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ABSTRACT Mobile terminal tracking is an important topic in wireless communications. A TDOA-based
positioning method combining the interacting multiple models and the particle filter is proposed in this paper
for non-cooperative target tracking in two dimensions. Three motion models, constant velocity, constant
acceleration, and constant turning, and two-channel models, line of sight (LOS) and non-line of sight
(NLOS), are considered to describe the trajectory of a mobile terminal in mixed LOS/NLOS environments.
The particle filtering technique is employed for state estimation from a set of nonlinear TDOAmeasurements,
and the interacting multiple models are used to mix the multiple motions and channel models to improve
the accuracy of positioning. The simulation results are given to demonstrate that the proposed algorithm is
close to the derived posterior Craḿer–Rao lower bound and outperforms the three-motion-model scheme
with only an LOS channel model and the mixed LOS/NLOS schemes with single or two motion models.
The average improvement over the whole time is larger than 40%.

INDEX TERMS Mobile terminal tracking, time difference of arrival, particle filter, interacting multiple
models, posterior Craḿer-Rao lower bound (PCRLB).

I. INTRODUCTION
Mobile localization techniques have attracted much atten-
tion over the past years. Accurate positioning of an mobile
terminal (MT) is very important in both commercial and
military applications [1]–[4], that use various location-based
services, such as emergency call service, health care mon-
itoring, intelligent transportation, etc. In the field of radio
monitoring, locating an unauthorized broadcast station in the
urban environment is difficult sometimes due to severe non-
line-of-sight (NLOS) observation noise. If the transmitter is
mobile, the situation is even worse. In this paper, we focus
on mobile tracking of a non-cooperative transmitter in urban
areas.

The mobile location is determined using a set of dis-
tributed base stations (BSs). In the literature, types of BS
measurements for mobile localization include time of arrival
(TOA), time difference of arrival (TDOA), angle of arrival
(AOA) or received signal strength (RSS). The measurements
are transmitted to a data center through wireless or wired net-
works for information fusion. Various positioning schemes
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can be found with respect to different kinds of measure-
ments [5]–[7]. The TOA-based location scheme can measure
the absolute TOA of the radio signal traveling from the
MT to a certain BS. It requires exact synchronous clocks at
both the transmitters and receivers, otherwise, it will lead
to an imprecise location estimation [5]. The TDOA-based
scheme measures the difference of TOAs of the radio sig-
nal arriving at different BSs. At least three BSs are needed
to measure for a 2D location scene [6]. The AOA-based
scheme uses an antenna array to measure the direction of
propagation of the radio signal coming from the MT, and
finds the intersection of at least two directional lines to
determine the location of the MT. The receiving antenna
arrays for low transmitting frequencies would be very large,
which has restricted the applications of massive sensor net-
works [7]. The RSS-based scheme measures the power of
the received radio signal to estimate the distance between the
MT and BS. It has the lowest complexity and cost compared
to other schemes, and can be utilized in both outdoor and
indoor environments. However, the locating accuracy could
be decreased due to shadowing and long distance between
the target and BSs [7], [8]. Because each scheme has its
own advantages and limitations, several hybrid methods are
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proposed to improve the accuracy, such as TOA/RSS [8],
AOA/RSS [9], TOA/AOA [10], or TDOA/AOA [11].

In urban environments, the propagation path between the
MT and a BS is LOS or NLOS. The LOS measurement
errors are assumed to be Gaussian [12], and the NLOS
measurement errors caused by the obstruction of obstacles
are frequently modeled by a shifted Gaussian distribution,
exponential distribution or Nakagami distribution [13]–[15].
In [16], the TOA measurements are modeled as a random
variable with a positive bias, and a modified Kalman filtering
(MKF) algorithm is proposed to mitigate the effect of NLOS.

In this paper, considering both the performance and costs,
we focus on the TDOA-based scheme for tracking a non-
cooperative MT under the mixed LOS/NLOS conditions
in two dimensions. There is a highly non-linear relation-
ship between the TDOA measurements and MT location in
the Cartesian coordinates. Usually, some modified Kalman
filters [16], [17] are utilized to solve the nonlinear equa-
tions. The particle filter (PF) [18]–[20], which is based on a
Bayesian framework, is another popular estimation method
for nonlinear state models. In this paper, with the aim of
tracking different types of MT behavior and LOS/NLOS
measurement errors, we combine the PF with the interacting
multiple model (IMM) algorithm [21], [22], which can mix
dynamic filter models to get a better position estimate of
the MT.

There have been several recent studies on mobile track-
ing algorithms. A fuzzy-based IMM algorithm is proposed
in [23] to estimate the MT location for the urban area. The
IMM algorithm is used to combine the LOS and NLOS
states. The TOA and RSS measurements are employed to
improve the accuracy. However, only one motion model for
the MT, constant velocity, is considered. Similarly, the MKF
algorithm proposed in [16] and the constrained square-root
unscented Kalman filter (CSRUKF) proposed in [24] can
mitigate NLOS measurement errors for tracking the MT with
only constant velocity.

In practical situations, The MT may frequently speed up,
slow down ormake a turn. The 2Dmobile target tracking with
AOA measurements and the 3D mobile target tracking with
TOA/AOA measurements are investigated in [25] and [26],
respectively. In those papers, the interacting multiple model
unscented Kalman filter (IMMUKF), IMMEKF, and IMMPF
algorithms are proposed for tracking the MT with three
dynamic motion models. However, the algorithms only work
well under LOS conditions. A two-stageKalman-based track-
ing algorithm is proposed in [27], where the onboard sensors
measure distance, velocity and heading. These measurements
are sent to the BSs and are used to mitigate the NLOS
measurement errors. However, for non-cooperative tracking,
this sensed information is not available at the BSs.

In this paper, three different motion models, constant
velocity (CV), constant acceleration (CA), and constant turn-
ing (CT) are considered, and the LOS/NLOS measurement
noise is modeled as mixed Gaussian distribution according
to [13]. An improved IMMPF algorithm is proposed, which

can combine the motion and channel models to achieve accu-
rate location estimation of the MT in urban areas.

The paper contributes more than just a straightforward
combination ofmultiplemotion andmultiple channelmodels.
The contributions are summarized as follows:
• For each motion model, we estimate distance difference
offsets and the channel model probability to combine
the channel state estimates. With the compensation of
channel parameters, the estimation accuracy of motion
states is improved. Then, we calculate the likelihood
probability to update the state estimates and the corre-
sponding covariances.

• Wepresent the PCRLB for theoretical performance anal-
ysis. Compared with [25], we derive the lower bound
with a new treatment required because of nonzero expec-
tation of residual error and the different offsets.

• We design a new simulation scenario, where the tar-
get moves with three different motion models and in
the mixed LOS/NLOS environment. The results show
that the proposed algorithm outperforms other compared
schemes, in which one or more of the models e.g.,
NLOS or CT is left out.

The remainder of this paper is organized as follows.
Section II introduces the system model, motion model, mea-
surement and channel model. Section III describes the pro-
posed IMMPF algorithm. In Section IV, the posterior CRLB
is derived. The numerical simulations of the localization
performance are analyzed in Section V. Finally, Section VI
gives a brief conclusion about this paper.

II. SYSTEM MODEL
Focusing on mobile localization in the mixed LOS/NLOS
channel environment, the state-space model of the tracking
system in this paper is represented as

x(k + 1) = f (x(k))+ w (k) (1)

z(k) = h (x(k))+ v(k) (2)

where k is the time index, x(k) is the state vector, z(k) is the
measurement vector, and f (·) and h(·) are the state transition
and measurement function, respectively. w (k) denotes the
process noise vector, and v(k) denotes the measurement noise
vector.

The state vector x(k) including motion and channel states
is defined as

x(k) = [xt (k); xL(k); xN (k)] , (3)

where

xt (k) = [x(k), ẋ(k), ẍ(k), y(k), ẏ(k), ÿ(k)]T

xL(k) =
[
1dL,1(k), . . . ,1dL,m(k), . . . ,1dL,M−1(k)

]T
xN (k) =

[
1dN ,1(k), . . . ,1dN ,m(k), . . . ,1dN ,M−1(k)

]T
.

x(k), ẋ(k) and ẍ(k) denote the target position, velocity and
acceleration, respectively, in the horizontal axis. y(k), ẏ(k)
and ÿ(k) denote the same physical elements in the verti-
cal axis. xL(k) and xN (k) are distance difference offset vectors
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at time index k under LOS and NLOS conditions, respec-
tively. The elements 1dL,m(k) and 1dN ,m(k) denote the dis-
tance difference offset of the m-th channel state under LOS
and NLOS conditions, respectively. In this paper, the offsets
are modeled as the mean values of the LOS and NLOS mea-
surement noise, respectively. They are used to track channel
switching. M is the number of BSs.

For themotion state xt (k), three typical motionmodels, CV,
CT and CA, are considered, as described in [25]

fj (xt (k)) = Ft,j · xt (k), j = 1, 2, 3 (4)

where j = 1, 2, 3 denote the indexes of CV, CT and CA
motion model, respectively. The state transition matrixes are
expressed by

Ft,1 = I2 ⊗

1 T 0
0 1 0
0 0 0

 , (5)

Ft,2 =



1
sin(ωT )
ω

0 0
cos(ωT )− 1

ω
0

0 cos(ωT ) 0 0 − sin(ωT ) 0
0 0 0 0 0 0

0
1− cos(ωT )

ω
0 1

sin(ωT )
ω

0

0 sin(ωT ) 0 0 cos(ωT ) 0
0 0 0 0 0 0


,

(6)

Ft,3 = I2 ⊗

1 T
T 2

2
0 1 T
0 0 1

 , (7)

where T denotes the sampling interval, ω denotes the turn-
ing rate, which is also treated as an auxiliary parameter
to be estimated in this paper [25], [28]. Therefore, the
motion model state of Equation (3) can be rewritten as
xt (k) = [x(k), ẋ(k), ẍ(k), y(k), ẏ(k), ÿ(k), ω]T . The process
noise covariance matrix Qj could be found in [25].
For the channel state, two channel models, LOS and

NLOS, are considered. The states are alsomodeled as random
processes with the state transition function{

fL (xL(k)) = xL(k),
fN (xN (k)) = xN (k).

(8)

The corresponding noise process covariance matrices are QL
and QN , respectively. This assumption is reasonable as the
channel states are relatively stable for a mobile target with
moderate speed.

Combining equation (4) and (8), we can obtain the transi-
tion function of equation (1),

fj (x(k)) =
[
Ft,j 0
0 I2M−1

]
· x(k). (9)

z(k) is the measurement vector of distance difference.
Assume that there are M (M ≥ 3) BSs with fixed locations
to detect the signal transmitted from the target. The TDOA
measurements of the transmitted signals are collected by a set

FIGURE 1. The traditional IMMPF algorithm.

of BSs with a common reference. The measurement vector is
expressed by z(k) = c

[
τ2,1(k), . . . , τm,1(k), . . . , τM ,1(k)

]T ,
where c is speed of light, τm,1(k) is the TDOA between base
station BSm and the reference BS1 at time index k. Thus,
given a set of distance values between the target and each
BS [d1, . . . , dm, . . . , dM ]T , the observation equation can be
expressed by

z(k) = d + v(k), (10)

where d =
[
d2,1, . . . , dm,1, . . . , dM ,1

]T is the distance differ-
ence vector and the element is dm,1 = dm − d1. v(k) denotes
the LOS/NLOSmeasurement noise vector. According to [13]
and [14], the element vm(k) is modeled by Gaussian mixture
PDF, which can be written in a general form as follows:

vm(k) ∼

N
(
0, σ 2

L,m

)
, LOS

N
(
1dm, 2σ 2

L,m + σ
2
N ,m

)
. NLOS

(11)

Under the LOS condition, the measurement noise is modeled
as an independent and identically distributed (iid) zero-mean
Gaussian variables with the distribution N

(
0, σ 2

L,m

)
. Under

the NLOS condition, the measurement noise is modeled as
an iid positive-mean Gaussian variables with the distribution
N
(
1dm, σ 2

N ,m

)
, where 1dm represents the distance differ-

ence offset. In symbols, 1dm = E
{
zm(k)− dm,1

}
. 1dm is

a time-invariant parameter required to be estimated in this
paper. 1dm � 0, σ 2

N ,m > σ 2
L,m.
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FIGURE 2. The traditional particle filtering algorithm.

III. THE IMPROVED IMMPF ALGORITHM
In this paper, the motion and channel states are described by
the three-model and two-model dynamics of the state equa-
tions, respectively. The IMM algorithm can track the MT by
switching models according to transition probabilities driven
by Markov jump process. The PF technique is introduced to
estimate nonlinear parameters.

In general, the traditional particle filtering-based IMM
algorithm consists of four major stages, as shown in Fig.1.
1) Interaction. Based on the mode probability µi(k) at time
index k , the initial state vector estimate x̂0j (k) and the corre-
sponding covariance matrix P̂0j (k) are obtained by mixing the
state estimate x̂j(k) and the state error covariance P̂j(k) of the
previous iteration. 2) State update. With the use of the initial
state estimate and the covariance, as well as the measurement
data z(k), the new state estimate x̂j(k + 1) and covariance
P̂j(k + 1) are obtained from a set of parallel particle filters.
3) Mode probability update. By using the measurement resid-
ual, the likelihood function Lj(k) is calculated, and the new
mode probability µj(k + 1) can be updated. 4) Combination.
All the state estimates and their corresponding covariances
aremixed to obtain x̂(k+1) and P̂(k+1). The particle filtering
algorithm used in the IMMPF is summarized in Fig.2.

Compared with the traditional IMMPF algorithm,
the improvement of the proposed algorithm is made in the
state update block as shown in Fig.3, where both LOS and
NLOS channel parameters are estimated to reduce the effect
of largeNLOSmeasurement errors and the traditional particle
filtering algorithm is replaced by the filtering and resampling
block. First, particles x̂(n)j (k) are obtained from the initial

distribution at time index k for each motion model, where
the index n denote the n-th particle. Then, by using the
measurement residual, the likelihood coefficient εj,i,m(k) and
the channel probability ηj,i,m(k) are computed to combine
all the channel state estimates, where the index j, i and m
denote the j-th motion model, the i-th channel model and the
m-th path, respectively. Note that i = 1 and i = 2 denote
LOS and NLOS conditions, respectively. The particles of
channel states need to be reset if the channel switches from
model LOS to NLOS, which is determined by comparing
the channel probabilities. Otherwise, the state x̂j(k + 1) is
directly obtained based on particle resampling. The details of
the proposed algorithm are described as follows.

Compared to the motion-model-only schemes, the pro-
posed algorithm considers both motion and channel models.
The channel model probability is calculated to mix LOS and
NLOS channel measurement errors. The algorithm firstly
samples particles from the initial distribution

x̂(n)j (k) ∼ N
(
x̂0j (k), P̂

0
j (k)

)
, (12)

where n = 1, 2, . . . ,Np and Np is the number of particles.
The predicted state particles of the j-th motion model could
be obtained by

x̂(n)j (k + 1) = fj
(
x̂(n)j (k)

)
+ wj(k). (13)

Using the distance difference equation of (10), the measure-
ment errors can be expressed as

e(n)j,i,m(k + 1) = zm(k + 1)− d (n)m,1(k + 1)−1d̂ (n)j,i,m(k + 1),

(14)

where e(n)j,i,m(k+1) denotes themeasurement error.1d̂ (n)j,i,m(k+

1) denotes the offset of the distance difference d (n)m,1(k + 1);

it is an element of x̂(n)j (k + 1) and it has the mean value
of the distribution as shown in Equation (11). zm(k + 1) is
the distance difference measurement. Then, the likelihood
probability coefficient can be calculated as

εj,i,m(k + 1) =
1√

2πσ 2
j,i,m(k+1)

exp

(
−

∣∣ēj,i,m(k+1)∣∣2
2σ 2

j,i,m(k+1)

)
,

(15)

where the mean and covariance are defined as

ēj,i,m(k + 1) =
1
Np

Np∑
n=1

e(n)j,i,m(k + 1), (16)

σ 2
j,i,m(k + 1) =

1
Np

Np∑
n=1

∣∣∣e(n)j,i,m(k + 1)
∣∣∣2 . (17)

The mixed measurement errors and variance can be calcu-
lated by

ẽ(n)j,m(k + 1) = zm(k + 1)− d (n)m,1(k + 1)

−

2∑
i=1

ηj,i,m(k + 1)1d̂ (n)j,i,m(k + 1) (18)
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and

σ 2
j,m(k + 1) =

1
Np

Np∑
n=1

∣∣∣ẽ(n)j,m(k + 1)
∣∣∣2 , (19)

where the channel model probability coefficient ηj,i,m(k + 1)
is calculated with the following equations,

ηj,i,m(k + 1) =
1

c′j,m(k)
εj,i,m(k + 1)c′j,i,m(k), (20)

c′j,i,m(k) =
2∑

i′=1

ϕi′iηj,i,m(k), (21)

c′j,m(k) =
2∑
i=1

c′j,i,m(k), (22)

where ϕi′i is the element of the assumed transition probabil-
ity matrix 9 and ηj,i,m(k) is the channel model probability.
It is obvious that ηj,2,m(k) is much larger than ηj,1,m(k) if
the channel switches from model LOS to NLOS. Given a
threshold Pr , the channel particles should be reset for the new
estimates of channel parameters according to Fig.3. With the
combination of two channel models, the mixed measurement
errors are computed. Therefore, the particle sampling weights
are obtained by

w(n)
j (k + 1) = w(n)

j (k)
M−1∏
m=1

w(n)
j,m(k + 1), (23)

where

w(n)
j,m(k + 1) =

1√
2πσ 2

j,m(k + 1)
exp

−
∣∣∣ẽ(n)j,m(k + 1)

∣∣∣2
2σ 2

j,m(k + 1)

 .
(24)

The initial weights are set to w(n)
j (0) = 1/Np. The weights

should be normalized as

w̄(n)
j (k + 1) =

w(n)
j (k + 1)∑Np

n=1 w
(n)
j (k + 1)

. (25)

Based on the existing resampling scheme [17], the particles
are updated, the new state estimates and the corresponding
covariance matrix can be computed as

x̂j(k + 1) =
Np∑
n=1

w̄(n)
j (k + 1)x̂(n)j (k + 1), (26)

P̂j(k + 1) = Qj+
Np∑
n=1

w̄(n)
j (k+1)X̂ (n)

j (k+1)
(
X̂ (n)
j (k+1)

)T
,

(27)

where X̂ (n)
j (k + 1) = x̂(n)j (k + 1)− x̂j(k + 1).

FIGURE 3. The improved particle filtering algorithm.

IV. POSTERIOR CRLB
In the mobile target tracking system, the parameter vector
is modeled as a random vector. Therefore, we consider the
posterior CRLB, which is defined as the inverse of the Fisher
information matrix (FIM) for a random vector and is a very
important tool for nonlinear filtering problems [29], [30]. The
posterior CRLB of the estimation error covariance for motion
model j is

E
[(
x̂j(k)− x(k)

) (
x̂j(k)− x(k)

)T ]
≥ J−1j (k). (28)

The FIM J−1j (k) can be recursively calculated by

Jj(k + 1) = D22
j (k)− D21

j (k)
(
Jj(k)+ D11

j (k)
)−1

D12
j (k),

(29)

The difference between the proposed posterior CRLB and
the derivations in the literature [25] is the calculation of
D22
j (k). The literature assumes that the expectation of the

residual measurement errors is zero, while the expectation
in this paper is nonzero due to the influence of the distance
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difference offsets. Therefore, D22
j (k) can be written as

D22
j (k) = E

{
−1

xj(k+1)
xj(k+1)

log p
(
xj(k + 1)|xj(k)

)}
+E

{
−1

xj(k+1)
xj(k+1)

log p
(
zj(k + 1)|xj(k + 1)

)}
= Q−1j + H

T
j (k + 1)R−1j (k + 1)Hj(k + 1)

−H̃T
j (k + 1)R̃−1j (k + 1)Bj(k + 1), (30)

where symbol 4 denotes the second-order derivative opera-
tor. Using the measurement model shown in Equation (18),
the matrix Hj(k + 1) can be expressed by Equation (31), as
shown at the bottom of this page, where

xm+1,1j (k + 1)

=

(
xj(k + 1)− αm

)√(
xj(k + 1)− αm

)2
+
(
yj(k + 1)− βm

)2
−

(
xj(k + 1)− α1

)√(
xj(k + 1)− α1

)2
+
(
yj(k + 1)− β1

)2 (32)

ym,1j (k + 1)

=

(
yj(k + 1)− βm

)√(
xj(k + 1)− αm

)2
+
(
yj(k + 1)− βm

)2
−

(
yj(k + 1)− β1

)√(
xj(k + 1)− α1

)2
+
(
yj(k + 1)− β1

)2 , (33)

and (αm, βm) denotes the position coordinate of the m-th
BS. The measurement covariance matrix Rj(k + 1) can be
expressed by

Rj(k + 1) = diag
[
σ 2
j,2(k + 1), . . . , σ 2

j,M (k + 1)
]

(34)

where σ 2
j,m(k + 1) is calculated by Equation (19). H̃j(k + 1)

is a ((M − 1)(2M + 5))× (2M + 5) matrix, has

H̃j(k + 1) = ∇xj(k+1)Hj(k + 1) (35)

where ∇ denotes the gradient operator. R̃j(k + 1) is a
((M − 1)(2M + 5))× ((M − 1)(2M + 5))matrix, defined as

R̃j(k + 1) = R(k + 1)⊗ I(2M+5)×(2M+5) (36)

where ⊗ denotes the Kronecker product. Bj(k + 1) is a
((M − 1)(2M + 5))× (2M + 5) matrix, defined as

Bj(k + 1) = Ẽj(k + 1)⊗ I(2M+5)×(2M+5) (37)

FIGURE 4. The mobile target trajectory in a BS wireless sensor network,
special case for M = 5.

where Ẽj(k + 1) is calculated according to Equation (18),

Ẽj(k + 1) =
1
Np

 Np∑
n=1

ẽ(n)j,2(k + 1), . . . ,
Np∑
n=1

ẽ(n)j,M (k + 1)

T
(38)

V. SIMULATION RESULTS
In our simulations, the proposed algorithm is assessed accord-
ing to the scenario shown in Fig. 4. We assume that both the
BS locations and the mobile target trajectory are in a region
of size 2×2 km2. The reference BS is placed at the center
of the region (0, 0), and the other M − 1 BSs are randomly
deployed. The time series data collected simultaneously from
different sensors are uploaded to a fusion center for dis-
tance difference values calculation. The sampling interval is
T = 1s, and the total sampling duration is equal to 550s.
We assume that all the BSs are active and able to sense the
information from the mobile transmitter during the whole
sampling period. Three different motion models [25] are used
to describe the trajectory of a mobile target. The trajectory
starts at point P1 with an initial velocity (7m/s, 4m/s) and
an initial acceleration (0, 0). During the first 200 samples,
the mobile target travels at the initial constant speed, and

Hj(k + 1)

=
∂ log

(
p
(
z(k + 1)|xj(k + 1)

))
∂xj(k + 1)

=


x2,1j (k + 1) 0 0 y2,1j (k + 1) 0 0 0 ηj,1,1(k + 1) . . . 0 ηj,2,1(k + 1) . . . 0

...
...
...

...
...
...
...

...
. . .

...
...

. . .
...

xM ,1j (k + 1) 0 0 yM ,1j (k + 1) 0 0 0 0 . . . ηj,1,M−1(k + 1) 0 . . . ηj,2,M−1(k + 1)

(31)
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arrives at the point P2. From the 201th sample to the 260th
sample, the mobile target slows down with a constant accel-
eration,

(
−0.05m/s2,−0.05m/s2

)
, and reaches the point P3.

From the 261th sample to the 360th sample, the target makes
a turn with a constant rate of 0.03rad/s until it arrives at
the point P4. Then, from the 361th sample to the 450th
sample, the target speeds up with a constant acceleration of(
0.05m/s2, 0.05m/s2

)
. After passing through the point P5,

from the 451th sample to the 550th sample, the target keeps
the constant speed and finally arrives at the point P6. With
regard to channel models, Reference [24] change the sight
condition every 250 samples. This paper made an improve-
ment of the channel model. The LOS or NLOS channel model
of each BS is changed independently with the switching rate
λ. The switching time vector of the total sampling duration is
generated by iid uniform random variables, as

τ ∼ 550 · U (1, λ) , (39)

The parameters used in this paper are given as follows. The
standard deviation of LOS and NLOS measurement noise
in Equation (11) are σL,m+1 = 10m and σN ,m+1 = 100m,
respectively, and the positive mean is assumed to be in the
range of [300m, 800m]. The initial state vector is x̂(0) =
0(2M+4)×1. The number of particles is Np = 500. The initial
motion model probability described in Fig.1 is µj(0) = 1/3
and the transition matrix, used to update the probability, is

5 =

 0.70 0.15 0.15
0.15 0.70 0.15
0.15 0.15 0.70

.
The initial channel model probability is ηj,i,m(0) = 1/2 and
the transition matrix used in equation (17) is

9 =

[
0.99 0.01
0.01 0.99

]
.

Since the transition probability of model NLOS is 0.99,
we are able to set the threshold Pr = 0.9 for NLOS condition
identification in Fig.2. The initial particles are drawn from the
following distribution

x(n)j (1, 0), x(n)j (4, 0) ∼ U(−1000m, 1000m),

x(n)j (2, 0), x(n)j (5, 0) ∼ U(−10m/s, 10m/s),

x(n)j (3, 0), x(n)j (6, 0) ∼ U(−1m2/s, 1m2/s),

x(n)j (7, 0) ∼ U(0, 1rad/s),

x(n)j (8 : 6+M , 0) ∼ U(100m, 1000m),

x(n)j (7+M : 2M + 5, 0) ∼ U(100, 1000m).

Fig.5 and Fig.6 show the target positions and distance
difference offsets estimation with the proposed algorithm,
respectively. In this simulation trial, the number of BSs is
5 and the switching rate is 4. The dashed lines represent
the estimation results. It can be seen that the channel states
are totally different from each other but they are accurately

FIGURE 5. The position estimation of a mobile target in a single
simulation trial, special case for M = 5, λ = 4.

FIGURE 6. The estimation of distance difference offsets in a single
simulation trial, special case for M = 5, λ = 4.

recovered. Therefore, with the compensation of distance dif-
ference offsets, the proposed algorithm could provide robust
performance for complicated conditions.

To assess the performance of position estimation and dis-
tance difference offset tracking, the root mean square error
(RMSE) with 50 Monte Carlo simulations is calculated. The
RMSE of position estimation is defined as

Ep(k) =

√√√√ 1
50

50∑
l=1

[(
x̂l(k)− x(k)

)2
+
(
ŷl(k)− y(k)

)2]
,

(40)

where x̂l(k) and ŷl(k) are the position estimate in the l-th trial
at the k-th time sample for the x and y axes, respectively, and
x(k) and y(k) are the actual position of the target. The RMSE
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FIGURE 7. Comparison of position estimation versus different channel
switching rate λ, the number of BSs M = 5.

FIGURE 8. Comparison of distance difference offset estimation versus
different channel switching rate λ, the number of BSs M = 5.

of distance difference offset tracking is defined as

Ed (k) =

√√√√ 1
50

1
M − 1

50∑
l=1

M−1∑
m=1

(
1D̂m,l(k)−1Dm(k)

)2
,

(41)

where1D̂m,l(k) denotes the estimation of distance difference
offset of the m-th path in the l-th trial at the k-th time sample,
and 1Dm(k) denotes the actual LOS/NLOS mixed distance
difference offset.

In the first simulation test, 5 BSs are employed to track
the target.The position and distance difference offset RMSEs
of the proposed algorithm are shown in Fig.7 and Fig.8,
respectively. The errors are compared with different channel
model switching rate. Obviously, with the increase of the
rate, the estimation performance of the proposed algorithm
is degraded. For the condition of λ = 4, the LOS/NLOS
model switching and the CT/CA motion model switching

FIGURE 9. Comparison of position estimation versus different number of
BSs M, the channel switching rate λ = 4.

FIGURE 10. Comparison of distance difference offset estimation versus
different number of BSs M, the channel switching rate λ = 4.

occur simultaneously during the sampling time from 300s to
450s, which makes the estimation errors of both position and
distance difference offset larger than that of the condition of
λ = 2. For the conditions of λ = 6 and λ = 8, the estima-
tion accuracy is reduced significantly because the frequently
switched channel model introduces more measurement noise.

Next, the position and distance difference offset estimation
with different numbers of BSs are shown in Fig.9 and Fig.10,
respectively. It is known that the TDOA-based localization
algorithms require at least 3 BSs to find the position of the
target. However, in the mixed LOS/NLOS environment, more
BSs are required to improve the locating performance. In this
simulation test, we compare the RMSEs with M = 5, 7, 9.
In Fig.9, the algorithm with 9 BSs outperforms the other
algorithms, especially for the time duration from 300s to
450s, because more distance measurements can reduce the
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FIGURE 11. Comparison of position estimation, the channel switching
rate λ = 4, the number of BSs M = 5.

FIGURE 12. Comparison of distance difference offset estimation,
the channel switching rate λ = 4, the number of BSs M = 5.

tracking errors of the target whose motion model is switched
from one to another. However, in Fig.10, the RMSEs of the
distance difference offset are close. Equation (41) demon-
strates that the RMSE is not sensitive to the number of BSs.
Considering both system complexity and locating accuracy,
it is reasonable to use 5 BSs for mobile target tracking. In the
real-world case, the data utilization depends on the received
signal strength. The BSs are selected by comparing the power
spectrum of the received signal with a preset threshold.

The comparison of RMSEs is shown in Fig.11 and Fig.12,
where Algorithm 1 is the proposed method, Algorithm 2 is
the IMMPF proposed in [25] with three motion models and
only LOS channel model, Algorithm 3 is the MKF algo-
rithm proposed in [16] with CV motion model and mixed
LOS/NLOS channel models, Algorithm 4 is a special case
of Algorithm1 with CV and CT motion models and mixed
LOS/NLOS channel models, and Algorithm 5 is also a special
case of Algorithm1 with CV and CA motion models and

mixed LOS/NLOS channel models. The PCRLB of position
estimation for Algorithm 1 is calculated as

PCRLB(k) =
3∑
j=1

[
µj(k)PCRLBj(k)

]
, (42)

where

PCRLBj(k) =
√
J−1j,(1,1)(k)+ J

−1
j,(4,4)(k). (43)

In Fig.11, it can be seen that Algorithm1 outperforms other
compared algorithms, and the RMSE of Algorithm1 is
very close to the PCRLB. Especially, at the 200th second,
about 50% reduction of error relative to the nearest case.
Although three motion models are considered in Algorithm2,
the method can not adaptively compensate the large distance
difference offset without LOS/NLOS channel tracking, while
the performance of Algorithm3 is severely degraded under
the conditions of CA and CT motion models because only
CV motion model is considered in the method. The position
estimation accuracy of two-motion-model methods are much
better than that of CV-only method. It can be noticed that
Algorithm5 has slightly better performance in CA movement
while Algorithm4 has lower estimation errors in CT move-
ment. Fig.12 shows the comparison of distance difference
offset estimation performance. Algorithm2 and Algorithm3
are not considered in this comparison, because the different
offsets are not estimated for the two algorithms. Compared
with two-motion-model schemes, Algorithm1 can provide
more accurate estimates of the distance difference offset.
Therefore, the target tracking performance is improved when
both the motion and channel model are accurately estimated.
The average improvement over the whole time is larger
than 40%.

Finally, the computational complexity is assessed in terms
of average computation time and is shown in Table I. In the
simulation, the total observation time is 550 seconds. The
computation time of the proposed Algorithm1 is higher than
the other algorithms, but it is still acceptable for real-time
tracking. Besides, the proposed algorithm has the highest
positioning accuracy, because it considers both multiple
motion and channel models that could perfectly describe the
trajectory of the mobile target.

TABLE 1. Average computation time of each algorithm for the entire
trajectory.

VI. CONCLUSION
Amobile localization scheme based on TDOAmeasurements
in mixed LOS/NLOS environments has been proposed in
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this paper. The existing three-motion-model schemes with
only LOS channel model are not suited for frequently
switched LOS and NLOS channel, while the tracking perfor-
mance of NLOS mitigation schemes with only CV motion
model is severely degraded under the conditions of CA and
CT motion models. To overcome the problems, we have
presented an improved IMMPF algorithm. Considering three
motion and two channel models, the proposed algorithm can
jointly estimate the target position and channel parameters.
The performance of the proposed algorithm has been con-
firmed by the simulation results. The results show that the
proposed algorithm is close to the derived PCRLB bound and
outperforms other algorithms.
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