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ABSTRACT This communication presents an efficient massively parallel finite element method solver
for the solution of complex and electrically large electromagnetic problems with arbitrary structures. The
solver makes use of a domain decomposition algorithm to decompose the original problem into several
non-overlapping sub-domains that may be solved independently in parallel through the application of the
corresponding transmission conditions on the interfaces of the adjacent sub-domains. A numerical exact
mesh truncation algorithm called finite element-iterative integral equation evaluation, accelerated with
multilevel fast multipole algorithm, is implemented to meet the highly accurate requirements of today’s
challenging simulations. What’s more, a hybrid message passing interface and an open multi-processing
parallel framework are designed to achieve large-scale parallel performance on supercomputers. Through
several numerical examples, the accuracy, effectiveness, and scalability of the proposed solver will be
demonstrated, achieving more than 60% parallel efficiency on an eight times CPU core scale (from 1280 to
10 240 cores).

INDEX TERMS Finite element method (FEM), domain decomposition method (DDM), large-scale parallel
computing, finite element-iterative integral equation evaluation (FE-IIEE), ten thousand CPU cores.

I. INTRODUCTION
The finite element method (FEM) is a numerical technique
widely used in predicting the behavior of radiating and scat-
tering objects of an arbitrary shape for its ability to handle
complex geometrical features and material properties. Unfor-
tunately, the direct application of the FEM in the analysis
of complex and electrically large electromagnetic problems
leads to solve huge, highly ill-conditioning and, even possibly
indefinite, complex sparse matrix equation. In this scenario,
the use of memory efficient iterative solvers seems the appro-
priate choice, however they may experience slow conver-
gence rates or even divergence when solving challenging
electromagnetics problems [1]. Contrary, direct solvers such
as MUMPS [2] or MKL PARDISO [3] are very reliable but,
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computationally speaking, highly demanding for large-scale
parallel computing. On the other hand, domain decomposi-
tion methods (DDMs) [4] provide an efficient alternative to
overcome the aforementioned problems. DDMs are based on
the idea of ‘‘divide and conquer’’, that is, the original and
hard to solve electromagnetic problem is divided into smaller
and easier to handle independent sub-problems amenable to
solve by using sparse direct solvers through the imposition of
appropriate transmission conditions (TCs) on the interfaces
of adjacent sub-domains.

In the past decades, the theory of DDM has devel-
oped rapidly, and the capability of FEM for solving com-
plex and electrically large problems has been dramatically
enhanced [5]–[12]. However, most of these works were
focused on the improvement of the TC [5], [11], [12] to
obtain stable, optimal and convergent algorithms, frequently
solving models with characteristics of periodic structures
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such as photonic band gap (PBG), electromagnetic band
gap (EBG) or finite antenna array and so on [6]–[8].
In recent works authors have performed large-scale elec-
tromagnetic simulations using high-performance computing
schemes together with DDM algorithms as in [13]. However,
their computational domain discretization and mesh trunca-
tion was made using first order basis functions and first order
absorbing boundary condition (ABC), respectively. Thus,
it becomes really hard to meet the highly accurate require-
ment of nowadays challenging electromagnetic simulations.
Jia et al. [14] introduced the hierarchical matrix technique to
improve the efficiency of the finite element method (FEM)
– boundary element method (BEM) – DDMs. Although the
BEM provides a very accurate mesh truncation boundary, its
massively parallel implementation is not straightforward due
to the FEM matrix shape. At the same time, these works are
still focused on the solution of periodic structures without
too effective improvement of the FEM’s computing ability
for arbitrary complex structures. Consequently, from the cur-
rent point of view, compared to extremely efficient parallel
integral equation works, as in [15] and [16], there is lack
of feasible and effective parallel FEM general solvers for
solving complex and electrically large aperiodic structures in
practical engineering.

In this paper, a massively parallel FEM solver for solving
complex and electrically large aperiodic problems is pre-
sented. The solver implements a first order non-overlapping
DDM technology and a hybrid parallel paradigm that com-
bines a distributed-memory scheme by usingmessage passing
interface (MPI) [17] and a shared-memory scheme by using
Open Multiprocessing (OpenMP) [18]. This combination
provides a massively efficient parallel implementation, that
allows us to use all the computing power and storage capacity
of large high-performance computing (HPC) clusters and
supercomputers.

Furthermore, the FEM mesh truncation technology for
open problems is of capital importance in full-wave elec-
tromagnetic simulations when modeling radiating devices
(antennas) and scattering open problems (for example, pre-
diction of radar cross section), or the spurious radiation
in guiding structures or, in general, passive devices. When
implementing a FEM solver as the one proposed in this
paper, two different class of mesh truncation techniques may
be considered. The first class is based on local boundary
conditions that are imposed on the external boundary such as
ABC [19] or perfectly matched layers (PML) [20]. However,
these methods are approximate, even using a higher-order
ABCor an optimized PML, andwill result in a large computa-
tional domain. The second class is based on boundary integral
equations (BIE) derived using an appropriate Green’s func-
tion such as the so-called finite element boundary integral
(FE-BI) [21] method. Although, this method is exact and can
reduce the size of the computational domain, the final system
of equations leads to a partly full and partly sparse matrix
with the consequent drawback when solving that system. To
date, there is no efficient direct solver developed specifically

FIGURE 1. Typical DDM setup where the original computational domain
is divided into N non-overlapping subdomains.

for solving this type of matrix equation. In addition, the
implementation of this method combined with DDM in large-
scale parallel is relatively complicated sincewemust consider
both the FEM-DDM and the integral equation (IE)-DDM
systems.

In the particular case of the proposed FEM solver,
a (numerically) exact mesh truncation technique, called finite
element-iterative integral equation evaluation (FE-IIEE) is
implemented and combined with the DDM technology in
order to provide very accurate and efficient solutions to
challenging scattering and antenna problems. The FE-IIEE
technique is based on a non-standard multiplicative Schwarz
iterative domain decomposition paradigm between the inte-
rior and exterior problems [22]–[24]. The truncation bound-
ary in FE-IIEE may be arbitrarily shaped and, typically, may
be placed very close to the objects (in the range of 0.05λ to
0.2λ), reducing the number of unknowns, and consequently,
the computational resources. Finally, in order to accelerate the
scattering field calculation process required by this truncation
method, a parallel efficient version of the multilevel fast
multipole algorithm (MLFMA) is used [25].

The rest of this paper is organized as follows. The
mathematical approach, including the variation formulation,
the DDM implementation and details about the exact mesh
truncation technology, is introduced in section II. In section
III, a scalable parallel scheme of DDM for supercomputers is
presented. In the numerical results section, the performance
and accuracy of the proposed solver are validated comparing
the results with those given by commercial software such
as HFSS and FEKO. Also, the parallel efficiency over ten
thousand CPU cores is reported. Finally, some conclusions
are gathered in section V.

II. MATHEMATICAL APPROACH
A. VARIATIONAL FORMULATION
Let us start considering a typical DDM setup where the origi-
nal computational domain is divided into N non-overlapping
subdomains as illustrated in Fig. 1. The interfaces between the
subdomains are denoted as 0ij ≡ ∂�i ∩ ∂�j and the exterior
boundaries are denoted as ∂̃�i = ∂�i ∩ ∂�. Obviously
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0ij = 0ji, and 0ij = 0ji = ∅ when the subdomain �i
and �j are not adjacent. Note that 0ij is used when �i is
the computational domain and, on the other hand, 0ji is used
when �j is computed.

In the absence of nonlinear materials, the boundary value
problem (BVP) for any subdomain�i in terms of the electric
field (E) can be expressed as

∇ × µ−1ri ∇ × Ei − k
2
0εriEi = −jk0η0J

imp
i in �i (1)

_ni × Ei = 0 on 0iPEC (2)
_ni ×

(
µ−1ri ∇ × Ei

)
= 0 on 0iPMC (3)

_ni ×
(
µ−1ri ∇ × Ei

)
− jk0

_ni ×
(
Ei ×

_ni
)
= 9 on ∂̃�i

(4)
_ni ×

(
µ−1ri ∇ × Ei

)
+ jk0

_ni ×
(
Ei ×

_ni
)

= −
_nj ×

(
µ−1rj ∇ × Ej

)
+ jk0

_nj ×
(
Ej ×

_nj
)

on 0ij

(5)

where _ni denotes the outward-directed unit normal vector to
0ij, µri and εri are the relative permeability and permittivity
of the material, k0is the wave number in free space, η0 is
the free space wave impedance, J impi is the given impressed
current density in �i and j represents the imaginary unit.
Equations (2) and (3) represent the Dirichlet and Neumann
boundary conditions, respectively. Equation (4) represents
the first order ABC imposed on the truncation boundary ∂̃�i
where the initial value of 9 is the result of evaluating (4)
with E D Einc being Einc the incident electric field over
the boundary. The value of 9 when analyzing an antenna
(radiation problem) is zero. As mentioned in the introduction,
the proposed solver truncates the exterior infinite domain
by an integral equation representation of the exterior field.
Then, the solution is obtained through an iterative process in
which the residual of the radiation boundary condition on the
mesh truncation boundary 9 is updated. More details about
the implementation of this truncation technique are given
in Section II. C. Equation (5) is the first order Robin-type
transmission condition [5] adopted to enforce the continuity
of tangential electric field and magnetic field on the interface.

In order to simplify the previous equations, a new set
of auxiliary variables or ‘‘cement’’ surface variable may be
defined as in [6]. This ‘‘cement’’ variables are given by

j i =
1
k0

_ni ×
(
µ−1ri ∇ × Ei

)
(6)

ei =
_ni ×

(
Ei ×

_ni
)
= Eti (7)

where ei and j i are tangential electric fields and surface
electric currents, respectively. With the aid of (6) and (7),
the transmission condition expressed in (5) can then be writ-
ten as

−jk0j i + k0E
t
i = jk0j j + k0E

t
j (8)

Thus, the variational formulation of the problem described in
(1)-(4) and (8) is: find Ei ∈ W i and j i ∈ V i such that

a (Fi,Ei)+ t
(
Fi, j i

)
= l (Fi) , ∀Fi ∈ W i (9)

and

c
(
Fi, j i

)
+ t (ei,Fi)T = −c

(
Fi, j j

)
+ t

(
ej,Fi

)T
,

∀Fi ∈ W i (10)

where the bilinear and linear forms, a (Fi,Ei), t
(
Fi, j i

)
,

c
(
Fi, j i

)
and l (Fi) are defined as follows

a (Fi,Ei) =
∫∫∫
�i

∇ × Fi · µ−1ri ∇ × Eidv

− k20εri

∫∫∫
�i

Fi · Eidv

+ jk0

∫ ∫
∂̃�i

(
_ni × Fi

) (
_ni × Ei

)
ds (11)

t
(
Fi, j i

)
= k0

∫∫
0ij

Fi · j ids (12)

c
(
Fi, j i

)
= −jk0

∫∫
0ij

Fi · j ids (13)

l (Fi) = −jk0η0

∫∫∫
�i

Fi · J
imp
i dv−

∫ ∫
∂̃�i

Fi ·9ids

(14)

with

W i :=

{
Ai ∈ H (curl, �) ,

_n× Ai = 0 on 0PEC
}

(15)

where H (curl, �) is the space of square integrable vector
functions with square integrable curl, and

V i :=

{
Bi ∈ H−1/2

(
curlτ , 0ij

)}
(16)

According to (9) and (10), the final FEM system can be
transformed into a matrix equation form as shown in (17),
as shown at the top of the next page, where the superscript
I refers to the unknown coefficients inside each subdomain
and the superscripts e and j are the tangential electric field
and current unknown coefficients on interface 0ij, respec-
tively. The subscript of the matrix denotes the index of
subdomain.

Further, the matrix equation (17) can be written in a com-
pact form as

A1 C12 · · · C1N
C21 A2 · · · C2N
...

...
. . .

...

CN1 CN2 · · · AN



x1
x2
...

xN

 =

b1
b2
...

bN

 (18)

where the matrix Ai is the self-region submatrix, the matrix
C ij is the coupling matrix between subdomain �i and sub-
domain �j, bi is the right hand side excitation with bi =
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

a
(
FI1,E

I
1

)
a
(
FI1,E

e
1

)
0 0 0 0 · · · 0 0 0

a
(
Fe1,E

I
1

)
a
(
Fe1,E

e
1

)
t
(
Fe1, j1

)
0 0 0 · · · 0 0 0

0 t
(
Fe1, j1

)T c
(
Fj1, j1

)
0 −t

(
Fe1, j2

)T c
(
Fj1, j2

)
· · · 0 −t

(
Fe1, jN

)T c
(
Fj1, jN

)
0 0 0 a

(
FI2,E

I
2

)
a
(
FI2,E

e
2

)
0 · · · 0 0 0

0 0 0 a
(
Fe2,E

I
2

)
a
(
Fe2,E

e
2

)
t
(
Fe2, j2

)
· · · 0 0 0

0 −t
(
Fe2, j1

)T c
(
Fj2, j1

)
0 t

(
Fe2, j2

)T c
(
Fj2, j2

)
· · · 0 −t

(
Fe2, jN

)T c
(
Fj2, jN

)
...

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 0 · · · a
(
FIN ,E

I
N

)
a
(
FIN ,E

e
N

)
0

0 0 0 0 0 0 · · · a
(
FeN ,E

I
N

)
a
(
FeN ,E

e
N

)
t
(
FeN , jN

)
0 −t

(
FeN , j1

)T c
(
FjN , j1

)
0 −t

(
FeN , j2

)T c
(
FjN , j2

)
· · · 0 t

(
FeN , jN

)T c
(
FjN , jN

)



×



xI1
xe1
xj1
xI2
xe2
xj2
...

xIN
xeN
xjN


=



l
(
FI1
)

l
(
Fe1
)

0

l
(
FI2
)

l
(
Fe2
)

0
...

l
(
FIN
)

l
(
FeN
)

0


(17)

l
(
FXi
)
and xi = [xIi , x

e
i , x

j
i]
T is the unknown coefficients

of �i. Note that, if subdomain �i and �j are not adja-
cent, matrix C ij = 0. Then, matrix Ai may be expressed
as

Ai =

 a
(
FIi ,E

I
i

)
a
(
FIi ,E

e
i

)
0

a
(
Fei ,E

I
i

)
a
(
Fei ,E

e
i

)
t
(
Fei , j i

)
0 t

(
Fei , j i

)T c
(
Fji, j i

)
 (19)

and matrix C ij as

C ij =

0 0 0
0 0 0

0 −t
(
Fei , j j

)T c
(
Fji, j j

)
 (20)

The discretization of the above variational formulation
is achieved by using our own versions of higher-order
isoparametric curl-conforming basis functions that constitute
a rigorous implementation of Nédélec first family of finite
elements [26], [27]. These functions are obtained by system-
atic approach based on the a priori definition on a reference
element of the space of the basis functions and the obtainment
of the basis functions as the dual basis with respect to a set
of unisolvent degrees of freedom acting on the defined space.
It is worth noting that the basis functions are obtained in the
reference finite element and are transformed to the real one
using the inverse of the Jacobian matrix. Details about the
methodology used to get the solution for the above variational
formulation are given next.

B. SOLUTION METHODOLOGY
Once the variational formulation of the problem is obtained,
the next step is to get the solution to that system of equations.
One may think that the easier way to solve (17) is to use a
direct solver and solve the whole matrix equation directly.
However, this is not a desirable choice since the size of the
matrix may make the problem unapproachable, computation-
ally speaking. On the other hand, the inverse of each self-
region submatrix Ai may be used as preconditioner in order
to obtain an easier to solve system of equation. Taking (18)
andmultiplying each term by the inverse of the corresponding
self-region submatrix we have


I A−11 C12 · · · A−11 C1N

A−12 C21 I · · · A−12 C2N
...

...
. . .

...

A−1N CN1 A−1N CN2 · · · I



x1
x2
...

xN



=


A−11 b1
A−12 b2
...

A−1N bN

 (21)

where I is the identity matrix. It is important to remark that
the matrix multiplication A−1i C ij gives values different from
zero only in the interface variables of each subdomain. Thus,
the global system of equation in (21) may be expressed only
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in terms of the interface variables as
I A−11 C12 · · · A−11 C1N

A−12 C21 I · · · A−12 C2N
...

...
. . .

...

A−1N CN1 A−1N CN2 · · · I



x̃1
x̃2
...

x̃N



=


b̃1
b̃2
...

b̃N

 (22)

where x̃i = [xei , x
j
i]
T , b̃i is a reduced right hand side excitation

only related to the interface variables.
Then, (22) can be solved using a Krylov subspace itera-

tive method. In particular, the restarted generalized minimal
residual (GMRES) method [28] is adopted in this paper. Once
the interface unknowns x̃i, i = 1, 2, . . . ,N are iteratively
computed by GMRES, the unknown coefficients inside each
subdomain can be independently solved via

xi = A−1i

bi −∑
j6=i

C ijx̃j

 (23)

It is clear that only the self-region submatrix Ai of each
domain needs be factorized to compute the problem solution.
The present implementation of the FEM solver supports the
use of different direct sparse solvers such as MUMPS, MKL
PARDISO or SUPERLU [29] to perform this factorization.
Thanks to the moderate and controllable size of the self-
region submatrix Ai, these direct sparse solvers does not
suffer from stability problems as happen with the traditional
FEM scheme when the size of the problem increases consid-
erably.

C. MESH TRUNCATION TECHNIQUE
As mentioned in the Introduction, an exact mesh truncation
technique, called finite element-iterative integral equation
evaluation (FE-IIEE), is implemented and combined with
the DDM technology to provide very accurate solutions to
nowadays challenging scattering and antenna problems. The
FE-IIEE methodology is based on a non-standard multi-
plicative Schwarz iterative domain decomposition paradigm
between the interior and exterior problems and it divides
the original infinite domain into two overlapping domains:
a FEM domain (�FEM) bounded by the surface S and
the infinite domain exterior to the auxiliary boundary S’
(�EXT) [22]–[24]. Thus, the overlapping region is limited by
S’ and S. Figure 2 illustrates a typical setup of the FE-IIEE
technique where one can see the boundaries S’ and S delim-
iting the mentioned overlapping region. The exterior infinite
domain is truncated by an integral equation representation
of the exterior field to S’. Then, the solution is obtained
through an iterative process in which the residual of the radi-
ation boundary condition on the mesh truncation boundary
(9 term in eq. (4)) is updated. As in any iterative algorithm,

FIGURE 2. FE-IIEE method for general electromagnetic field problem.

the convergence is a key issue to consider. In this particular
case, the convergence is assured by using convex exterior
boundaries being the rate of convergence faster when the
overlapping between the interior and exterior domains is
larger [22], [30], [31].

It is important to remark that the calculation of the inte-
gral equation representation of the exterior field to S’ may
be extremely expensive, computationally speaking, for large
challenging electromagnetic problems. Although fully par-
allelizable, the convolutional character (double loop) of this
calculation leads to a computational complexity of O(M2),
being M the number of unknowns associated to the exterior
boundary S. For this reason, the present implementation of
the FE-IIEE technique makes use of a parallel MLFMA
algorithm to accelerate this integral equation calculation [25].
Another important feature of this implementation is the trans-
parent combination with the DDM methodology previously
introduced. Thus, the proposed FEM solver is able to per-
form very accurate analysis for both antenna and scattering
problems when the external mesh truncation boundary is very
close to the electromagnetic sources (even with distances
smaller than 0.05 λ).

The truncation method starts performing an initial FEM
analysis of the problem using the Cauchy (Robin) bound-
ary condition expressed in (4) over the external surfaces.
Figure 3 shows the flowchart of the present implementation
of the FE-IIEE method where this initial FEM analysis is
marked using blue squares. Once eq. (17) is solved and the
values for the unknown coefficients of each subdomain are
obtained, the equivalent currents jeq andMeq over the interior
boundary S’ are calculated. Then, the scattering field, and its
curl, over S radiated by the equivalent currents are computed
using MLFMA. The fields radiated by the FEM region, EIIEE
and their curl (∇ × EIIEE ), are compute using the following
integral expressions

E = −
k2

(4π)2
[η
∫∫
4π

e−jk·(r−rm)TL(kRm′m, k̂ · R̂m′m)

× (Ī − ˆkk̂ )̃Jm′ (k̂) d2k̂−
∫∫
4π

k̂

×e−jk·(r−rm)TL(kRm′m, k̂ · R̂m′m)M̃m′ (k̂)d2k̂] (24)
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FIGURE 3. Basic flowchart of FE-IIEE combined with DDM.

∇ × E =
jk3

(4π )2
[η
∫∫
4π

k̂× e−jk·(r−rm)TL(kRm′m, k̂ · R̂m′m)

× J̃m′ (k̂) d2k̂+
∫∫
4π

e−jk·(r−rm)TL(kRm′m, k̂ · R̂m′m)

× (Ī − ˆkk̂)M̃m′ (k̂)d2k̂] (25)

where k̂ is the unit vector of plane wave expansion direction,
r is the observed field point coordinates, rm is the center of
filed point group, J̃m′ (k̂) and M̃m′ (k̂) are the radiation pattern
of the electric current and magnetic current, respectively, r′

is the source point coordinates, r′m is the center of source
point group, and TL(kRm′m, k̂ · R̂m′m) is the translator operator
between source point groupm′ and field point groupm. These
calculations are illustrated in Fig. 3 using the green square.
It is worth pointing out that the MLFMA employed to accel-
erate the scattering field computation is parallelized using an
adaptive direction partitioning strategy with improved load
balance which developed in our previous works [32].

Once the scattering fields are obtained, a new value of
9(9 i+1 in general) is computed by introducing the values of
the fields EIIEE and (∇ × EIIEE ) in eq. (4). Finally, the error
between iterations, ψ , is calculated. If the error is greater
than an error threshold, the method will start again using the
new residual function 9 i+1, otherwise the iteration process
finishes (step marked in Fig. 3 using the purple rhombus).
The error in 9 is measured in a weighted L2-norm

ψ =

∥∥9 i+1
−9 i

∥∥
2∥∥9 i+1

∥∥
2

(26)

Thus, a (numerically) exact radiation boundary condition
is imposed cancelling undesired refiections that, sometimes,

FIGURE 4. Parallel framework for the solver.

come back to the computational domain. This numerical
technique also retains the sparsity of the FEM matrices with
the consequent improvement in stability during the solving
process. It is worth noting that the numerical cost of the sec-
ond and subsequent iterations is very small since the previous
solution is used as starting point in the GMRES algorithm.
However, it is worth mentioning that the error between itera-
tions,ψ , is limited by the tolerance of the GMRES algorithm.

III. MASSIVELY PARALLEL IMPLEMENTATION
One of the key features of the proposed FEM solver is its
massively parallel implementation. Although the DDM tech-
nology is inherently parallelizable, achieving high parallel
efficiency and stability when the computing platform scales
over thousands CPU cores is still a challenge. In general,
the load balancing and the Computation to Communication
Ratio (CCR) are two major factors that affect the parallel
performance of a program. Thus, how to balance the load,
improve the CCR as much as possible and ultimately form a
flexible parallel strategy for the solver are the focus of this
section.

For a clear description, the parallel flowchart of the FEM
solver solution process is sketched in Fig. 4. Obviously,
after reading in the necessary model mesh information and
parameters file, both data and parallel tasks are allocated in
each processor considering the load balance effects of the
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FIGURE 5. The decompositions of a circular horn antenna’s global mesh
into five subdomains.

whole computing platform. The amount of data and tasks
allocated on these processors are closely tied to ensure an
efficient load balance. Thus, the solver may use all the com-
puting power and storage capacity of large high-performance
computing (HPC) clusters or supercomputers. An automatic
parallel domain partition algorithm as ParMETIS [33] is used
to distribute the mesh along the processor. In detail, the code
starts dividing the global FEMmesh into several subdomains
using the mentioned ParMETIS package. As an example,
Figure 5 shows the decomposition of a circular horn antenna
into five subdomains where the number of tetrahedrons that
belongs to each subdomain is completely the same leading
to a similar amount of work on them. These characteristics
help us to minimize the total communication volume and
distributed the load uniformly between the compute nodes.
In this load distribution methodology, we have

T1 ≈ T2 ≈ · · · ≈ TN (27)

here Ti is the calculation task of the i-th subdomain.
Once the global mesh is decomposed, a certain number of

computing resources should be assigned to each subdomain.
Clearly, for a good load balance strategy, the following equa-
tion must be satisfied

T1
F1
≈
T2
F2
≈ · · · ≈

TN
FN

(28)

where Fi is the computing resources assigned to i-th subdo-
main. According to (27), in order to achieve a balanced load,
we should have

F1 ≈ F2 ≈ · · · ≈ FN (29)

that indicates that the computing resources assigned to each
subdomain must be the same.

In order to obtain a highly efficient parallel performance
and provide a better adaption with the current supercomputer
architectures, the hybrid parallel paradigm that combines a
distributed-memory scheme (MPI) with a shared-memory
scheme (OpenMP) is adopted. The MPI programming model
is used to implement scalability among different compute
nodes. The latter is aimed to accelerate computation in the
same compute node and relieve the storage pressure of MPI

FIGURE 6. The date structure designed for the subdomain information.

FIGURE 7. Creating the MPI sub-communicator for each subdomain.

process. At the same time, different combinations of MPI
process plus OMP threads can be used to optimize the solver
depending on the configuration of each computing platform.
Due to (29), the number of MPI process and threads assigned
to each subdomain should be identical to ensure load bal-
ance (note that we consider uniform computing platforms
where all the compute nodes have the same architecture).
Figure 4 shows this process under the assign resources label
where the 1p number indicates the number of MPI process
assigned to the calculation of each subdomain. Simultane-
ously, every MPI process spawns a same predefined number
of threads into the CPU cores of the system.

It is important to point out that there may be three different
resource allocations depending on the number of subdomains
and the number of processes: one MPI process solves more
than one subdomain; one MPI process solves one subdo-
main; and many MPI processes solve one subdomain simul-
taneously. In order to make the program effectively parallel
in any situation, it is necessary to design a suitable data
structure that contains the number of processes, the MPI
process ID, the MPI communicator, the local mesh infor-
mation and so on for each subdomain. The data structure
designed in this paper is shown in Fig. 6. The meaning of
each variable in the data structure is explained by the italic
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body in the figure. Specially, since we use the peer-to-peer
mode to carry out the parallelization of the program, the MPI
sub-communicators responsible for each subdomain should
be created using the process shown in Fig. 7, when many
MPI processes solve one subdomain concurrently. The sub-
communicator information is stored in the integer variable
ddm_data%mpi_communicator.

On the other hand, before continuing with the execution
of the program, it is necessary that each domain gathers the
required basis function information j j that defined on the
interface of its adjacent subdomains to compute the cou-
pling matrix C ij given in (20). Thus, any undesired com-
munication will be completely avoided later to improve
the CCR. These basis function are calculated before the
global mesh is freed up and then stored in the real array
ddm_data%basis_functions(:,:). This processing will greatly
improve the parallel efficiency and stability of the program,
especially when tens of thousands CPU cores are used, and
the electrically large problem is divided into hundreds of
subdomains for calculation. Specifically, assume that the
number of degree of freedoms (DOFs) at the interface of
all subdomains is ten million for a certain problem. Then,
the total amount of data about basis functions j j is about
6∗3∗8∗10^7 = 1.34GB (here, the number 6 is the number of
Gaussian points on a triangle, 3 stands by the three directions
of x, y, and z, and 8 indicates real double precision). In other
words, 1.34GB MPI communications will be avoided in this
problem through this treatment, drastically improving the
CCR of the code.

After the load distribution step, pre-processing calculations
get the necessary subdomain information and each MPI pro-
cess starts the factorization of the self-domain matrix Ai, the
calculation of the corresponding coupling matrix C ij and the
calculation of the excitation vector b̃i, independently. If more
than one process is in charge of one subdomain, these cal-
culations are performed in parallel between them controlled
by the respective sub-communicator. Due to the careful load
distribution performed in the previous step, the sizes of the
self-domain matrices Ai and the corresponding factorization
coefficients are very similar between processes. This implies
that, typically, the processes will complete their calculation
almost at the same time, ensuring high parallel efficiency
since there is no undesired waits. Figure 4 shows this process
under the labels computing self-region matrix and computing
coupling matrix.

Once the calculation of each subdomain finishes, the inter-
face matrix equation (22) is constructed and, then, solved
by GMRES in parallel. As we know from the DDM the-
ory, the unknown coefficients corresponding to the inter-
face between subdomains are independent from one side
to the other. Then, in the case of the proposed solver,
the unknown coefficients in the interface matrix equation
are ordered by subdomains where the first rows contain
the unknown coefficients corresponding to the first sub-
domain, the next rows contain the unknown coefficients
corresponding to the second subdomain and so on. Thus,

the parallelization of the GMRES algorithm is straightfor-
ward using a row-oriented MPI process partitioning strategy
as shown in Fig. 4. During the matrix–vector multiplication

process ṽi =

[
I +

N∑
j=1,j6=i

A−1i C ij

]
x̃(k−1)j (at kth iteration), the

required matrix information and its factorization are already
in memory from the previous step. It is worth noting that the
information exchange between MPI processes only occurs
when getting the vector x̃(k−1)j (j 6= i). The x̃(k−1) is accu-
mulated and redistributed by the global communication using
an all reduce operation. Once the solution of the interface
problem is obtained, each subdomain is able to solve its self-
domain problem independently and concurrently in parallel
by using the calculated boundary condition at the subdomain
interfaces. Then, the global solution is obtained using a gather
operation.

As a summary, the parallelization of the DDM described
above provides a small DOFs on subdomain interfaces and a
complete balanced load. The communications only involve
once allreduce sum operation in each iteration. Thus, this
guarantees high parallel efficiency and stability of the pro-
gram when it scales up to tens of thousands of CPU cores.

IV. NUMERICAL EXPERIMENTS
In this section, different benchmarks are carried out in order
to validate the performance, versatility and the results accu-
racy of our FEM solver. Comparisons with well-known com-
mercial software such as ANSYS HFSS [34] and FEKO [35]
and with already validated in-house codes are done to accom-
plish this validation task. The MKL PARDISO solver is used
to solve the subdomain matrix equation in these simulations.
All the benchmark simulations were performed in a large-
size HPC cluster equipped with 548 compute nodes if no
particular indication is used. Each node has two 32-core
AMD HygonGenuine 2.0 GHz processors (32 × 512 KB
L2 Cache and 64 MB L3 Cache) and 256 GB RAM. The
compute nodes are connected with InfiniBand switches to
provide the highest communication speeds.

A. ACCURACY VALIDATION
This first benchmark consists of the electromagnetic analysis
of three different models such as a waveguide slot antenna,
a modern missile and a low-scattering object. The results
of each simulation are compared with those given by the
aforementioned commercial softwares. Thus, this benchmark
may be considered as an accuracy validation test for our FEM
solver.

1) WAVEGUIDE WIDE-EDGE SLOT ANTENNA
The model consists of a waveguide wide-edge slot antenna
with 64 slots along the propagation direction. The antenna
has two radiating waveguides and one more for feeding pur-
poses. Figure 8 shows the geometry of this waveguide slot
antenna. The operation frequency is 18.7 GHz. and a coaxial
wave port placed at the middle of the feeding waveguide is
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FIGURE 8. Waveguide wide-edge slot antenna model.

TABLE 1. Computational statistics of proposed solver and traditional Fem
for the waveguide wide-edge slot antenna.

used to excite the antenna. The relative permittivity of the
material used in the coaxial cable is set to 2.03. The total
number of tetrahedron used in the discretization of the model
is 1,503,663 and they are divided into 64 subdomains. The
tolerance for the parallel GMRES solver is set to ξ = 10−3.
It is important to mention that the mesh truncation technique
employed in this case is the first order ABC. The use of
the FE-IIEE technique will be introduced later, in the third
example of this benchmark, once the electromagnetic results
given by the solver are validated using the well-known first
order ABC.

The simulation results are compared with those given by
the traditional FEM version of the solver without DDM,
the commercial software HFSS and an in-house higher order
method of moments (HOMoM) code [36]. The traditional
FEM version uses the MKL PARDISO solver to obtain the
solution of the large complex sparse matrix equation directly
in parallel. The solver used in HFSS is its default direct
solver option. Figure 9 shows the comparison of the radiation
pattern for the elevation cut (YOZ plane) where a very good
agreement is appreciated.

The computational statistics for this simulation are given
in Table 1. The FEM solver implemented in this paper signif-
icantly reduces the peak memory usage and reduces the total
calculation time compared to the traditional FEM methodol-
ogy using the same computing resources in an HPC cluster.
The platform employed for the ANSYSHFSS simulation and
the corresponding FEM simulation using the proposed solver
is a workstation equipped with 24 CPU cores and 192 GB
of RAM (the model is divided into 60 subdomains for the
proposed solver). It is worth noting that the ANSYS HFSS

FIGURE 9. Radiation pattern (YOZ plane) of the waveguide slot antenna
model :(a) Angle from −180◦ to 180◦. (b) Angle from −50◦ to 50◦.

in-core solver exceeds thememory limit (192 GB), so the out-
of-core solver is adopted. In addition to the RAM, the out-
of-core solver uses the space on the hard disk whereas the
proposed solver uses only the RAM, so the behavior, as listed
in Table 1, that the peak memory with the proposed method is
larger than the one with ANSYS HFSS solver is completely
reasonable. Thus, compared with HFSS, the proposed solver
is more efficient when solving a same size problem using the
same computing resources.

2) MODERN MISSILE
The second simulation consists of the bistatic radar cross-
section (RCS) analysis of a PEC modern missile as the one
shown in Fig. 10. The working frequency is 3.0 GHz and
the missile is illuminated by a nose-on incident vertically
polarized plane wave. The overall dimensions of the missile
are 2.83m by 0.64m by 0.64m, given an electrical size of
28.3λ by 6.4λ by 6.4λ. The total number of tetrahedron
for this model is 3,711,809 using a mesh size of 0.1λ. The
simulation uses 64 subdomains and ξ = 10−3 as the tolerance
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FIGURE 10. Metal missile model.

FIGURE 11. Calculation results of metal missile model :(a) Bistatic RCS of
xoy plane. (b) Distribution of the electric current (A/m) over the missile
surface.

for the iterative GMRES solver. As the previous simulation,
the mesh truncation technique employed was the first order
ABC.

Figure. 11 (a) shows the comparison of the bistatic RCS
result for the elevation cut (XOY plane) given by the tradi-
tional FEM version of the solver and the commercial soft-
ware FEKO. As the previous test, a very good agreement is
appreciated. The electric current distribution over the missile
is plotted in Fig. 11 (b).

The computational statistics of this test are given in Table 2.
The proposed solver only takes 738.6 seconds to complete the
simulation using 2 compute nodes (128 CPU cores). How-
ever, for the traditional FEM case, although 1280 CPU cores
are used, the total simulation time is 2,313.9 seconds, which
is about 3 times slower than the proposed methodology.

TABLE 2. Computational statistics of proposed solver and traditional Fem
for the modern missile model.

FIGURE 12. The metal low scattering carrier model.

Also, the peak memory usage reaches about 2.3 TB, which
is usually difficult to satisfy, even using medium size HPC
platforms.

FEKO simulation is performed using its MoM module
on a workstation with 80 CPU cores and 1 TB of RAM.
The mesh size is set to 0.125λ0 leading to 89,260 triangles
and 133,890 unknowns (note that these unknowns are MoM
unknowns). Solving this example using the in-core MoM
complex double precision module requires 268.6 GB mem-
ory. A total of 32 CPU cores are used, taking 16.1 hours
to complete the simulation in the mentioned workstation.
For comparison, the simulation of proposed solver is execute
using the same computing resources on this workstation.
As it happens with HFSS, the proposed solver is also much
faster and efficient than FEKO. It is worth noting that we
have compared the pure MoM module of FEKO without any
acceleration technique such as MLFMA.

3) A LOW SCATTERING OBJECT
This third simulation consists of the analysis of a PEC low-
scattering object as the one shown in Fig. 12. Here the trun-
cation of the computational domain is performed using the
FE-IIEE method. In this way, we can validate the accuracy
and correctness of this technique combined with DDM by
comparing the results with those given by an in-house higher
order method of moments (HOMoM) [36] and the commer-
cial software FEKO. It is worth noting that the accurate RCS
analysis of low-scattering objects is a challenge for FEM
truncation techniques due to the low-level values that these
objects present. Thus, this example is a good test to show the
capabilities of the FE-IIEE algorithm as truncation method.

VOLUME 7, 2019 20355



S. Zuo et al.: Simulation of Challenging Electromagnetic Problems

FIGURE 13. Bistatic RCS calculation results for the xoy plane of the low
scattering carrier model.

The model is illuminated by a y-axis polarized plane wave
propagating along the negative x-axis direction at 3.0 GHz.
The electrical size of the model at this frequency is 7.31λ by
5.24λ by 0.77λ. The truncation boundary is set at a distance
of 0.25λ from the target. The discretization of the model con-
tains 535,267 tetrahedrons that implies 3,625,506 unknowns.
The model is divided into 8 subdomains setting the iterative
solver tolerance to ξ = 10−4. As commented during the
explanation of the FE-IIEE method, the error in the residual
of the radiation boundary condition, ψ , is limited by the
tolerance of the iterative solver. Thus, in this case, ψ is also
set to 10−4. The simulation is performed using 128CPU cores
in total.

Figure 13 shows the bistatic RCS for the XOY plane. It is
worth noting that the results given by our FEM solver using
the FE-IIEE method as truncation technique, the mentioned
HOMoM code and FEKO presents a very good agreement
between them. Additionally, the results given by the FEM
solver using the first order ABC are also attached in Fig.
13. As it is well-known, these results confirm that the ABC
cannot reach accurate values when the truncation boundary
is close to the target. However, these results confirm that
accuracy of the FE-IIEE method is not related to the location
of the external boundary as expected.

Table 3 summarizes the computational statistics of this
example when the proposed solver uses the first order ABC
and the FE-IIEE method. It can be concluded that, although
the FE-IIEE requiremore computing time thanABCdue to its
iterative methodology, it provides a robust way to eliminate
the mesh truncation error.

B. PARALLEL PERFORMANCE
Once the accuracy validation benchmark is successfully fin-
ished, the second benchmark has consisted of the analysis of
the parallel performance of the solver. In this case, we have
examined the effect of the number of subdomains on the peak
memory usage and the parallel scalability in a small number
of CPU cores using the previous models. On the other hand,

TABLE 3. Computational statistics of proposed solver using different
mesh truncation technology for the low scattering object.

TABLE 4. Computing resources and execution time information for the
Waveguide Wide-Edge Slot Antenna.

the last test has examined the parallel performance in a large
number of CPU cores using an eight times core scale (from
1280 to 10,240).

1) WAVEGUIDE WIDE-EDGE SLOT ANTENNA
This test has consisted of the simulation of the waveguide
slot antenna shown in Fig. 8 varying the number of subdo-
mains from 2 to 128. The number of cores employed in the
simulations has also been increased from 64 to 512 cores. All
other parameters were set as previously.

The total memory usage of all processes when the number
of subdomains changes is shown in Fig. 14. All the simula-
tions used 128 cores (2 compute nodes of the supercomputer).
A clear behavior is appreciated, that is, when the number
of domains increases, the peak memory used by the solver
gradually decreases. This behavior provides an advantage
when solving larger problems using thousands of CPU cores.
However, the memory reduction rate becomes slower when
the number of subdomains is too high.

In order to provide a better explanation to this behavior,
thematrix forms that are solvedwhen partitioning the original
problem into 2 and 4 subdomains are given in Fig.15 respec-
tively. It can be clearly seen that the size of self-domainmatrix
AD(4)ii when the number of domains is set to 4 is almost half
of the size of the matrix AD(2)ii when the number of domains
is set to 2. As mentioned in Section II. B, these self-domain
matrices are factorized independently using the sparse matrix
equation direct solver and then, their factor matrices are
kept for subsequent iterative calculations. It is well known
that a large amount of fill-in will occur during the sparse
matrix decomposition process. In the case shown in Fig. 15,
the matrix AD(4)11 and AD(4)22 can be approximately considered
as two sub-matrix blocks of the matrix AD(2)11 , so their fill-in
will be greatly reduced compared to the decomposition of the
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FIGURE 14. Total peak memory usage of the solver using different
number of subdomains for the waveguide slot antenna model.

FIGURE 15. The matrix forms that solved in the proposed solver when
partitioning original problem into (a) 2 subdomains (b) 4 subdomains.

large matrix AD(2)11 based on the fact that they are completely
independently solved. But on the other hand, we need more
memory to store the coupling matrix C ij and related basic
function information on the interface of adjacent subdomains,
when the number of domains is set to 4.

Therefore, when the number of domains reaches a cer-
tain level, the size of the subdomain matrix will become
too tiny in comparison with the size of the full problem
leading to a reduction on the fill-in. Additionally, as the
number of domains increases, the storage requirements of
the coupling matrix will increase. Thus, the peak memory
used by the solver gradually decreases when the number of
domains increases. The test result is in line with theoretical
expectations. Even when the number of domains continues to
increase, it is possible to show an increase of the peak mem-
ory consumption, instead of a decrease. Thus, it is important
to choose an appropriate number subdomain that ensure high
computational efficiency and low storage requirements.

On the other hand, it should be pointed out that the mem-
ory reduction is quite limited when the number of domains
doubles. This is mainly because the model being solved in
here is aperiodic, so each domain’s self-domain matrix is
completely different and needs to be decomposed. If the
model is a periodic structure in which a domain is often
a translational or rotational invariance of a building block,

FIGURE 16. Parallel scalability of the FEM solver when using different
number of subdomains for the waveguide slot antenna model.

it is only necessary to compute correspond matrix for each
building block, rather than each domain, thus thememorywill
drop significantly as presented in most of already published
papers [6]–[8].

Another important feature that must to be checked during
the parallel performance analysis is the parallel scalability.
In this test, the number of domains has been varied from 8 to
64 and the number of CPU cores from 64 to 512 (8 compute
nodes of the supercomputer). Table 4 gathers the computing
times of each simulation for this test. As shown in Table 4,
the CPU time also gradually decreases when the number
of domains increases. However, it doesn’t mean that the
proposed solver will be much more efficient as an element-
level domain decomposition method since, as the number of
domains increases, the iterative convergence of the DDMwill
be slower. This behavior has been already presented in most
of the published papers [6]–[8]. Figure 16 plots the speedup of
each subdomain division, where a parallel efficiency higher
than 70% is obtained for all the cases.

2) MODERN MISSILE
The second test has consisted of the simulation of the missile
varying the number of subdomains from 4 to 160 and the
number of cores from 128 to 1024. In this test, the memory
usage and the parallel scalability have also been evaluated.

Figure 17 shows the peakmemory behavior of all processes
when the missile is divided from 4 to 160 subdomains. All
the simulations were performed using 256 cores (4 compute
nodes of the supercomputer). In this case, the same memory
behavior applies where the peak memory gradually decreases
when the number of subdomains increases. However, looking
at the memory usage from 128 to 160 subdomains, one may
see how the memory reaches the lower value for this simu-
lation (287 GB). As commented previously, the tiny size of
each subdomain compared with the size of the full problem
makes impossible to keep reducing the memory.

Table 5 gathers the computing time of each simulation
for this test where the number of subdomains varies from
16 to 128 and the number of cores varies from 128 to 1024.
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FIGURE 17. Total peak memory usage of the solver using different
number of subdomains for the PEC missile model.

TABLE 5. Computing resources and execution time information for the
modern missile.

FIGURE 18. Parallel scalability of the FEM solver when using different
number of subdomains for the PEC missile model.

Figure 18 plots the speedup of each subdomain division,
where a parallel efficiency higher than 65% is obtained. It is
important to remark that, in this case, the parallel efficiency
when the number of subdomains is greater than 64 experi-
ments a drastically reduction when the number of CPU tends
to 1024. This is due to the same reason than the peak memory
reaches the limit value when using 160 subdomains: the tiny
size of each subdomain in comparison with the size of the full
problem. At this point, it is worth to remark that, typically,
a numerical code with a parallel efficiency between 55-60 %

TABLE 6. Computing resources and execution time information for the
low-scattering object.

FIGURE 19. Bistatic RCS calculation results for the xoy plane of the low
scattering carrier model at 6 GHz.

is considered acceptable. Thus, the proposed solver exceeds
this barrier by much demonstrating its massively parallel
feature.

3) A LOW SCATTERING OBJECT
The third test has consisted of the low-scattering object vary-
ing the number of CPU cores from 72 to 576. We perform
this test is mainly amid to show the parallel performance of
the proposed solver when the FE-IIEE technique is employed.
Its simulation was performed at 6 GHz. The discretization of
the model contains 4,240,038 tetrahedrons with 29,265,102
unknowns. The model is divided into 64 subdomains setting
the iterative solver tolerance to 10−4. In particular, this test is
performed in a small-size HPC cluster equipped with 8 com-
pute nodes. Each node has four 18-core Intel(R) Xeon(R)
Gold 6140 CPU @ 2.30 GHz and 512 GB RAM.

Figure 19 shows the bistatic RCS for the XOY plane.
Table 6 gathers the computing time of each simulation for
this test where the number of cores varies from 72 to 576.
According to Table 6 the speedup is calculated and plotted
in Fig. 20. It can be observed that higher than 65% of the
parallel efficiency can also be obtained when the solver using
the IIEE method.

4) PARALLEL SCALABILITY OVER 10,000 CPU CORES
Previous tests have demonstrated the parallel capabilities
of the solver when using low-medium HPC platforms (up
to 1024 CPU cores). However, when solving nowadays
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FIGURE 20. Parallel scalability of the FEM solver with activated IIEE for
the low scattering object.

FIGURE 21. Electromagnetic analysis of human body exposed to cell
phones in an aircraft :(a) human body model. (b) cell phone model.
(c) aircraft with passengers simulation model.

challenging electromagnetic problems, the number of
CPU cores employed in the simulation, typically, exceeds
10,000 cores. In this situation, load balancing and commu-
nication among processes are very difficult to control and a
very stable and very efficient code is required to extract all
the computational power of the supercomputer.

The calculation scenario for this test has consisted of the
electromagnetic analysis of the human body exposed to cell
phones in an aircraft. The female body model is shown
in Fig. 21 (a). The cell phone displayed in Fig. 21 (b) is
placed about 2 cm away from right ear of the female model.
The aircraft model is filled with 12 female bodies, each one
with the corresponding mobile phone except the pilots. The

TABLE 7. Computing resources and execution time information for the
aircraft model.

FIGURE 22. Parallel scalability of the FEM solver when using 10,240 CPU
cores for the aircraft with passengers model.

cell phone antenna operates at 0.9 GHz and has an input
power of 0.25 W. The three-dimensional dimensions of the
aircraft are 14.0 m× 16.1 m× 4.2 m, and the corresponding
electrical dimensions are 42.0 λ× 48.3 λ× 12.6 λ. Relative
permittivity of the female body is 45.5 and the conductivity
is 0.7. Relative permittivity of the seat inside the aircraft is
1.1 and the dielectric loss tangent is 0.0075. The number
of tetrahedron generated for this model is 32,624,124, and
the corresponding number of unknowns is 222,191,512. The
model is divided into 320 subdomains.

Table 7 gathers the statistics and computing time of each
simulation for this test. According to this data, the corre-
sponding parallel speedup curve and the parallel efficiency
values are plotted in Fig. 22. A parallel efficiency higher than
60% is obtained using up to 10,240 CPU cores (160 com-
pute nodes of the supercomputer). This 60% efficiency is an
excellent value for such a large computing scale, demonstrat-
ing the good scalability and implementation of the solver.
Figure 23 show the near field distribution in some places of
the plane.

C. CHALLENGING ELECTROMAGNETIC PROBLEM
Finally, the simulation of a challenging electromagnetic prob-
lem is carried out. This simulation has consisted of the anal-
ysis of a waveguide wide-edge slot antenna composed by
64 elements and 4096 slots (Fig. 24). The antenna element
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FIGURE 23. The electric filed distribution at :(a) passengers’ bodies
(b) passengers’ bodies and seats.

FIGURE 24. Large waveguide wide-edge slot antenna array model.

is the waveguide previously analyzed (Fig. 8). The operating
frequency is 18.7 GHz. The electrical size of the antenna
at this frequency is 32.2λ by 47.6λ. The total number of
tetrahedron for this antenna is 45,378,548, and the number of
unknowns is 307,519,378. The antenna array is divided into
400 subdomains. The iterative tolerance is set to ξ = 10−3.
A total of 12,800 CPU cores (200 compute nodes of the

supercomputer) were used to perform this simulation. The
simulation took 1070 minutes and 9.39 TB of memory using
64 excitations. The number of iterations of the GMRES
solver for each excitation was approximately 170 steps. The
radiation pattern for two elevation cuts is shown in Fig. 25.
It confirms that the proposed method can efficiently per-
form full-wave simulation of challenging electromagnetic
problems.

FIGURE 25. The radiation pattern of large waveguide wide-edge slot
antenna array at :(a) xoz plane. (b) yoz plane.

V. CONCLUSION
An efficient massively parallel finite element method solver
for the solution of complex and electrically large electro-
magnetic problems with arbitrary structures is presented.
The solver makes use of a domain decomposition algo-
rithm to decomposes the original problem into several
non-overlapping subdomains and a numerical exact mesh
truncation algorithm called finite element-iterative integral
equation evaluation (FE-IIEE). Thanks to these techniques
the solver is able to provide very accurate solutions to chal-
lenging scattering and antenna problems. Compared to previ-
ously published massively parallel FEM codes, the proposed
method comprehensively considers the calculation accuracy
and computational efficiency, and can reduce RAM mem-
ory peaks and accelerate the speedups of computation more
effectively while making all relevant calculation precisions
controllable. Different tests have demonstrated the parallel
capabilities of the solver when using low-medium HPC plat-
forms (up to 1024 CPU cores) and large HPC platforms (up
to 10,240 CPU cores) obtaining always parallel efficiencies
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above 60% and parallel speedup above 4.8 times (the parallel
scale is expanded by 8 times). Finally, a 64 elements large
waveguide wide-edge slot antenna array model discretized
into 45,378,548 tetrahedrons is analyzed efficiently using
12,800 CPU cores demonstrating the power of the presented
solver.
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