduced to modify the original problem, and the non-convex problem is converted to a
convex problem with respect to the matrix variable. Then, a trick is used for replacing the matrix variable
with the vector variable by utilizing the properties of the Toeplitz matrix. Moreover, the convex problem
is further decomposed into three simple sub-problems which can be solved efficiently. Finally, the optimal
waveform can be obtained efficiently through cognitive iteration combinedwith the nearest neighbormethod.
The simulation results illustrate that the proposed method is superior to the existing method in terms of the
estimation performance and computational complexity when designing the constrained waveform.

INDEX TERMS Waveform design, cognitive radar, extended target, estimation performance,
peak-to-average power ratio, Kalman filtering.

I. INTRODUCTION
Cognitive radar (CR) is a new intelligent closed-loop radar
system that can perceive the surrounding complicated elec-
tromagnetism environment in real time and make reasoning
decisions on this basis [1], [2]. In CR, adaptive transmitted
waveform design based on the perceived prior knowledge
of environment and target is one of the key technologies
which can significantly improve the performance of target
detection, parameter estimation, recognition, and tracking in
complicated environment. Generally, the prior knowledge of
the surrounding environment can be obtained by collecting
the thermal noise and other interference before designing the
waveform [3], [4]. Meanwhile, when the prior knowledge of
target is considered to be known, the target can be modeled as
a determinant target impulse response (TIR) function [5] or a
stochastic process with a known distribution [6], [7].

The associate editor coordinating the review of this manuscript and
approving it for publication was Md. Asaduzzaman.

As is well known, it may cause the TIR to fluctuate when
the relative angle between the target and radar changes [4].
Hence, Dai et al. [8] and Zhang and Cui [9] use the wide
sense stationary-uncorrelated scattering (WSSUS) model to
describe this type of extended target which can be called the
temporally correlated target [3], [10]–[12]. In CR, this type of
TIR needs to be tracked in real time and the estimated result
should be fed back to the transmitter for the optimization of
the transmitted waveform. Furthermore, Detection is abso-
lutely an essential prerequisite for any estimation or recogni-
tion mission in a radar system [13]–[15].

Yao et al. [11] addressed the cognitive radar waveform
design problem with such target under the detection per-
formance constraint based on Kalman filtering (KF), then
the obtained waveform had better estimation and detection
performance. However, the envelope constraint on the trans-
mitted waveform was not considered in this work, which
made it difficult to meet the hardware constraints and maxi-
mize the power efficiency [16]. Therefore, unimodular or low
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peak-to-average power ratio (PAR) waveforms should be
applied in radar systems [7], [16]. Nevertheless, unimodular
waveform may lead to the degradation of waveform perfor-
mance [17], a more general low-PAR constraint can be used
instead of the unimodular constraint to further improve the
waveform performance [10], [18], [19].

Owing to the nonhomogeneous inequality constraints of
the detection and PAR, and the convolution operation of
waveform, it is difficult to tackle the optimization problem
in the time domain for minimizing the mean square error
(MSE) of the estimated TIR based on KF [12]. Therefore,
a frequency domain-based waveform design method was
proposed in [3], [10], and [12], in which the semi-definite
relaxation (SDR) was used to optimize the cognitive radar
waveform. However, it is worth noting that the SDR will
result in high complexity and the long sequences could hardly
be handled.

In this paper, we propose an efficient cognitive wave-
form design method which is directly studied in the time
domain. Based on KF, the minimization of the mean square
error (MSE) of the estimated TIR is taken as the opti-
mization criterion. The original problem can be converted
to a convex problem by introducing an auxiliary variable
and utilizing the properties of the Toeplitz matrix. With
the objective of achieving high efficiency, the convex prob-
lem is further decomposed into three simple sub-problems
which can be solved efficiently. Combined with the nearest
neighbor method, the sub-problems are solved efficiently
via cognitive iteration for a given PAR range and detection
probability. Compared with the existing methods, the pro-
posed method has lower computational complexity, and
the synthesized waveform thus has the better estimation
performance.

The remainder of the paper is organized as follows:
Section 2 describes the waveform optimization model of
the CR. In Sec. 3, the optimal criterion is formulated,
an efficient waveform design method is proposed and a
detailed computational complexity analysis is also provided.
Section 4 presents our simulation results. Finally, the conclu-
sions are summarized in Sec. 5.
Notation: Scalars are represented by italic letters, vec-

tors and matrices are denoted by boldface lowercase and
uppercase letters, respectively. The superscripts in (·)T and
(·)H represent the transpose and Hermitian transpose opera-
tions, respectively. A(m, n) denotes the element located in the
mth row and nth column of A. F (·) denote the Toeplitz
matrix mapping function of a vector, tr (·) denotes the
trace of a matrix, vec(·) denotes vectorization of a matrix.
<(·),=(·), |·|, and ‖·‖ represent the real part, the imaginary
part, modulus, and 2-norm of a complex scalar/vector/matrix,
respectively. C is the set of complex numbers. The symbol
‘‘⊗’’ and ‘‘∗’’ denote the Kronecker product and the convo-
lution operation, respectively. F (·) is the Fourier transform
matrix. Finally, CN (0,A) denotes a circular symmetric com-
plex Gaussian distribution with zero mean and the covariance
matrix A.

FIGURE 1. Waveform design model of CR.

II. SYSTEM MODEL
In this paper, we consider the waveform design of cognitive
radar for temporally correlated target in noise. The scattering
characteristic of target is represented by the target impulse
response (TIR) [20]. According to the characteristics of the
temporally correlated target, the target model [8] can be
formulated as

tk = e−Tp/τ tk−1 + zk−1, (1)

where tk is the target vector at kth iteration, zk−1 is the
fluctuation of TIR, TP is the pulse repetition interval (PRI),
and where τ is the temporal decay constant, which is deter-
mined by two factors: the velocity of the target and the
angle between the moving direction of the target and the line
of sight of radar. Then, tk and zk−1 are mutually indepen-
dent [20] and tk ∼ CN (0,Rt ), zk−1 ∼ CN (0,Rz), where
Rz =

(
1− e−2Tp/τ

)
Rt . It is assumed that the influence of

sidelobes has beenmitigated by sidelobe blanking technology
in front of the receiver. Meanwhile, we focus on the analysis
of single-input single-output radar in this paper which can be
straightforwardly extended to multiple-input multiple-output
radar case. Then the waveform design model of CR can be
depicted as shown in Fig. 1.

The information library in Fig. 1 is mainly used to store
the prior knowledge of the environment and to update the
knowledge of waveform and target. t̂k−1 denotes the esti-
mated value of TIR at (k − 1)th iteration, Pk−1 is the covari-
ance matrix of the estimation error of estimated TIR based
on KF, the symbol ‘‘tr’’ represents the trace of a matrix.
Then tr (Pk−1) can represent the MSE of the estimated
TIR [9], [10], and the smaller tr (Pk−1) is, the higher the
estimation accuracy is. Thus, we can take minimization of
tr (Pk−1) as the optimization criterion of waveform design
under the transmitted energy, detection performance, and
PAR constraints. s ∈ CNs×1 denotes a transmitted waveform
with length Ns,n ∈ CNn×1 denotes the sum of the noise and
the interference, Nn = Ns + Nt − 1,n ∼ CN (0,Rn), and
Nt is the length of target. Then, the kth echo signal can be
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expressed as

xk = sk ∗ tk + nk = Sk tk + nk = T ksk + nk , (2)

where x ∈ CN×1 with the length N = Ns + Nt − 1.
Sk tk = T ksk can be obtained due to the reciprocity of
the convolution operation. The convolution matrices S and
T are Toeplitz matrices corresponding to s and t, respec-
tively. We use the function ‘‘F (•)’’ represents their mapping
relationship in this paper, i.e., T = F (t) ,S = F (s).
Taking transmitted waveform as an example, the convolution
matrix S can be written as

S=



s (1) 0 · · · 0
... s (1)

. . .
...

s(Ns)
...

. . . 0

0 s(Ns)
. . . s (1)

...
. . .

. . .
...

0 · · · 0 s(Ns)


∈C(Ns+Nt−1)×Nt . (3)

III. WAVEFORM DESIGN METHOD
In this section, an efficient cognitive radar waveform design
method for temporally correlated target is proposed. Unlike
the existing works [3], [10], [12] for solving the optimization
problem based on SDR in frequency domain, which may not
only cause the relaxation of the original time domain prob-
lem but also has high computational complexity, an efficient
optimization method that is directly solved in time domain is
devised.

A. PAR CONSTRAINT AND DETECTION CONSTRAINT
Without any loss of generality, it can be assumed that the
waveform is energy-limited and the total energy of the trans-
mitted waveform is Ns. Then the PAR can be defined as

PAR(s)
maxi |s (i)|2

1
Ns

∑Ns
i=1 |s (i)|

2
= max

i
|s (i)|2 ≤ η, η ∈ [1,Ns],

(4)

where s (i) is the ith element of s, and η is a predefined
parameter that denotes the maximum allowed PAR. Note that
the PAR constraint is equivalent to a unimodular constraint
when η = 1, whereas it becomes a redundant constraint
when η = Ns.
Besides, the detection probability of the waveform under

the constant false alarm rate (CFAR) criterion can be
expressed as [21]

PD (α) = Q
[
Q−1 (α)−

√
2µ̂k

]
, (5)

where µ̂k =
∑k

j=0 s
H
j T̂

H
j R
−1
n T̂ jsj, T̂ j = F

(
t̂ j
)
, and t̂ j

denotes the estimated value of TIR at jth iteration of KF.
α (0 < α < 1) denotes the CFAR, and Q (•) represents right
tail probability distribution function of standard Gaussian dis-
tribution, Q (x) =

∫
∞

x p (x) dx, p (x) is the probability den-
sity function of standard Gauss distribution. Assuming that

TABLE 1. The recursion process of Kalman filtering.

the given detection probability is Pγ , the constraint of detec-
tion performance can be formulated as

sHk T̂
H
k R
−1
n T̂ ksk ≥ ε, (6)

where ε =
[
Q−1 (α)− Q−1

(
Pγ
)]2/

2 −
∑k−1

j=0 s
H
j T̂

H
j

R−1n T̂ jsj.

B. PROBLEM FORMULATION
Since the prior information of the target is unknown, the tar-
get should be estimated before waveform design. According
to [9], the KF can be used to estimate and predict the TIR,
and the recursion process is shown in Table 1.

In Table 1, Pk|k is the MSE matrix which can be obtained
by using the k + 1 measurement data (including k = 0) and
t̂k|k denotes the estimation of t . t̂0|0 and P0|0 can be obtained
by using the minimum variance unbiased (MVU) estimating
method [22]. Then, the problem of waveform design can
be turned to the minimization of tr

(
Pk|k

)
, which can be

expressed as

min
Sk

tr(Pk|k ) = min
Sk

tr
(
Pk|k−1 − Pk|k−1SHk

×

(
Rn+SkPk|k−1SHk

)−1
SkPk|k−1

)
. (14)

As we can see, the expression in (14) is complicated
which can be simplified by utilizing the matrix inversion
lemma [23], then we can get

Pk|k−1 − Pk|k−1SHk
(
Rn + SkPk|k−1SHk

)−1
SkPk|k−1

=

(
P−1k|k−1 + S

H
k R
−1
n Sk

)−1
. (15)

Therefore, the optimization criterion can be turned to

min
Sk

tr
(
P−1k|k−1 + S

H
k R
−1
n Sk

)−1
. (16)
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Thus, under the energy, detection, and PAR constraints, the
optimization problem can be written as

min
sk

tr
(
P−1k|k−1 + S

H
k R
−1
n Sk

)−1
s.t. sHk sk ≤ Es
|sk (i)|2 ≤ η, i = 1, 2, · · · ,Ns

sHk T̂
H
k R
−1
n T̂ ksk ≥ ε

Sk = F (sk) .

(17)

We can note that the objective function of the problem
in (17) is non-convex, the first two quadratic inequality
constraints are nonhomogeneous and the third constraint is
non-convex. Hence, this optimization problem is a complex
non-convex problem which is difficult to tackle [24]. One
possible way to tackle this problem is that to convert it to fre-
quency domain and to apply the convex optimization method
based on SDR [3], [10], [12] which has an approximate
computational complexity of O

(
N 4.5
s
)
at each iteration [25].

As a result, SDRwill bring a high computation cost especially
when Ns is large. Therefore, an efficient optimization method
is needed.

C. WAVEFORM DESIGN
With the objective of reducing the computation cost and
making the synthesized waveform closer to the optimal solu-
tion of the original problem, we tackle the problem of (17)
with a more efficient method. Firstly, we should convert the
detection constraint to a convex set. According to the rank-
one approximation method [25], letW = T̂

H
k R
−1
n T̂ k , we can

get that W ≈ θmaxwmaxwHmax, where wmax is the eigenvector
corresponding to the maximum eigenvalue θmax of W . Then
we can have

<(sHk wmax) ≥
√
ε
/
θmax. (18)

It can be seen that the detection constraint in (18) is a
convex set. Then, the optimization problem in (17) can be
recast as

min
sk

tr
(
P−1k|k−1 + S

H
k R
−1
n Sk

)−1
s.t. sHk sk ≤ Es
|sk (i)|2 ≤ η, i = 1, 2, · · · ,Ns

<(sHk wmax) ≥
√
ε
/
θmax

Sk = F (sk) .

(19)

The key of the proposed method is to covert the non-
convex problem in (19) to a convex problem which can
be solved efficiently. To this end, we introduce an auxil-
iary variable 1Sk , which is the incremental matrix of Sk ,
(viz, Sk = Sk−1+1Sk ) to modify the optimization problem.
1Sk is also a convolution matrix which has same structure
as shown in (3) and |1Sk (i)| ≤ δ, i = 1, 2, · · · ,NNt , where
δ is a small real value. Sk−1 is a known convolution matrix of
waveform at (k − 1)th iteration. Then, the objective function

can be reformulated as(
P−1k|k−1 + S

H
k R
−1
n Sk

)−1
=

(
P−1k|k−1 + (Sk−1 +1Sk)

H R−1n (Sk−1 +1Sk)
)−1

=

(
P−1k|k−1 + S

H
k−1R

−1
n Sk−1 + SHk−1R

−1
n 1Sk

+1SHk R
−1
n Sk−1 +1SHk R

−1
n 1Sk

)−1
≈

(
P−1k|k−1 + S

H
k−1R

−1
n Sk−1 + SHk−1R

−1
n 1Sk

+1SHk R
−1
n Sk−1

)−1
. (20)

Define Y k = P−1k|k−1 + SHk−1R
−1
n Sk−1,1Y k = SHk−1

R−1n 1Sk +1SHk R
−1
n Sk−1, then we have

(Y k +1Y k)−1

=

[
Y k
(
I + Y−1k 1Y k

)]−1
=

(
I + Y−1k 1Y k

)−1
Y−1k .

(21)

According to [26], (I + A)−1 is equal to I−A ifA is small,
viz.

(I + A)−1 ∼= I − A. (22)

Then we have(
I + Y−1k 1Y k

)−1
Y−1k

∼=

(
I − Y−1k 1Y k

)
Y−1k

= Y−1k − Y
−1
k SHk−1R

−1
n 1SkY−1k − Y

−1
k 1SHk R

−1
n Sk−1Y−1k .

(23)

where Y k is a known matrix. Let Zk = SHk−1R
−1
n , ignoring

the constant term and the optimization criterion in (16) can
be reformulated as

min
1Sk

tr
(
−Y−1k Zk1SkY−1k − Y

−1
k 1SHk ZkY

−1
k

)
. (24)

It can be seen that the objective function in (24) is a
convex function with respect to matrix variable 1Sk [24].
Then, we show that we can recast the objective func-
tion of (24) as a function with respect to the vector vari-
able 1sk (1Sk = F (1sk)). By using the identities that
tr (ABCD) = vecT

(
AT
) (
DT ⊗ B

)
vec (C) = vecT

(
BT
)(

AT⊗ C) vec (D) [27], we can rewrite the objective of (24)
as

−uvec (1Sk)− vecT
((
1SHk

)T)
v, (25)

where u ∈ C1×NNt , and u = vecT
((

Y−1k
)T)((

Y−1k
)T
⊗ Zk

)
, v ∈ CNNt×1, and v =

((
Y−1k

)T
⊗ Zk

)
vec

(
Y−1k

)
.
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Considering that1Sk is a convolution matrix with Toeplitz
structure (shown in (3)) which consists of1sk , we can recast
the objective function of (25) as

−u′1sk −1sHk v
′, (26)

where u′ ∈ C1×Ns ,u′ =
∑Nt

i=1 u
′
i,u
′
i =

[
u((i− 1) ∗ N + i),

u((i− 1) ∗ N + i+ 1), · · · , u((i− 1)∗N + i+ Ns − 1)
]
, and

v′ ∈ CNs×1, v′ =
∑Nt

i=1 v
′
i, v
′
i = [v((i− 1) ∗ N + i),

v((i− 1) ∗ N + i+ 1), · · · ,v((i− 1)∗N + i+ Ns − 1)]T .
Then, the optimization criterion can be reformulated as

min
1sk

f1sk , (27)

where

f = −u′ −
(
v′
)H
. (28)

Therefore, the optimization problem in (19) can be rewrit-
ten as 

min
1sk

f1sk

s.t. sHk sk ≤ Es
|sk (i)|2 ≤ η, i = 1, 2, · · · ,Ns

<(sHk wmax) ≥
√
ε
/
θmax

|1sk (i)| ≤ δ, sk = sk−1 +1sk ,

(29)

where sk−1 is a known vector at (k − 1)th iteration. So far,
the problem of (29) becomes a convex problem. One possible
way to tackle this problem is applying the interior point
method with CVX toolbox [28]. Denote s∗k is the solution
of (29), it is worth noting that s∗k may not be the true optimal
solution at kth iteration, because the available region of the
1sk is small. That is to say, the true optimal solution at
kth iteration can be obtained by solving the problem of (29)
repeatedly until the termination criterion is met to ensure
that all the available region of sk can be searched. However,
the interior point method has a computational complexity of
O
(
N 3.5
s log ξ−1

)
(where ξ is the accuracy of algorithm) [25],

and it would be performed repeatedly until the termination
criterion is met in the process from the (k − 1)th iteration to
the kth iteration. Although its computational complexity is
lower than the method in [3], [10], and [12], it still brings a
heavy computational burden. To this end, a fast optimization
method is developed.

D. WAVEFORM DESIGN FAST HIERARCHICAL
OPTIMIZATION METHOD
In this subsection, we shall present a fast hierarchical opti-
mization method which includes inner iteration and outer
iteration to tackle the problem in (29).

1) INNER ITERATION
Since the objective function in (29) is a linear function with
respect to 1sk , and |1sk (i)| ≤ δ is a linear constraint with
respect to 1sk . So first we can construct a standard linear

programming problem, viz., sub-problem 1, which can be
formulated asmin

1sk,q
f1sk,q

s.t.
∣∣1sk,q (i)∣∣ ≤ δ, i = 1, 2, · · · ,Ns,

(30)

where the subscript k and q denote the serial number of
outer iteration and inner iteration, respectively. As is well
known, the sub-problem 1 is a standard linear programming
problem, so it can be solved efficiently by using the simplex
method [29] with the function ‘‘linprog’’ inMATLAB.More-
over, since the ‘‘linprog’’ is only used to deal with real-valued
problems, so (30) is reformulated as

SP1


min
1̃sk,q

f̃ 1̃sk,q

s.t.
∣∣∣1̃sk,q (i)∣∣∣ ≤ δ, i = 1, 2, · · · ,Ns,

(31)

where f̃ =
[
<
(
f T
)
=
(
f T
)]T

, 1̃sk,q =

[
<

(
1sTk,q

)
=

(
1sTk,q

)]T
. Denote the solution of SP1 is 1̃s∗k,q, and its

complex-valued can be denoted as1s∗k,q. Therefore, the can-
didate waveform at kth inner iteration can be written as

s̄∗k,q = sk,q−1 +1s∗k,q, (32)

where sk,q−1 is the known vector at (k, q− 1)th iteration.
Next, considering the transmitted energy and PAR con-

straint, the sub-problem 2 can be expressed as

SP2


min
sk,q

∥∥∥sk,q − s̄∗k,q∥∥∥22
s.t. sHk,qsk,q ≤ Es∣∣sk,q (i)∣∣2 ≤ η, i = 1, 2, · · · ,Ns.

(33)

It can be seen that SP2 is a convex problem which can be
solved by using the interior point method. However, we can
find that the form of objective function and constraints of SP2
are the same as the nearest neighbor method with complexity
of O

(
N 2
s
)
[30]. Thus, SP2 can be tackled efficiently through

the nearest neighbor method. Then, we can get the optimal
solution s∗k,q at kth inner iteration until the termination crite-
rion is met by solving SP1 and SP2 iteratively.

2) OUTER ITERATION
Since the detection constraint is not considered in inner iter-
ation, the solution s∗k,q may not meet the requirements of
detection performance. Thus, let s̄∗k = s∗k,q be the candidate
solution, the sub-problem 3 can be formulated as

SP3


min
sk

∥∥sk − s̄∗k∥∥22
s.t. s̃Hk s̃k ≤ Es
|sk (i)|2 ≤ η, i = 1, 2, · · · ,Ns

s̃Hk w̃max ≥

√
ε
/
θmax,

(34)

where s̃k =
[
<
(
sTk
)
=
(
sTk
)]T

, w̃max =
[
<
(
wTmax

)
=
(
wTmax

)]T .
SP3 is a convex problem which can be solved by using
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TABLE 2. The proposed waveform design method for target estimation.

interior point method (only one time) to get the optimal
solution s∗k with complexity of O

(
N 3.5
s
)
[25].

We now discuss the termination criterion. By substituting
the optimal waveforms s∗k,q and s∗k,q−1 of the (k, q)th and
(k, q − 1)th inner iteration into (13), we can get Pk,q and
Pk,q−1, respectively. Then, the termination criterion of inner
iteration can be denoted by τ1 =

∣∣tr (Pk,q)− tr
(
Pk,q−1

)∣∣2 ≤
σ1. By substituting the optimal waveforms s∗k and s∗k−1 of
the kth and outer iteration into (13), we can get Pk and
Pk−1, respectively. Then, termination criterion of outer iter-
ation can be denoted by τ2 = |tr (Pk)− tr (Pk−1)|2 ≤ σ2.
Here σ1 and σ2 are termination tolerances of inner and outer
iteration, respectively. In addition, the maximum iterative
number of inner and outer iteration are denoted by κ1 and κ2,
respectively.
According to the above steps, the proposed method is

summarized in Table 2.

3) COMPUTATIONAL COMPLEXITY ANALYSIS
The original optimization problem can be converted into
three sub-problems that can be solved efficiently. The first
two sub-problems are solved in inner iteration, in which
the simplex method and nearest neighbor method are
used with complexity of O (Ns) and O

(
N 2
s
)
, respectively.

Since the convergence rate of inner iteration is difficult to
analyze theoretically, the average iteration times denoted
by L is used to express the convergence rate. Through
a large number of Monte Carlo experiments, it is found
that L is always smaller than 30 (which is demonstrated
in Fig. 2). The third sub-problem is solved in outer iteration,
in which the interior point method is applied to tackle the
MSE problem [25] and eigenvalue decomposition is also
used, with complexity of O

(
N 3.5
s
)
and O

(
N 3
s
)
, respectively.

Therefore, the total computation complexity of the proposed
method is O

(
LNs + LN 2

s + N
3.5
s + N

3
s
)
in each iteration. For

comparison, we employed the convex optimization method
(COM) in [3], [10], and [12]. Since this kind of method is
based on Kalman filtering, for convenience, it is denoted by

FIGURE 2. The convergence of inner iteration. (a) k = 1. (b) k = 2.

‘‘COM-KF’’ which means the ‘‘Convex Optimization
Method based on Kalman filtering’’ in this paper. It needs
to tackle the problems of SDR and MSE with interior point
method, and to compute eigenvalue decomposition twice.
Their computational complexity are O

(
N 4.5
s
)
,O

(
N 3.5
s
)
and

O
(
2N 3

s
)
, respectively. In summary, the computation com-

plexity of the COM-KF is O
(
N 4.5
s + N

3.5
s + 2N 3

s
)
in each

iteration.

IV. SIMULATION RESULTS
Several numerical simulations were performed to demon-
strate the performance of the proposed method. Let the length
of the transmitted waveform be Ns = 10 and the total trans-
mitted energy be Es = Ns. The initial transmitted waveform
s0 was generated by a random phase-coded signal and the
waveform convolution matrix S0 = F (s0). Supposing the
noise to be white Gaussian, we let noise covariance matrix be
Rn = σ 2

n IN , where σ
2
n denotes the variance of noise, and the

signal-to-noise ratio (SNR) of the echo signal is 7 dB. Mean-
while, set Nt = 10, the target covariance matrix Rt = σ 2

t R(t),
where σ 2

t = 1 and R(t) = U t3tUH
t was the normalized

covariance matrix. According to [31], 3t ∈ CNt×Nt is a
diagonal matrix andU t is the unitary matrix with its (n,m) th
entry given by

1
√
Nt

exp
[
−j2π (n−1) (m−1)

Nt

]
, ∀n,m ∈ [1,Nt ]. (35)

In addition, we performed 300 Monte Carlo trials for each
combination of parameters. We set PRI TP = 1ms and tem-
poral decay constant τ = 0.1s. The termination tolerances
were σ1 = σ2 = 10−3, and the maximum iterative numbers
were κ1 = 30 and κ2 = 20. Furthermore, the false alarm
probability was α = 0.05 and the detection probability was
Pγ = 0.95. The Matlab 2013b version was used to perform
the simulations with a standard PC (CPU Core i5-3230M
2.6GHz and 4GB RAM).

A. EFFECTIVENESS VERIFICATION
In this subsection, we demonstrate the effectiveness of the
proposed method. We set PAR to η = 2, and the available
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FIGURE 3. Normalized MSE of different methods versus outer iteration
number k.

region of 1sk to be δ = 0.1. respectively. Figs. 2(a) and (b)
show the convergence performance of the proposedmethod in
inner iteration when the sequence numbers of outer iteration
are k = 1 and k = 2, respectively. The MSE matrix
Pk can be obtained via (13). It can be seen that both the
curves are monotonically convergent within 30 iterations,
which indicate that the estimation accuracy of the target is
gradually improved as the number of iterations increases.
Thus, the effectiveness of the internal iteration is verified.

Next, the proposed method is compared with exist-
ing methods. For convenience, another ‘‘Convex Optimiza-
tion Method based on Maximum A Posteriori criterion’’
in [3], [10], and [12] is denoted by ‘‘COM-MAP’’ in this
paper. As we can see, both the COM-KF and COM-MAP
are studied based on frequency domain. In order to make a
comparison under the same standard, the target estimation
value t̂k obtained by the proposed method is converted into
the frequency domain through Fourier transform. Let ĝk =
F
(
t̂k
)
, gk = F (tk), the symbol ‘‘F’’ denotes the Fourier

transform matrix. In order to average the simulation results,
50 random targets are generated to perform the experiments.
Then, estimation performance can be evaluated with the nor-
malized MSE criterion

nMSE =
∥∥ĝk − gk∥∥22/‖gk‖22. (36)

Fig. 3 shows the normalized MSE of TIR estimation based
on the proposed method, COM-KF and COM-MAP ver-
sus the iteration number. One can see that the normalized
MSE based on the proposed method is smaller than that of
COM-KF and COM-MAP. This may be because that these
two methods relax the original time domain optimization
problem to the frequency domain, which leads to the devi-
ation of the obtained waveform from the original problem.
As the proposed method directly studies in the time domain,
the proposed CR system adapts its transmitted waveform
better to the fluctuating TIR and the synthesized waveform
is closer to the optimal solution of the original problem.
In addition, the estimation performance of COM-KF is better
than that of COM-MAP, because the temporal correlation

FIGURE 4. Normalized MSE of different methods versus SNR.

FIGURE 5. Normalized MSE of different methods versus waveform length.

of TIR can be fully utilized in KF. Fig. 4 shows the nor-
malized MSE versus the SNR based on the three methods,
we can see that the estimation performance is improved as
SNR increases and the proposed method is superior to
COM-KF and COM-MAP.

B. COMPARISON OF COMPUTATION COMPLEXITY
Since the computation complexity of COM-KF and
COM-MAP in [3], [10], and [12] are same, we just use the
COM-KF as the comparison in this subsection. Let the total
available transmitted energy Es = Ns, SNR = 7dB, and
η = 2. Fig. 5 shows the normalized MSE obtained using
the proposed method and the COM-KF versus the waveform
length Ns. It can be seen that the estimation performance
obtained using the proposed method is superior to that of
CMO-KF as Ns increases. Moreover, we can note that curves
of the two methods have almost no change since the SNR
is a fixed value. Fig. 6 depicts the corresponding run times
of the two methods, revealing that the proposed method is
several orders of magnitude faster than the COM-KF, because
the proposed method can convert the original problem into
several smaller and easily solved convex sub-problems that
can be solved efficiently.

C. PAR AND DETECTION CONSTRAINTS
In this subsection, we discuss the influence of the PAR
and detection constraints on the synthesized waveform.
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FIGURE 6. Run time of different methods versus waveform length.

FIGURE 7. Comparison of the waveforms under different PAR constraints,
η = [1,1.2,1.5,2,3,Ns].

Fig. 7 shows the normalizedMSEwith the synthesized wave-
forms under different PAR values. We can see that the curves
can converge to their respective stationary values which
become smaller as η increases, this is because the feasible
set region in SP2 and SP3 becomes larger as η increases.
However, since the energy of the transmitted waveform is
limited, the waveform performance has its upper bound.
Then, we can also see that the curves can be monotonically
convergent to the stationary value which are very close and
the curves almost overlap when η ≥ 2. Fig. 8 shows the
real and imaginary parts of the waveforms under different
PAR constraints. When η = Ns, the distribution radii of the
corresponding points are large, which is not favorable for
practical applications. In contrast, the results obtained with
η = 1 are unimodular and lie on the unit circle. Mean-
while, the distribution radii of the waveform with η = 2
are close to those of the waveform with η = 1, and the
performance is very close to that of the waveform with
η = Ns, as shown in Fig. 7. This result indicates that the low-
PAR waveform (for example η = 2) not only meet the hard-
ware constraints but also have better estimation performance
than a unimodular waveform. Hence, the low-PAR waveform
is more suitable for practical applications.

Fig. 9 shows the detection performance of the synthe-
sized waveform under different SNR. It can be seen that

FIGURE 8. Real and imaginary parts of the waveforms with η = [1,2,Ns].

FIGURE 9. Probability of target detection with different SNR.

FIGURE 10. Probability of target detection with different τ .

the larger the SNR, the fewer iterations are needed to opti-
mize the waveform to reach the given detection probability.
Meanwhile, the detection performance of the synthesized
waveforms gradually increase and reach the given detec-
tion probability as iterations increases. Thus, the synthesized
waveform also can meet the requirement of detection perfor-
mance when estimating the target.

Let SNR = 0dB, η = 2. Fig. 10 shows detection perfor-
mance of the synthesized waveform under different temporal
decay τ . It is worth noting that τ = ∞ means the value of
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TIR is not changed during the radar pulse interval. Note that
although the curves of detection performance under different
τ can converge to the same value, the larger τ has better
convergence quality. This is because the faster the velocity
and view angle change rate of target, the smaller τ is, so the
detection performance of the synthesized waveformwould be
better for the slow-moving target whose value of τ is large.

V. CONCLUSION
In this paper, we proposed an efficient cognitive radar wave-
form design method for the TIR estimation under the PAR
and detection constraints. In order to tackle the original
non-convex problem in time domain, which is commonly
translated to the frequency domain and solved by the con-
vex optimization method based on SDR, a fast hierarchical
optimization method that is directly solved in time domain is
proposed. The performance of the proposed method in terms
of the estimation performance, computational complexity,
and detection performance are evaluated in simulation experi-
ments. The simulation results illustrate that the optimal wave-
form can be obtained efficiently within the given low-PAR
range and detection probability. Compared with the existing
method, the proposed method has effectively reduced com-
putational complexity and the synthesized waveform can pro-
vide a better estimation performance.Moreover, the proposed
method can be used in the waveform design of cognitive radar
systems since the high computational efficiency will enable
real-time waveform changes.

In this paper, we mainly consider the energy and PAR con-
straints of the transmitted signal. However, it is worth noting
that time-width and bandwidth are also limited by hardware
which may affect the detection performance, so the possible
future research content include the extension to the cases with
time-width and bandwidth constraints. Furthermore, the low
autocorrelation sidelobes and spectral constraints in the pres-
ence of signal-dependent clutter are also should be considered
in the next research content.
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