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ABSTRACT The aim of this paper is to obtain some new Hermite–Hadamard type of inequalities via
harmonic convex, strongly harmonic convex, strongly harmonic log-convex functions, and AH -convex in
connection with quantum calculus. All the results reduce to ordinary calculus case when q→ 1−.

INDEX TERMS Convex, harmonic convex, strongly harmonic convex, strongly harmonic log-convex,
quantum, Hermite-Hadamard, inequalities.

I. INTRODUCTION
A function F : I ⊆ R → R is said to be convex function
on I, if

F((1− t)x + ty) ≤ (1− t)F(x)+ tF(y),

∀x, y ∈ I, t ∈ [0, 1].

In recent years much attention has been given in studying
various aspects of convex functions. As a result this concept
has been extended and generalized in different directions,
see [1], [2], [4], [11]–[13], [17].

The concept of strong convexity has been introduced by
Polyak [13] in connection with solving some extremum prob-
lems. Let [a, b] ⊆ R be an interval and c be a positive number.
A function F : [a, b] ⊂ R → R is called strongly convex
with modulus c if

F((1− t)x + ty)

≤ (1− t)F(x)+ tF(y)− ct(1− t)(y− x)2,

∀x, y ∈ [a, b], t ∈ [0, 1].

Note that when c = 0, the concept of strong convexity
reduces to the concept of classical convexity.

The associate editor coordinating the review of this manuscript and
approving it for publication was Giovanni Angiulli.

Harmonic convex sets are defined as:
Definition 1 [17]: A set H ⊆ (0,+∞) is said to be a

harmonic convex set, if
xy

tx + (1− t)y
∈ H, ∀x, y ∈ H, t ∈ [0, 1].

Işcan [4] introduced and studied the class of harmonic
convex functions.
Definition 2 [4]: A function F : I ⊆ (0,+∞) → R is

said to be harmonic convex function, if

F
(

xy
tx + (1− t)y

)
≤ (1− t)F(x)+ tF(y), ∀x, y ∈ I, t ∈ [0, 1]. (I.1)

Recently Noor et al. [12] defined the class of strongly
harmonic convex functions as:
Definition 3: A functionF : I ⊆ (0,+∞)→ R is said to

be strongly harmonic convex function with modulus c > 0,
if

F
(

xy
tx + (1− t)y

)
≤ (1− t)F(x)+ tF(y)− ct(1− t)

(x − y
xy

)2
,

∀x, y ∈ I, t ∈ [0, 1].

The function F is said to be strongly harmonic concave
function with modulus c > 0, if −F is strongly harmonic
convex function.
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Noor et al. [12] also introduced the notion of strongly
harmonic log-convex functions.
Definition 4 [12]: A function F : I ⊆ (0,+∞) → R+

is said to be strongly harmonic log-convex function on I, if

F
(

xy
tx + (1− t)y

)
≤ (F(x))1−t(F(y))t − ct(1− t)

(x − y
xy

)2
,

∀x, y ∈ I, t ∈ (0, 1).

Remark 5: Strongly harmonic log-convex function implies
strongly harmonic convex function.
Remark 6: . Let I = [a, b] ⊆ R \ {0} and consider the

function G : [ 1b ,
1
a ] → R defined by G(t) = F( 1

t
). Then F

is strongly harmonic convex function on [a, b] with modulus
c > 0, if and only if, G is strongly convex function on [ 1b ,

1
a ]

with modulus c > 0.
In order to avoid any confusion with the class of

AH-convex functions, the functions satisfying the condition

F (tx + (1− t)y) ≤
F(x)F(y)

(1− t)F(x)+ tF(y)
, (I.2)

we call the class of functions satisfying (I.1) as HA-convex
functions (see [1], [4]).

The following result will be helpful in obtaining our main
results.
Proposition 7 [2]: If [a, b] ⊂ I ⊂ (0,∞) and if we

consider the function G :
[ 1
b ,

1
a

]
→ R, defined by G(t) =

F
( 1
t

)
, then F is harmonic convex function on [a, b] if and

only if G is convex in classical sense on
[ 1
b ,

1
a

]
.

Convexity in connectionwith inequalities has also attracted
many researchers from all over the world. Many mathemat-
ical inequalities have been obtained using the concept of
convex functions, for example, see [3]. For a convex function
F : [a, b] → R, the following inequality is well known in
the literature as the Hermite-Hadamard inequality:

F
(
a+ b
2

)
≤

1
b− a

∫ b

a
F(u)du ≤

F(a)+ F(b)
2

. (I.3)

This famous result of Hermite and Hadamard which provides
us an equivalent condition to convexity has extensively been
studied. This inequality plays significant role in theory of
means and in numerical analysis. Numerous extensions for
the result have been obtained in the literature, for example
see [3].

We now recall some basic concepts of quantum calculus.
Let 0 < q < 1, the q-Jackson integral from 0 to b is defined
by [5] as: ∫ b

0
F(x)dqx = (1− q)b

∞∑
n=0

F(bqn)qn

provided the sum converge absolutely.

The q-Jackson integral in a generic interval [a, b] is given
by [5] ∫ b

a
F(x)dqx =

∫ b

0
F(x)dqx −

∫ a

0
F(x)dqx.

Rajkovic et al. [14] presented a Riemann-type q-integral by:

Rq(F; a, b) = (b− a)(1− q)
∞∑
k=0

F(a+ (b− a)qk )qk .

We can get another definition from the Riemman-type
q-integral:

2
b− a

∫ b

a
F(x)dRq x

= (1− q)
∞∑
k=0

(
F
(
a+ b
2
+ qk

(
b− a
2

))
+F

(
a+ b
2
− qk

(
b− a
2

)))
qk .

From the q-Jackson integral we can write:

2
b− a

∫ b

a
F(x)dRq x =

∫ 1

−1
F
(
1− t

2
a+

1+ t

2
b
)
dqt

=

∫ 1

−1
F
(
1+t
2

a+
1− t

2
b
)
dqt. (I.4)

Contrary to the q-Jackson integral, if

F(x) ≤ G(x), x ∈ [a, b]

then ∫ b

a
F(x)dRq x ≤

∫ b

a
G(x)dRq x.

Taf et al. [16] established the q-analogue of Hermite-
Hadamard’s inequalities for convex function
Theorem 8: Let F : [a, b] → R be a q-integrable convex

function, then

F
(a+ b

2

)
≤

1
b− a

b∫
a

F(x)dRq x ≤
F(a)+ F(b)

2
. (I.5)

For some recent studies on quantum integral inequalities,
see [8]–[10].

II. MAIN RESULT
In this section, we derive our main results. In this context the
first result is related to strongly harmonic convex function.
Theorem 9: Let F : I ⊆ (0,+∞) → R be a strongly

harmonic convex function with modulus c > 0, and a, b ∈ I,
with 0 < a < b, we have

2F
(

2ab
a+ b

)
≤

2ab
q(b− a)

∫ b

a

F(u)
u2

dRqu−
c

2[3]q

(
b− a
ab

)2

≤ F(b)+ F(a)−
c
2

(
b− a
ab

)2

.
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Proof: By Remark 6 and the fact that G is strongly con-
vex function on [ 1b ,

1
a ], defined by G(t) = F( 1

t
), we obtain

G
(
a+ b
2ab

)
= G

(
1
2

(
1− t

2
1
b
+

1+ t

2
1
a

)
+

1
2

(
1+ t

2
1
b
+

1− t

2
1
a

))
≤

1
2
G
(
1− t

2
1
b
+

1+ t

2
1
a

)
+

1
2
G
(
1+ t

2
1
b
+

1− t

2
1
a

)
−
ct2

4

(
b− a
ab

)2

.

q-integrating with respect to t on [−1, 1], we have

2G
(
a+ b
2ab

)
≤

2ab
b− a

∫ 1
a

1
b

G(u)dRqu−
c

2[3]q

(
b− a
ab

)2

,

with this first inequality is proved.
The proof of second inequality is given as

G
(
1− t

2
1
b
+

1+ t

2
1
a

)
≤

1− t

2
G(

1
b
)+

1+ t

2
G(

1
a
)−

c(1− t
2)

4

(
b− a
ab

)2

.

q-integrating with respect to t on [−1, 1], we get

2ab
b− a

∫ 1
a

1
b

G(u)dRqu≤G(
1
b
)+G(

1
a
)−

c
2

(
1−

1
[3]q

)(
b−a
ab

)2

.

Thus

2F
(

2ab
a+ b

)
≤

2ab
b− a

∫ 1
a

1
b

F
(
1
u

)
dRqu−

c
2[3]q

(
b− a
ab

)2

≤ F(b)+ F(a)−
c
2

(
b− a
ab

)2

.

This implies

2F
(

2ab
a+ b

)
≤

2ab
q(b− a)

∫ b

a

F(u)
u2

dRqu−
c

2[3]q

(
b− a
ab

)2

≤ F(b)+ F(a)−
c
2

(
b− a
ab

)2

.

This completes the proof. �
We now give the proof of q-analogue of Hermite-

Hadamard’s inequality using HA-convex functions.
Theorem 10: Let F : I ⊆ (0,+∞) → R be an

HA-convex function and a, b ∈ I, with a < b, we have

F
( 2ab
a+ b

)
≤

ab
q(b− a)

b∫
a

F(u)
u2

dRqu ≤
F(a)+ F(b)

2
.

Proof: Consider the function G : [ 1b ,
1
a ] → R,G(u) =

F( 1u ). Since G is convex on [ 1b ,
1
a ], then by (I.5), we have

G
(
a+ b
2ab

)
≤

ab
b− a

∫ 1
a

1
b

G(u)dRqu ≤
G( 1b )+ G( 1a )

2
,

then

F
(

2ab
a+ b

)
≤

ab
b− a

∫ 1
a

1
b

F(
1
u
)dRqu ≤

F(b)+ F(a)
2

,

by using change of variable, we get

F
( 2ab
a+ b

)
≤

ab
q(b− a)

b∫
a

F(u)
u2

dRqu ≤
F(a)+ F(b)

2
.

The proof is completed. �
Note that, when c = 0 Theorem 9 reduces to Theorem 10.
Our next result is pertaining to strongly harmonic

log-convex functions.
Theorem 11: Let F : [a, b] ⊆ (0,+∞) → R+ be a

strongly harmonic log-convex function, then we have

F
(

2ab
a+ b

)
≤

ab
q(b− a)

∫ b

a

F(u)
u2

dRqu−
c
4

(
1−

1
[3]q

)
(b− a)2

≤
1
2
(F(a)F(b))

1
2

∫ 1

−1

(
F(b)
F(a)

) t

2

dqt.

Proof: Consider the function G(u) = F( 1u ), u ∈
[ 1b ,

1
a ]. Since F is strongly harmonic log-convex, for all t ∈

[−1, 1], x, y ∈ [a, b], we have

G
(
1+ t

2
1
y
+

1− t

2
1
x

)

≤

(
G
(
1
x

)) 1+t
2
(
G
(
1
y

)) 1−t
2

− c
1− t

2

4
(y− x)2,

Then

F
(

2ab
a+ b

)
= G

(
a+ b
2ab

)
= G

(
1
2

(
1− t

2
1
b
+

1+ t

2
1
a

)
+

1
2

(
1+ t

2
1
b
+

1− t

2
1
a

))

≤

(
G
(
1− t

2
1
b
+

1+ t

2
1
a

)) 1
2

×

(
G
(
1+ t

2
1
b
+

1− t

2
1
a

)) 1
2

− c
(1− t

2)
4

(b− a)2

≤
1
2
G
(
1− t

2
1
b
+

1+ t

2
1
a

)
+

1
2
G
(
1+ t

2
1
b
+

1− t

2
1
a

)
− c

(1− t
2)

4
(b− a)2.
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q-integrating with respect t over [−1, 1], we get

2F
(

2ab
a+ b

)
= 2G

(
a+ b
2ab

)
≤

2ab
b− a

∫ 1
a

1
b

G(u)dRqu−
c
2
(1−

1
[3]q

)(b− a)2

=
2ab
b− a

∫ 1
a

1
b

F(
1
u
)dRqu−

c
2
(1−

1
[3]q

)(b− a)2. (II.1)

Now, we have

2ab
b− a

∫ 1
a

1
b

F(
1
u
)dRqu =

∫ 1

−1
G
(
1− t

2
1
b
+

1+ t

2
1
a

)
dqt

≤

∫ 1

−1
(G(

1
b
))

1+t
2 (G(

1
a
))

1−t
2 dqt

−
c(b− a)2

4

∫ 1

−1
(1− t

2)dqt. (II.2)

By (II.1) and (II.2), we get

2F
(

2ab
a+ b

)
≤

2ab
b− a

∫ 1
a

1
b

F(
1
u
)dRqu−

c
2
(1−

1
[3]q

)(b− a)2

≤

∫ 1

−1
(F(b))

1+t
2 (F(a))

1−t
2 dqt

= (F(a)F(b))
1
2

∫ 1

−1

(
F(b)
F(a)

) t

2

dqt,

by using change of variable, we have

2F
(

2ab
a+ b

)
≤

ab
q(b− a)

∫ b

a

F(u)
u2

dRqu−
c
4
(1−

1
[3]q

)(b− a)2

≤
1
2
(F(a)F(b))

1
2

∫ 1

−1

(
F(b)
F(a)

) t

2

dqt.

The proof is completed. �
Theorem 12: Let F : [a, b] ⊂ R→ R+ be an AH-convex

function, then we have

2
b− a

∫ b

a
F(u)dRqu ≤

q− 1
log q

(logF(b)− logF(a)) .

Proof: Since F is an AH -convex function, for all t ∈
[−1, 1], we obtain

F
(
1− t

2
a+

1+ t

2
b
)
≤

2F(a)F(b)
(1+ t)F(a)+ (1− t)F(b)

q-integrating with respect t over [−1, 1], we get

2
b− a

∫ b

a
F(u)dRqu ≤

F(a)F(b)
F(b)− F(a)

∫ 1
F (a)

1
F (b)

dqu
u

=
q− 1
log q

(logF(b)− logF(a)) .

The proof is completed. �

III. CONCLUSION
To the best of our knowledge this is the first pervasive note
on q-analogues of the Hermite-Hadamard type of integral
inequalities using different classes of harmonic convexity
such as strongly harmonic convex functions, HA-convex
functions, strongly harmonic log-convex functionsAH-convex
functions.
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