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ABSTRACT The ever-increasing application of modeling and simulation to the development of complex
engineering systems has made co-simulation indispensable to the handling of coupled multi-domain models.
The mechanism for controlling communication between multiple solvers holds the key to co-simulation
performance and is regarded as one of the most challenging parts in co-simulation as a lot of tradeoffs
need to be made in terms of stability, accuracy, and efficiency. As such, a holistic and dynamic approach is
required, which has not been addressed by this paper that has a focus on either tailored problemwith a specific
numerical analysis scheme or software platforms for implementing data exchange. This paper precisely aims
to address this gap by developing a knowledge-based approach to streamlining the co-simulation process.
Specifically, a regression-based collaborative filtering approach is developed to recommend suitable ordinary
differential equation solvers for individual simulators according to the specific engineering characteristics
and historical simulation data. On this basis, the theoretical analysis of the stability region and truncation
error is conducted to provide guidance on controlling time stepping of individual simulators using a Jacobi
communication scheme. This approach has been evaluated in several computational experiments, in which
the advantages of the proposed approach are demonstrated. First, the recommendation algorithm is reliable
in making suggestions on viable solvers during simulation run time, especially when only sparse historical
datasets are available. Second, the time-stepping scheme noticeably improves the computational efficacy
owing to it having no dependence on the initial step-size choice, which is a more eminent advantage for
high-fidelity co-simulation problems.

INDEX TERMS Co-simulation, regression-based collaborative filtering, ODE solver recommendation,
simulator selection, step-size control.

I. INTRODUCTION
Multidisciplinary analysis has become an essential part of
the design process of complex engineering systems, e.g.
aircrafts and automobiles, which involves consideration of
multiple coupling factors between subsystems in terms
of function and structure. As the ever-increasing applica-
tions of domain-specific simulation tools, co-simulation has
become indispensable to the handling of coupled models
created for different domains. In the context of this research,
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Multi-solver Co-Simulation (MCS) refers to the process
whereby the requirements for the simulation task of a com-
plex system are transformed into multiple models as well as
a scheme for solving these models in parallel using various
numerical solvers. A general MCS process mainly consists
of five parts [1]:

1) Identification of requirements such as assumptions of
modeling, setting of simulation (e.g. loads to be applied),
simulation performance (e.g. accuracy and speed), etc.;

2) Mathematical modeling based on detailed analysis of
the physical features (e.g. boundary condition) and creation
of simulation models for individual subsystems
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3) Simulation decomposition and modularity analysis –
this part is optional is if the unsolved simulation problem is
decoupled;

4) Co-simulation scheme determination, e.g. sub-solver
selection and communication mechanism selection;

5) Simulation results post-processing such as visualization,
validation and efficiency analysis.

Amongst these five parts, elaboration of a co-simulation
scheme is of critical importance to simulation performance in
terms of both accuracy and reliability, and yet numerous chal-
lenges remain to be addressed. The research reported in this
paper aims to develop an effective and efficient co-simulation
scheme and its key parts are highlighted in red in the MCS
process flowchart in Fig. 1.

FIGURE 1. A flowchart of the MCS process.

Specifically, the first issue that needs to be addressed is
the selection of numerical schemes for different sub-solvers
(i.e. the solver for a particular subsystemmodel) during MCS
execution. The main reasons for choosing different numeri-
cal schemes for these subsystem models are two-fold. First,
eachmodel is domain-specific and has differentmathematical
features. As such, a suitable solver needs to be selected
to address these features. A few examples can be given to
explain this: a solver using an implicit scheme is generally
more stable than an explicit solver with the same level of
accuracy despite being more computationally expensive [2];
a solver with coarse mesh is more efficient than the one with
refined mesh but accuracy and stability is compromised [3]; a
solver embeddedwith amultigridmethod is proposed to solve
a large-sparse matrix, which is not suitable for a small-dense
matrix [4]. Second, even if the subsystems in aMCS task have

similar mathematical formulations, using the same solver
may still incur computational waste in terms of both memory
and time (e.g. the case in Fig. 2) due to different dataset sizes,
termination criteria and other simulation requirements. As a
consequence, numerical scheme recommendation is greatly
needed to improve simulation performance.

FIGURE 2. Waiting caused by each simulator using the same solver.

The second issue raised is then to develop an effective
and efficient algorithm for recommending suitable numerical
schemes for different MCS solvers. Literature search has
shown that little work has been done on this. The algorithms
for making recommendation typically include Collaborative
Filtering (CF), personality-based (content-based) approach,
demographic techniques, and a combination of these meth-
ods (i.e. hybrid recommender system) [5], and in practice
these have been used in large online shopping companies and
movie rating websites [6]. Unlike the E-commerce applica-
tions on the Internet with large datasets of items and users,
the MCS solver recommendation issue faces the challenge
of data sparsity, meaning that it is difficult to build a large
similarity matrix due to the lack of historical usage and
rating information [7]. To address this challenge, this paper
proposes a novel regression-based CF algorithm that can be
used for numerical schemes recommendation in MCS.

The rest of this paper details the methods for addressing
the above two issues to underpin an adaptive time-stepping
MCS solution using a regression-based CF recommen-
dation scheme. Specifically, a literature review of MCS
treatments and CF methods is conducted in Section 2.
Section 3 describes the proposed approach with detailed
information about its three main steps. Section 4 provides a
case study to explain the application of the proposed approach
as well as to evaluate its performance. In Section 5, the pro-
posed approach is further evaluated by conducting additional
experiments based on a dataset with different simulation
problems and solvers. The conclusions of this paper are
drawn in Section 6.

II. LITERATURE REVIEW
In this section, related work on MCS treatment and CF rec-
ommendation methods is reviewed and discussed.

A. MCS TREATMENT
Table 1 lists different MCS treatment methods, in terms of
both computer software development and numerical analysis
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TABLE 1. Summary of current mcs treatments.

issues, and on this basis compares different co-simulation
approaches.

From a computer-aided MCS development perspective,
there are mainly two treatments for MCS. The first one
focuses on tailored computational solutions for specific engi-
neering problems. This treatment method requires every
detailed information about the simulation problem. Engineers
and system analysts need to establish the mathematical for-
mulation for each subsystem, analyze the communication pat-
tern theoretically and develop bespoke code for continuously
updating information obtained from other subsystems. This
treatment method is generally used for the circumstances in
which subsystems represent different areas of physics. For
instance, a fluid-structure problem is solved by Farhat and
Lesoinne [20] using staggered pattern based on Aero-F and
Aero-S solvers; a thermomechanical problem is treated by
Armero and Simo [21] using a fractional step method based
on a two phase operator; distributed simulation of amultibody
dynamic system is implemented by Wang et al. [22] using a
gluing algorithm which couples different component models
in a plug-and–play manner.

On the other hand, another category of MCS treatment
methods is focused on the investigation of general-purpose
communication patterns in particular when little knowledge
is available about the subsystems. The main advantage of
this technique, compared with the tailored solution, is that
it can provide general guideline and a reusable framework
for combining well-established software packages such as
Matlab, Modelica, Adams, Nastran, Ansys, Abaqus, Cosmos
and Altair. The computational infrastructure widely used in
distributed computing provides useful solutions for such a
scheme, which underpins data exchange between computa-
tional models while hiding the technical details of distributed
communication from end users. The Functional Mock-up
Interface (FMI) [11] is a tool-independent standard using a

combination of an executable binary xml-files and embedded
complied C-code, which can support both model exchange
and co-simulation of dynamic models. The Common Object
Request Broker Architecture (CORBA) [23] enables com-
putational models using different programming languages
to work together. The High Level Architecture (HLA) [24]
emphasizes distributed co-simulation management of dis-
crete event systems by providing platform-independent
rules, interfaces and data models. Moreover, Web Services
technologies developed in cloud-computing [25] can also
enhance the interoperability of applications through facilitat-
ing remote communication [26]. AnotherWeb-based solution
applied to system integration in complex engineering system
development is multi-agent technology [27].

In addition to industrial standard and computational infras-
tructure, some general co-simulation approaches can also
be found in numerical analysis literature. The engineering
co-simulation systems are usually modeled according to
physical and dynamic laws, which are described in the form
of Partial Differential Equations (PDEs), Differential Alge-
braic Equations (DAEs) and Ordinary Differential Equations
(ODEs). These differential equations usually possess specific
characteristics with regards to their variables, coefficients and
boundary conditions, including linearity, degree of order and
stiffness. In order to solve a tailored problem using compu-
tational methods, various numerical integration schemes and
techniques have been developed to make a trade-off between
different performance indicators. Usually explicit, implicit
and semi-implicit methods are adopted as three subdivisions
of computational methods based on different simulation per-
formance requirements in terms of stability, accuracy and
speed. As a Jacobian-free method, the explicit approach is the
most effective one to be implemented, especially in the cases
that require data exchange between commercial packages
which allows limited access to solver codes. Meanwhile,
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the disadvantage of the explicit scheme is its numerical insta-
bility. Compared with the explicit approach with the same
order, the semi-implicit approach can achieve better stabil-
ity with Jacobian-based calculation. Schweizer and Lu [28]
proposed a semi-implicit scheme to tackle mechanical solver
coupling using small dimension Jocobian matrix, which still
need improvement in terms of accuracy and stability through
performing a complete iteration operation. Amongst all the
methods, the implicit approach is the most stable with the
cost of repetitive iteration for solving algebraic equations at
each simulation step. For instance, Sicklinger [29] introduces
an interface Jacobian-based algorithm to solve co-simulation
scenarios involving an arbitrary number of fields and signals
which overcomes present stability issues but incurs addi-
tional computation time. Based on the above discussion, these
approaches still face accuracy and efficiency challenges and
in-depth analysis is needed for their effective application to
MCS problems.

B. CF RECOMMENDATION METHODS
In general sense, Collaborative Filtering (CF) is the pro-
cess of filtering for information or patterns using techniques
involving collaboration among multiple agents, viewpoints
and data sources [30]. In the context of this paper, CF is
used as an efficient machine learning technique to extract
useful information based on historical dataset so that viable
co-simulation mechanisms with the best performance can be
recommended for sub-solvers.

Early generation CF systems usually utilize rating data
to calculate the similarity or weight between users or
items and make predictions, which is called memory-based
CF method [31]. However, a significant limitation of
memory-based CF method is that the similarity matrix
is based on common items and thus is unreliable when
data are very sparse. To overcome this shortcoming, many
model-based CF methods have been proposed, such as the
regression-based CF model [32], the Bayesian belief nets
CF model [33], the clustering CF model [34], the latent
semantic CF model [35], and the Markov-decision-process
CF model [36]. These approaches use machine learning
algorithms to build a prediction model based on historical
information and can efficiently overcome data sparsity by
satisfying some general evaluation rules.

Moreover, some dimensionality reduction techniques are
employed to remedy sparsity in CF systems, which are termed
Matrix Factorization (MF) [37]. For instance, Singular Value
Decomposition (SVD) [38] can remove insignificant users
or items to reduce the dimensionalities of user-items matrix
directly. Principal Component Analysis (PCA) is usually
regarded as a SVD modification method and Probabilistic
Matrix Factorization (PMF) [39] is also a well-established
method for recommendation system in practice.

Among all the model-based CF methods, the regression-
based CF proves to have advantages in making predictions
for numerical values in recommender systems. For example,
Vucetic and Obradovic [32] proposed a regression-based CF

approach which combines simple linear models to provide
rating predictions for an active user. Ordinary least squares is
used in the approach to estimate the parameters of regression
function. The good performance in addressing the sparsity
issue is demonstrated in experiments using many bench-
mark datasets. In this research, the regression-based CF is
employed and adapted in the knowledge-based recommenda-
tion approach due to its explicit mathematical representation,
easy implementation and efficient addressing of data sparsity.

III. THE PROPOSED APPROACH
A general MCS scheme is first given to explain the
application of the proposed approach, which contains sev-
eral partitioned systems. Each of them can be expressed
as Ordinary Differential Equations (ODEs) and will com-
plete the time-stepping numerical processes in a coopera-
tive way. Then, based on the different characteristics and
historical dataset of the ODEs, a suitable ODE solver is
recommended by the regression-based CF algorithm. After
this, recommendation results are used by the MCS process.
The co-simulation pattern is determined in the last part of
this process. A flowchart of the proposed approach is shown
in Fig. 3.

A. STEP1: MCS FORMULATION
To explain the general idea of the time-stepping co-simulation
scheme, amonolithic system represented by a set of first order
ODEs with initial values is considered. It is semi-discretized
from PDEs, as shown in Equation (1).

ẏ1
ẏ2
...

ẏi
...

ẏm

 =

f1(y1, y2, ..., yi, ..., ym)
f2(y1, y2, ..., yi, ..., ym)

...

fi(y1, y2, ..., yi, ..., ym)
...

fm(y1, y2, ..., yi, ..., ym)

 ,

y1(t0)
y2(t0)
...

yi(t0)
...

ym(t0)

 =

y10
y20
...

yi0
...

ym0

 (1)

In the equation, i = 1, 2, ...,m represents the number of
first order ODE for the monolithic representation. In terms
of derivative notation, Newton’s notation for differentiation
is adopted, which places a dot over the function name to
represent a time derivative and is thus also called the dot
notation. For instance, ẏ := dy/dt is the first derivative
of y with respect to t . t0 is the initial time and yi0 is the
initial value. Actually, this description does not lose high
order generality, because a high order ordinary differential
scheme can always be rewritten as a system of first order
ODEs. At the same time, PDEs can be numerically solved
by time-stepping ODEs in a certain spatial dimension using
this description. Furthermore, it is noteworthy that in real
physical applications (e.g. the fluid-structure co-simulation
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FIGURE 3. The regression-based collaborative filtering recommendation approach.

for airfoil), the monolithic representation usually does not
exist. The monolithic form appearing in this paper is used for
numerical analysis and experiment validation.

Next, the representation of partition systems is considered.
Different from many other studies in which two subsystems
are normally used [40], this research extends the coupling
relationship to three subsystems (named A, B, and C). Hence,
the communication pattern analysis can more likely be uti-
lized for arbitrary subsystems. Specifically, Subsystem A
(i = 1, 2, ..., k) has an ODEs representation shown in Equa-
tion (2) 

ẏ1
ẏ2
...

ẏk

 =

f1(y1, y2, ..., yi, ..., ym)
f2(y1, y2, ..., yi, ..., ym)

...

fk (y1, y2, ..., yi, ..., ym)

 ,

y1(t0)
y2(t0)
...

yk (t0)

 =

y10
y20
...

yk0

 (2)

Subsystem B (i = 1, ..., p) and Subsystem C (i =
1, 2, ..., q) have similar representation of ODEs
Usually k < m, p < m, q < m and k + p + q = m.

To simplify the following notions, we use vector to represent
the undivided system in Equation (1) as follows

ẏ = f(y), y(t0) = y0, y ∈ Rm (3)

Similarly, each subsystem has the following form

ẏA = f(y), yA(t0) = yA0, yA ∈ Rk (4)

ẏB = f(y), yB(t0) = yB0, yB ∈ Rp (5)

ẏC = f(y), yC (t0) = yC0, yC ∈ Rq (6)

To provide a better understanding of the problem formu-
lation, the coupling relationship among the multidisciplinary
systems is presented in Fig.4, which consists of three different
functional subsystems linked by state vectors.

FIGURE 4. The coupling representation between three subsystems.

B. STEP2: SUB-SOLVER RECOMMENDATION
In order to recommend a suitable ODE solver for different
subsystems, the history statistics of solvers simulation perfor-
mance are important reference for building the rating list such
as the one shown in Table2. The solvers Backward Euler [41],
2nd-order Backward Differentiation Formula (BDF2) [42],
4th-order Runge-Kutta (RK4) [43] and 4th-order Adams-
Bashforth(AB4) [44] are used in Table 2.

Practically, in many ODE solver libraries, such as
RADAU5 [45], DASPK [46], solvers are tested to col-
lect simulation performance data using different ODE sets.
In particular, DETSET [47] is a program which applies
six ODE solvers to five categories of problems to mon-
itor a solver’s computational cost and reliability. The
key results have been collected including FCN CALLS
(the number of function calls required for the problem),
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TABLE 2. An example of solver-subsystem matrix.

NO. OF STEPS (the number of steps used), PERCENT
DECEIVED (the percentage of steps in which the local error
exceeded the tolerance), MAXIMUM ERROR (maximum
local truncation error per unit step). Based on this dataset,
a rating score can be obtained using Equation (7) as follows.

r =
(

FCN × NO.
1− 0.01× PER

× exp(MAX )
)−1

(7)

In the equation, FCN, NO., PER, MAX are abbreviations
for FCN CALLS, NO. OF STEPS, PERCENT DECEIVED,
MAXIMUM ERROR, respectively.

Then r can be scaling between 1-5 using Equation (8) as
follows.

rnorm = 1+
4× (rmax − rmin)

r − rmin
(8)

The regression-based CF algorithm can be expressed as
follows:
Step 1: Initialization of features x(1), ..., x(nm) and parame-

ters θ (1), ..., θ (nu) using random values with standard normal
distribution.
Step 2: Modeling of the cost function based on multi-

variable regression with regularization of features and param-
eters simultaneously
Step 3: Minimization of cost function to obtain

x(1), ..., x(nm) and θ (1), ..., θ (nu) simultaneously using
advanced optimization method.
Step 4: Measurement of Euclidean distance for each sub-

system with (learned) parameters to compute similarity, pre-
dict a rating list of ODE solvers and recommend the solver
with highest rating score.

For a subsystem with learned parameters, implementation
of this algorithm is provided in Section IV.C where a detailed
example is given.

C. STEP3: CO-SIMULATION PATTERN DETERMINATION
With the mathematical description of the three-subsystem
problem, the next step is to solve these ODEs in a cooper-
ative manner. Since iterative computation is the most effi-
cient numerical measure for time-stepping simulation, one
or two rounds of co-simulation running round can be used
for explanation and this procedure can be executed repeat-
edly in a specified time interval. In a single co-simulation
running round from tn to tn+1, each sub-solvers embedded
in a subsystem calculate its own ODEs separately within
time interval t , and then they exchange numerical calculation
results with each other using a means determined by MCS

communication pattern. In terms of communication pattern,
there are mainly two categories, namely fixed step- size
interaction and adaptive step-size interaction. Specifically,
the former includes the Jacobi pattern (the parallel one) and
the Gauss-Seidel pattern (the serial one). Fig. 5 shows the
detailed differences of the Jacobi pattern and the Gauss-
Seidel pattern in the co-simulation problem with three sub-
solvers described above. The Jacobi pattern exchanges data
simultaneously at the end of each time interval, while the
Gauss-Seidel pattern exchanges data three times in a com-
plete time interval. In this way, the Jacobi pattern is more
computationally efficient but the Gauss-Seidel pattern is
more accurate since Sub-solver 2 can utilize the updated data
at the current time step from Sub-solver 1 while Sub-solver
3 can use the updated data from both Sub-solver 2 and
Sub-solver 3.

However, each subsystem usually has a specific engineer-
ing function and may use different sub-solvers according to
its engineering characteristics. In this way, a sub-solver’s
information can only be obtained at the end of each complete
time interval. Thus, the Guass-Seidel pattern is no longer
available for a co-simulation problem if each sub-solver uses
a different numerical scheme, while the Jacobi communi-
cation pattern is more flexible. On the other hand, since
the sub-solvers have different numerical integration schemes
related to its order of accuracy, using a fixed step-size com-
munication pattern is less efficient than using an adaptive
step-size.

With these considerations, an adaptive step-size Jacobi
communication pattern is proposed in this research for run-
ning the simulation with the three sub-solvers described
above. The integration and interaction in a certain time
interval is depicted in Fig.6. In order to accurately con-
trol step-size, estimating the Local Truncation Error (LTE)
is required for each sub-solver. The uniqueness of certain
derivative scheme is utilized in each sub-solver to achieve
better step-size control in the section to follow.

IV. CASE STUDY
This section uses a case study to detail the pro-
posed regression-based CF recommendation approach for
time-stepping MCS and demonstrate how it can be used to
solve a coupled three ODEs co-simulation problem.

A. PROBLEM DESCRIPTION
In order to demonstrate a derivative scheme with three
specified sub-solvers, an oscillation mechanics model with
dynamical coupling is chosen in this study, as shown
in Fig. 7 [48]. This linear structure problem has some advan-
tages as an demonstration model. First, it contains three sets
of second-order ODEs and can be represented as a vector
form. Second, it has both a monolithic form and a partitioned
form, which makes it convenient to compare the proposed
co-simulation algorithm with monolithic simulation results.
Last, it can end up with a damped state which is easy to verify
stability of the proposed algorithm.
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FIGURE 5. Fixed step-size communication pattern. (Note: without loss of generality, the explicit form is used in each solver as a
demonstration.) (a) Serial communication pattern. (b) Parallel communication Pattern.

FIGURE 6. Adaptive step-size Jacobi communication pattern.

This oscillation mechanics model has the mathematical
description as a monolithic system

ü+
d1
m1

u̇+
k
m
u+

k
m
(u− v) = 0

v̈+
d2
m2

(v̇− ẇ)+
k2
m2

(v− u) = 0

ẅ+
d2
m3

(ẇ− v̇)+
k3
m3

w = 0

(9)

Equation (9) can also be rearranged in a matrix form
including six first order ODEs as follows

ẏ = Fy, y ∈ R6 (10)

where y =
[
u u̇ v v̇ w ẇ

]T is displacement vector and

F =



0 1 0 0 0 0

−
k1 + k2
m1

−
d1
m1

k2
m1

0 0 0

0 0 0 1 0 0
k2
m2

0 −
k2
m2
−
d2
m2

0
d2
m2

0 0 0 0 0 1

0 0 0
d2
m3

−
k3
m3
−
d2
m3
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FIGURE 7. An oscillation mechanics model with dynamical coupling.

This system can also be partitioned into three parts and
each subsystem describes the dynamical motion of a ball
in Fig. 7. The subsystem 1 can be reformulated as

ẏA = FAyA + FAByB (11a)

ẏB = FByB + FBAyA + FBCyC (11b)

ẏC = FCyC + FCByB (11c)

where yA =
[
u u̇

]T
, yB =

[
v v̇

]T
, yC =

[
w ẇ

]T and
FA,FB,FC ,FAB,FBA,FBC ,FCB have a following relation-
ship with F .FAB,FBA,FBC ,FCB are the coupling part in this
simulation problem.

B. RECOMMENDATION ALGORITHM FOR THREE
SUB-SOLVERS USING REGRESSION-BASED CF
First, data preprocessing includes the following three
procedures,

1) Building rating matrix r ∈ Rn×3, r (i,j) is the rating score
by user subsystem j on solver i obtained by Equations (7)
and (8).

2) Building F ∈ Rn×3 filtering matrix with sparsity around
50%, which only contains random values 0 or 1 and has the
same size as the rating matrix.

3) Building filtered rating matrix y ∈ Rn×3, y(i,j)(defined
only if F(i, j) = 1).
The regression-based cost function with regularization is

J (x(1), ..., x(nm), θ (1), ..., θ (nu))

=
1
2

∑
(i,j):F(i,j)=1

((θ (j))T x(i) − y(i,j))
2
+
λ

2

nm∑
i=1

n∑
k=1

(x(i)k )2

+
λ

2

nu∑
j=1

n∑
k=1

(θ (j)k )2 (12)

The minimization objective is as follows

x(1)∗, ..., x(nm)∗, θ (1)∗, ..., θ (nu) ∗

= arg min
x(1),...,x(nm)

θ (1),...,θ (nu)

J (x(1), ..., x(nm), θ (1), ..., θ (nu)) (13)

After formation of the cost function, advanced optimiza-
tion method is used at every j = 1, ..., nu, i = 1, ..., nm to
obtain optimal feature and parameters in an iterative way. The
regularized gradient which is used for optimization can be
expressed as follows

∂J

∂x(i)k
=

∑
j:F(i,j)=1

((θ (j))T x(i) − y(i,j))θ (j)k + λx
(i)
k (14)

∂J

∂θ
(j)
k

=

∑
i:F(i,j)=1

((θ (j))T x(i) − y(i,j))x(j)k + λθ
(i)
k (15)

The detailed algorithm using the terms and equations men-
tioned above is described using the following procedure.

Algorithm 1 Regression-Based CF Recommendation for
ODE Multi-Solver
Data preprocessing: through 1) – 3)
Input: filtered rating matrix y ∈ Rn×3, maximum gradi-
ent descent iteration MaxIter, regularization parameter λ,
numbers of features,
Output: optimized features and parameters
x(1)∗, ..., x(nm)∗, θ (1)∗, ..., θ (nu)∗ and a trained rating
matrix rpredict ∈ Rn×3

1. reshape x(1), ..., x(nm), θ (1), ..., θ (nu)

as µ(1), ..., µ(nm), µ(nm+1), ..., µ(nm+nu)

2. while k <MaxIter
3. µ(i)

k := µ
(i)
k −α (

∑
j:F(i,j)=1

((µ(j))Tµ(i)
−y(i,j))µ(j)

k + λµ
(i)
k )

4. if J (µ(1), ..., µ(nm), µ(nm+1), ..., µ(nm+nu)) converged
5. break
6. end if
7. end while
8. unfold µ(1), ..., µ(nm), µ(nm+1), ..., µ(nm+nu)

as x(1), ..., x(nm), θ (1), ..., θ (nu)

9. # Get rating prediction
rpredict = (θ (j))T x(i) ∈ Rn×3

C. RECOMMENDATION RESULT DEPLOYMENT IN MCS
After obtaining the recommendation results for each sub-
solver, deploying three solvers efficiently in a co-simulation
process is the primary focus in this part. Since the numerical
algorithm runs under an iteration manner, a complete inte-
gration time interval from tn to tn+1 can be analyzed. Solving
the co-simulation problem at every round 1t := tn+1 − tn
involves three steps: (1) Solving (11a), (11b) (11c) using
separate ODEs solvers; (2) Estimating the Local Truncation
Error (LTE) of a selected sub-solver by comparing half and
whole step-size; and (3) Evaluating next step-size t using the
bisection strategy.

The following part details this adaptive time-stepping co-
simulation algorithm using ODE Sub-solver B within the
BDF2 scheme as the selected step-size controller, with three
embedded ODEs solvers using three different derivative
schemes. It should be noticed that Sub-solver B uses RK4 to
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start, since BDF2 is a multi-step method which cannot start
on its own.

Algorithm 2 Adaptive Time-Stepping Co-Simulation
Startstopwatch timer;
Input: each sub-solver with initial value at time stamp
t0 with initial value; initial LTE threshold emax,emin and
step-size threshold 1tmax, 1tmin
Output: dynamical displacement, simulation time,
sequence of adaptive time-stepping size.
1. fortn = t0:1t:tmax do
2. # Subsolver A: RK4

k1 = 1t(FAyA(tn)+ FAByB(tn))

k2 = 1t
(
FA

(
yA(tn)+

k1
2

)
+ FAByB(tn)

)
k3 = 1t

(
FA

(
yA(tn)+

k2
2

)
+ FAByB(tn)

)
k4 = 1t

(
FA

(
yA(tn)+

k2
2

)
+ FAByB(tn)

)
yA(tn+1) = yA(tn)+

1
6
(k1 + 2k2 + 2k3 + k4)

3. # Subsolver B: BDF2

yB(tn+1) =
4
3 yB(tn)−

1
3 yB(tn−1)+

2
31t(FBAyA(tn)+FBCyC (tn−1))
I− 2

31tFB

4. # Compute yB(tn+1/2) using BDF2

yB(tn+1/2) =
4
3 yB(tn)−

1
3 yB(tn−1)+

2
3
1t
2 (FBAyA(tn)+FBCyC (tn−1))

I− 2
3
1t
2 FB

5. # Estimate LTE using Euclidean norm

LTE(tn+1) ≈
n+1∑
i=1

∥∥yB(tn+1)− yB(tn+1/2)
∥∥
2

6. # Control step-size using bisection strategy
if LTE(tn+1) > emax: 1tn+1 = 1

21tn
else if LTE(tn+1) < emin:1tn+1 = 21tn
end if

if 1tn+1 > 1tmax: 1tn+1 = 1tmax
else if 1tn+1 < 1tmin: 1tn+1 = 1tmin
end if

7. # Sub-solver C: Backward Euler
yC (tn+1) =

yC (tn)+1tFCByB(tn)
I−1tFC

8. endfor
End timer

Moreover, theRK4 method can also be used at every step
in order to achieve step-size controlling. This algorithm is
similar to Algorithm 2. The main difference is that this algo-
rithm computes yA(tn+1/2) rather than yB(tn+1/2) with a half
step-size to estimate LTE. The comparison results of these
two step-size controller is shown in Table 4.

D. NUMERICAL ANALYSIS FOR MCS
In this part, the relationship between stability region with
step-size and error estimation with step-size is analyzed, and
thus it will provide numerical guidance about how to set a

FIGURE 8. Stability region of different ODE solvers.

proper step-size tolerance and error tolerance for the bisection
strategy in Section IV.C.

1) COMPUTATIONAL STABILITY
In order to set a proper step-size tolerance for the bisection
strategy, the relationship between stability region and step-
size of all the three solvers used in co-simulation needs to be
figured out.

First of all, a classical test ODE is used to analyze the
stability region of each sub-solver [29]. λ is a given con-
stant in a test ODE. The stability regions of every ODE
sub-solver with different derivative scheme are shown in
Fig.8. Forward Euler method and RK4 method have round-
shape stability region on the complex plane because explicit
schemes usually hold conditional stable region. In contrast to
explicit schemes, Backward Euler method and BDF2 method
are implicit schemes which are almost unconditional stable
except in a round region.

Based on the individual stability region consideration men-
tioned above, analyzing the overlap region is necessary when
three different solvers are used. The deep blue in Fig.9 indi-
cates the overlap region, which is the same as the RK4 stabil-
ity region for the three solvers (i.e. Backward Euler, BDF2,
and RK4). This figure shows that the stability region of
explicit method will limit the stability performance of the
whole co-simulation process.

In order to set a proper threshold for step-size, differ-
ent step-size t is used to illustrate its region scale change,
as shown in Fig. 10. The number ‘‘0.4’’, ‘‘0.7’’ and ‘‘1’’
labeled on the plot demonstrate the strength of stability.
Specifically, ‘‘1’’ means oscillation stable, bigger than ‘‘1’’
means unstable, ‘‘0.7’’ is less stable than ‘‘0.4’’, and ‘‘0’’
means unconditional stable (also called zero-stable). The
comparison of different step-sizes used for Sub-solver A
based on the RK4 method shows that the radius of stability
region is proportional to 1/t . When t increases ten times,
the stability region shrinks remarkably towards the original
point while when t becomes smaller, the stability region
expands rapidly in the complex plane.
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FIGURE 9. Stability region overlap of three ODE solvers.

However, the relationship between step-size and the stabil-
ity region is different in Sub-solver Bwhich uses an imbedded
BDF2 method. Since BDF2 is an implicit method, its stabil-
ity region spans almost the whole complex plane except a
circle. When t increases ten times, the circle region shrinks
remarkably towards the original point, meaning the stability
region is actually increasing. Thus, the increases of the sta-
bility region is proportional to the increases of t . Although
RK4 and BDF2 show different relationship between step-size
and the stability region, the stability region of RK4 is always
a real sub-region of BDF2’s at the same step-size t . Based
on this observation, controlling the step-size of either RK4 or
BDF2 can achieve the same stable region.

2) TOLERANCE PROPORTIONALITY
In this part, the relationship between error and step-size is
analyzed in detail so as to set proper maximum and mini-
mum thresholds of error for the bisection strategy. Usually
round-off error and truncation error compose the inaccuracy
problem when using numerical algorithms to solve differ-
ential equations. Hence, the relationship between derivative
scheme error and step-size is discussed here. Equation (16)
gives the error measurement of each derivative scheme.

e(1t) ≈

√√√√√ t=T∑
t=1

(y(t +1t)− y(t +1t/2))2

(T/1t)
(16)

In this equation,y(t + t) and y(t + t/2) are iterative time-
stepping results using full step-size and half step-size at
time t , respectively. The advantage of this error measurement
is that it enables ignoring the length of time interval and
focusing on the error change with the different value of step-
size t . The 1st order derivative scheme, such as Forward Euler
or Backward Euler, and 2nd order derivative scheme, such
as BDF2 or trapezoidal method are conducted with different
refinements of t .

FIGURE 10. Stability region comparison of different step-size.

The 1st order derivative scheme has the general form as
follows:

ẏ ≈
y(t +1t)− y(t)

t
+ O(1t) (17)

The 2nd order derivative scheme has the general form as
follows:

ẏ ≈
y(t +1t)− y(t −1t)

21t
+ O(1t2) (18)

The simulation results are shown in Fig.11 using a loglog
plot to illustrate the relationship between step-size and error
type in terms of different derivative orders. The check-shape
curve of the 1st order derivative scheme shows that if
t<10−8, round-off error has a dominant impact of the scheme
accuracy; if 1t>10−8, truncation error has a dominant
impact; and 1t=10−8 is an optimal trading off point. The
check-shape curve of the 2nd order derivative scheme shows
a similar trend. Since the minimum threshold of error is
usually larger than 10−8, truncation error then becomes the
main component – this means that the LTE (Local Trunca-
tion Error) estimation presented at Step 5 of Algorithm 2 in
Section IV.C is reasonable.

The logarithm of error and the logarithm of step-size has
a linear correlation, as shown in Fig.11. The linear curve can
be represented as Equation (19),

log (e(1t)) = a+ b log1t (19)

then using exponential on both sides of the equation, Equa-
tion (20) can be obtained.

e(1t) = exp(a) exp(b log1t) = exp(a)1tb (20)

In Equation (20), a is the vertical intercept and b is the
slope of curve. From Fig.11, a conclusion can be drawn that
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FIGURE 11. Comparison of round-off error and truncation error for
different solvers.

the higher order of the derivative scheme, the deeper of the
slope. For higher order schemes, error changes faster with the
change of step-size.

E. IMPLEMENTATION AND EVALUATION
To evaluate the proposed adaptive time-stepping co-
simulation approach, a number of numerical experiments
are conducted to compare different simulation patterns and
ODE solvers using the reformation problem introduced in
Section III.A. Values of parameters and initial values of
variables used in the experiments are shown in Table 3.

TABLE 3. System parameters and values for model problem.

To ensure the validity of comparison, the same parame-
ter value, initial variable value, initial step-size, same error
threshold and step-size threshold are used in the simulation
experiments conducted in this section. First, ODE solvers
RK4, BDF2, Backward Euler (BE) are used separately to
solve Equation (9) as a monolithic simulation problem, using
a fixed step-size. Then, threeODE solvers are used together to
Jacobi method is used as the parallel communication pattern
in the fixed step-size part. From the results in Table 3, the sim-
ulation effects of these two methods are quite similar and
hence only the Jacobi pattern is picked up to do the adaptive
step-size experiments. The comparison of results for all the
experiments mentioned above are also listed in Table 3.

From the experiment results of simulation time and steps
number shown in Table 4, the proposed adaptive time- step-
ping co-simulation Algorithm 2 has obvious advantages in
step usage compared to other simulation manners when the
initial step-size is smaller than 0.05. In addition, the step
usage in Algorithm 2 maintains a stable pattern when the
initial step-size changes 20 times from 0.005 to 0.1, which
means the step usage does not depend on the initial step-size
choice in this algorithm. It would be a great advantage when
this algorithm is embedded in large-scale co-simulation prob-
lems for which step-size estimation trials are necessary.

In terms of accuracy and simulation speed, the proposed
algorithm almost maintains a constant time-spending man-
ner using different initial step-sizes, as shown in Table 4.
Hence, when high-fidelity simulation tasks are required,
the proposed algorithmwill demonstrate its efficiency regard-
ing computational cost. In order to evaluate the simulation
accuracy, three variable curves of displacement are shown
in Fig.12. Specifically, Fig. 12(a) shows the results obtained
from the proposed algorithm using RK4 as the step-size
controller and Fig. 12(b) shows the results obtained from the
proposed algorithm using BDF2 as the step-size controller.
From the curves demonstration, the accuracy of the 4th order
can be kept using RK4 as the step-size controller because the
LTE estimation is based on the 4th order derivative scheme.
The curves using BDF2 as the controller are less smooth
compared with that using RK4, because the LTE estima-
tion is based on the 2nd order derivative scheme. The main
advantage of the BDF2 controller is that its iteration steps
are half of RK4’s and its simulation time is only two third of
RK4’s. As such, the choices of solver schemes and controller
strategies involve making a trade-off between accuracy and
efficiency both of which need to be considered to achieve
overall good simulation performance.

V. ADDITIONAL EXPERIMENTS WITH DETEST
In this part, the proposed approach is implemented and tested
on an ODE solver library named DETEST [47] which has
been briefly introduced in Section III.B. It specifically con-
sists of 6 well-known ODE solvers and 25 test problems.
The test problems used in DETEST, which are presented
in Appendix, are divided into the following five categories:
A: single equations; B: small systems; C: moderate sys-
tems; D: orbit equations; and E: higher order equations.
Each test problem is associated with 3 different tolerances,
namely 10−3, 10−6, 10−9.Thus there are a total of 75 test
cases that can be solved by a set of solvers including
BULIRSCH-STOER, ADAMS: KROGH, ADAMS:GEAR,
RK4:KUTTA, RK6:BUTCHER and RK8:SHANKS. A snap-
shot of DETSET is shown in Table 5.

To evaluate the proposed recommendation approach, both
data sparsity and algorithm learning parameters are consid-
ered. The Evaluation Metrics for the CF multi-solver recom-
mendation algorithm includes the Relative Mean Absolute
Error (RMAE) with a formula shown in Equation (21) and the
Relative Mean Square Error (RMSE) with a formula shown
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TABLE 4. Comparison of step usage for different simulation patterns and ode solvers.

TABLE 5. A snapshot of detest.

in Equation (22).

RMAE =
1

STD

∑
(i,j):F(i,j)=1

∣∣∣(θ (j))T x(i) − y(i,j)∣∣∣ (21)

RMSE =
1

VAR

∑
(i,j):F(i,j)=1

(
(θ (j))T x(i) − y(i,j)

)2
(22)

In the above two equations, STD means the standard devi-
ation while VAR is the variance of dataset.

In order to test the influence of data sparsity on recommen-
dation accuracy, a three-component filter matrix F ∈ Rn×3 is
built with nearly 1/3, 1/2 and 2/3 sparsity. The random 0-1 fil-
ter follows standard normal distribution as shown in Fig.13.

Some conclusions can be drawn based on the various
experiment results. There are three primary factors influ-
encing the proposed CF recommendation algorithm perfor-
mance, namely the regression model feature number, the
regularization parameter lambda, and the advanced optimiza-
tion method maximum iteration. The ceteris paribus con-
ditions are used in this experiment - in simple words, one

aspect is tested at a time with other aspects being equal. The
relationships between factors and data sparsity are shown
in Fig.14. The curves shows similar trends with different
sparsity. Among Fig.14(a) (b) and (c), the RMAE reaches
the lowest all under sparsity of 34%, although the parameter
settings are quite different.

Table 6 shows a comparison of RMAE and RMSE with
respect to different parameter settings based on the evalua-
tion conducted using computational experiments. The bolded
parameter is the best result with the lowest error estimation.
From the results shown in Table 6, a conclusion can be
drawn that RMAE reaches the smallest compared with other
parameter sets in this table when parameter settings are Spar-
sity=34.00%, Feature=6, MaxIter= 80, and Lambda=0.5.
Using the comparatively optimal parameter setting

in Table 6, we also evaluated the influence by using differ-
ent optimization methods, which shows in Table 7. From
this table, we can easily find that the comparison dif-
ferences are relatively minor than the differences due to
sparsity.
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FIGURE 12. Adaptive step-size simulation results. (a) Simulation results
using RK4 as step-size controller. (b) Using BDF2 as step-size controller.

FIGURE 13. Three filter matrix with nearly 1/3, 1/2, 2/3 sparsity.

At the end of this part, the parameter set (Spar-
sity =34.00%, Feature =6, MaxIter =80, Lambda =0.5)
is used to train the regression-based CF model to get the
rating results for all solvers paired with different test prob-
lems. The resultant rating score is shown in Table 8. From

FIGURE 14. Factor and data sparsity comparison results.
(a) FeatureNumber-RMAE Results, with Lambda = 0.01; Maxiter = 50.
(b) Maxiter-RMAE Results, with Lambda = 0.01; Feature Number = 5.
(c) Lambda-RMAE Results, with Maxiter = 50; Feature Number = 5.

TABLE 6. Error comparison for testset and allset.

the result, it can be concluded that BULIRSCH-STOER
is better at dealing with small scale problems (Class A)
than higher order problems (Class E), while some other
methods, like ADAMS: GEAR and RK8: SHANKS, do not
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TABLE 7. Allset rmse comparison for different optimization method
(sparsity: 34.00%, feature 6, maxiter 80, lambda 0.5).

TABLE 8. Rating result using proposed approach (sparsity: 34.00%,
feature 6, maxiter 80, lambda 0.5).

have significant performance difference dealing with differ-
ent classes. This means that they are more viable and stable
when co-simulation problems contain both stiff and non-stiff
parts.

VI. CONCLUSION
In this paper, a regression-based CF approach for rec-
ommending solvers and time-stepping communication
mechanism is proposed to provide a general framework for
portioned engineering system simulation using MCS. Specif-
ically, by reformulating a monolithic problem into partitioned
system theoretically, a regression-based CF algorithm is used
to recommend suitable solvers for subsystems based their
historical usage data and engineering characteristics. Then,
an adaptive time-stepping co-simulation algorithm embedded
with three ODE sub-solvers for solving this coupling scheme
is proposed based on the Jacobi communication pattern.
The time-stepping algorithm uses LTE estimation based on
a selected sub-solver and implements run-time control of
step-size based on a bisection strategy. Moreover, through
identifying the relationship between the stability region and
step-size, numerical guidance is provided to set a proper
step-size threshold and error threshold for the bisection
strategy. Lastly, the comparison of results obtained from
computational experiments using DETEST shows that the
regression-based CF recommendation algorithm achieves
good efficacy and effectiveness in dealing with multi-solver
co-simulation problems.

In summary, the primary advantages achieved by the
approach proposed in this paper are:

(1) It provides a feasible communication solution for co-
simulation coupling problem. Numerical analysis proves

that embedding three different scheme ODE solvers
in a co-simulation problem is workable. The proposed
Jacobi-based step-controlling scheme is efficient to deal with
co-simulation problems, especially for the complex engineer-
ing systems without a monolithic model expression.

(2) The regression-based CF recommendation algorithm is
effective and helpful for automatically selecting solvers dur-
ing simulation run-time, which collects and utilizes historical
simulation data in a novel way.

(3) The time-stepping algorithm can deal with iteration
efficiently. The number of iteration or steps does not depend
on the initial step-size choice. It would be a great advantage
when this algorithm is embedded in large-scale and high-
fidelity co-simulation problems with the need of step-size
estimation trials.

It enables more flexible selection of solvers as step-size
controllers according to specific requirements in terms
of accuracy and efficiency. While moving a step for-
ward towards more a general co-simulation framework,
the research work reported in this paper also has some limita-
tions. First, accuracy of the trained regression-based CF algo-
rithm can still be improvedwithmore information about ODE
libraries. Second, the reformed mathematical description can
only be used in linear ODEs, or the ODEs semi-discretized
from linear PDEs. Third, higher computational cost higher
than fixed-step algorithm may incur for the applications in
which only low-fidelity simulation is required as it uses LTE
estimation and the bisection strategy at each time step.

APPENDIX
The test problems used in DETEST are presented as follows.
The analytic solutions are given if they are available.

PROBLEM CLASS A: SINGLE EQUATIONS
A1: The negative exponential problem
ẏ = −y, y (0) = 1 (solution: y = Ce−x ,C = 1)
A2: A special case of the Riccati equation
ẏ = −y3/2, y (0) = 1 (solution: y = 1/

√
x + C,C = 1)

A3: An oscillatory problem
ẏ = ycosx, y (0) = 1 (solution: y = Cesinx ,C = 1)
A4: A logistic curve

ẏ =
y
4

(
1−

y
20

)
, y (0) = 1

(solution: y = 20
1+19Ce−x/4

,C = 1)
A5: A spiral curve

ẏ =
y− x
y+ x

, y (0) = 4

(solution in polar coordinates: r = Ce−θ ,C = 4eπ/2)

PROBLEM CLASS B: SMALL SYSTEMS
B1: The growth of two conflicting populations

ẏ1 = 2 (y1 − y1y2) , y1 (0) = 1

ẏ2 = − (y2 − y1y2) , y2 (0) = 3
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B2: A linear chemical reaction

ẏ1 = −y1 + y2, y1 (0) = 2

ẏ2 = y1 − 2y2 + y3, y2 (0) = 0

ẏ3 = y2 − y3, y3 (0) = 1

B3: A linear chemical reaction

ẏ1 = −y1, y1 (0) = 1

ẏ2 = y1 − y22, y2 (0) = 0

ẏ3 = y22, y3 (0) = 0

B4: The integral surface of a torus

ẏ1 = −y2−y1y3/
√
y21 + y

2
2, y1 (0) = 3

ẏ2 = y1−y2y3/
√
y21 + y

2
2, y2 (0) = 0

ẏ3 = y1/
√
y21 + y

2
2, y3 (0) = 0

B5: Euler equations of motion for a rigid body without
external force

ẏ1 = y2y3, y1 (0) = 0

ẏ2 = −y1y3, y2 (0) = 1

ẏ3 = −0.51y1y2, y3 (0) = 1

PROBLEM CLASS C: MODERATE SYSTEMS
C1: A radioactive decay chain

ẏ1
ẏ2
...

ẏ10

 =


−1 0

1 −1
· · ·

0 0

0 0
...

. . .
...

0 0

0 0
· · ·

−1 0

1 0




y1
y2
...

y10

,

y (0) =


1

0
...

0


C2: Another radioactive decay chain


ẏ1
ẏ2
...

ẏ10

 =


−1 0
1 −2

· · ·
0 0
0 0

...
2 −3

0
. . .

...

0 0
0 0

· · ·
−9 0
9 0




y1
y2
...

y10

 ,

y (0) =


1
0
...

0



C3: Derived from a parabolic partial differential equation

ẏ1

ẏ2
...

...

ẏ10


=



−2 1

1 −2
· · ·

0 0

0 0

...
. . .

...

0 0

0 0
· · ·

−2 1

1 −2





y1

y2
...

...

y10


,

y (0) =



1

0

...

...

0


(23)

C4: As in C3 except with 51 equations.
C5: Five body problem: the motion of 5 outer planets about

the sun.
The 3 spatial coordinates of the j th body are

ÿij = k2(−
(
mo + mj

) yij
r3j
+

5∑
k = 1
k 6= j

mk

[
yik − yij
d3jk

−
yik
r3k

]
)

where r2j =
∑3

i=1 y
2
ij and d2kj =

∑3
i=1 (yik − yij)

2, k,
j = 1, . . . , 5
When this system is rewritten using only first order differ-

ential equations the dependent vector has 30 components.
k2 = 2.95912208286 (gravitational constant),
m0 = 1.00000597682 (mass of the sun and the 4 inner

planets),
m1 =.000954786104043 (Jupiter),
m2 =.000285583733151 (Saturn),
m3 =.0000437273164546 (Uranus),
m4 =.0000517759138449 (Neptune),
m5 =.00000277777777778 (Pluto).
The initial values are:
y11 = 3.42947415189, ẏ11 = −.557160570446,
y21 = 3.35386959711, ẏ21 =.505696783289,
y31 = 1.35494901715, ẏ31 =.230578543901,
y12 = 6.64145542550, ẏ12 = −.415570776342,
y22 = 5.97156957878, ẏ22 =.365682722812,
y32 = 2.18231499728, ẏ32 =.169143213293,
y13 = 11.2630437207, ẏ13 = −.325325669158,
y23 = 14.6952576794, ẏ23 =.189706021964,
y33 = 6.27960525067, ẏ33 =.0877265322780,
y14 = −30.1552268759, ẏ14 = −.0240476254170,
y24 = 165699966404, ẏ24 = −.287659532608,
y34 = 1.43785752721, ẏ34 = −.117219543175,
y15 = −21.1238353380, ẏ15 = −.176860753121,
y25 = 28.4465098142, ẏ25 = − 216393453025,
y35 = 15.3882659679, ẏ35 = −.0148647893090.
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PROBLEM CLASS D: ORBIT EQUATIONS
D1:

ẏ1 = y3, y1 (0) = 1− ε

ẏ2 = y4, y2 (0) = 0

ẏ3 = −y1/(y
2
1 + y

2
2)

3/2
, y3 (0) = 0

ẏ4 = −y2/(y
2
1 + y

2
2)

3/2
, y4 (0) =

√
1+ ε
1− ε

ε = 0.1(εistheeccentricityoftheorbit)

D2: As above with ε = 0.3
D3: As above with ε = 0.5
D4: As above with ε = 0.7
D5: As above with ε = 0.9
(All are derived from the orbit equations

ẍ = −
x
r3
, x (0) = 1−ε, ẋ (0) = 0

ÿ = −
y
r3
, x (0) = 0, ẏ (0) =

√
1+ ε
1− ε

r2 = x2 + y2

with solution x = cosu− ε,ẋ = −sinu
1−εcosu

y =
√
1− ε2sinu, ẏ =

√
1− ε2cosu
1− εcosu

where −εsinu− t = 0 )

PROBLEM CLASS E: HIGHER ORDER EQUATIONS
E1: ẏ1 = y2

ẏ2 = −
(

y2
x + 1

+

(
1−

0.25

(x+1)2

)
y1

)
y1 (0) = J 1

2
(1) = 0.6713967071418030

y2 (0) = J̇ 1
2
(1) = 0.09540051444747446

(derived from Bessel’s equation of order 1/2 with the origin
shifted one unit to the left ):

(x+1)2ÿ+ (x + 1) ẏ+
(
(x + 1)2−0.25

)
y = 0

E2: ẏ1 = y2, y1 (0) = 2

ẏ2 = (1−y21)y2 − y1, y2 (0) = 2

(derived from Van der Pol’s equation

ÿ−
(
1− y2

)
ẏ+ y = 0)

E3: ẏ1 = y2, y1 (0) = 0

ẏ2 =
y31
6
− y1+2sin?(2.78535x), y2 (0) = 0

(derived from Duffing’s equation

ÿ+ y−
y3

6
= 2sin(2.78535x))

E4: ẏ1 = y2, y1 (0) = 30

ẏ2 = 0.032− 0.4y22, y2 (0) = 0

(derived from the falling body equation ÿ = 0.032− 0.4ẏ2)
E5: ẏ1 = y2, y1 (0) = 0

ẏ2 =
√
1+ y22/(25−x), y2 (0) = 0

(derived from a linear pursuit equation

1+ ẏ2 = (25−x)2ÿ2)
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