
Received January 4, 2019, accepted January 27, 2019, date of publication February 7, 2019, date of current version March 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2898154

A Biomedical Sensor System With Stochastic
A/D Conversion and Error Correction by
Machine Learning
YUSAKU HIRAI 1, TOSHIMASA MATSUOKA 2, (Senior Member, IEEE),
SADAHIRO TANI2, (Member, IEEE), SHODAI ISAMI2, KEIJI TATSUMI 2, (Member, IEEE),
MASAYUKI UEDA1, AND TAKATSUGU KAMATA1, (Member, IEEE)
1SPChange, LLC., Yokohama 224-0032, Japan
2Graduate School of Engineering, Osaka University, Suita 565-0871, Japan

Corresponding author: Yusaku Hirai (yhirai@sp-change.com)

This work was supported in part by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP) of
the Japan Science and Technology Agency (JST), and in part by the Funding Program for Strategic Support Industry through the Ministry
of Economy, Trade and Industry.

ABSTRACT This paper presents a high-precision biomedical sensor system with a novel analog-front-
end (AFE) IC and error correction by machine learning. The AFE IC embeds an analog-to-digital con-
verter (ADC) architecture called successive stochastic approximation ADC. The proposed ADC integrates a
stochastic flash ADC (SF-ADC) into a successive approximation register ADC (SAR-ADC) to enhance its
resolution. The SF-ADC is also used as a digitally controlled variable threshold comparator to provide error
correction of the SAR-ADC. The proposed system also calibrates the ADC error using the machine learning
algorithm on an external PC without additional power dissipation at a sensor node. Due to the flexibility
of the system, the design complexity of an AFE IC can be relaxed by using these techniques. The target
resolution is 18 bits, and the target bandwidth (without digital low-pass filter) is about 5 kHz to deal with
several types of biopotential signals. The design is fabricated in a 130-nm CMOS process and operates at
1.2-V supply. The fabricated ADC achieves the SNDR of 88 dB at a sampling frequency of 250 kHz by using
the proposed calibration techniques. Due to the high-resolution ADC, the input-referred noise is 2.52 µVrms
with a gain of 28.5 dB.

INDEX TERMS Biomedical sensor, ECG, error correction, machine learning, SAR-ADC, stochastic A/D
conversion.

I. INTRODUCTION
Recently, spendings on health is becoming a big problem
in many countries. Leading causes of these spendings are
cardiovascular diseases [1]. In order to reduce these costs,
it is important to detect diseases in early stage by continu-
ous monitoring of biopotential signals such as electrocardio-
grams (ECGs). Therefore, the demands for low-cost wearable
biomedical sensors are rapidly expanding. These kinds of
sensors are driven by batteries and required to operate for
a long time. In addition, a high resolution is also required
because the level of a biopotentinal signal is up to few mV.

A typical block diagram for an wearable ECG mon-
itoring system is shown in Fig. 1. It consists of an
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analog-front-end (AFE) IC, micro processing unit (MPU),
and wireless transceiver. A low-power and high-resolution
AFE is required for this application. However, it is not easy to
realize such an AFE because resolution and power dissipation
are in trade-off. This trade-off leads to increasing design
complexity and cost. Especially, power consumption must be
kept as low as possible because it directly affects the battery
lifetime and size [2].

In addition, different applications have different
bandwidth, resolution, number of channels and power
requirements. In order to monitor various biopotential sig-
nals, a flexible and reconfigurable AFE design platform
is required. Although the previous study [3] can realize
low-cost reconfigurable systems, the design complexity is
usually increased by controlling analog circuits. On the other
hand, a high-resolution ADC with digital-centric circuits is
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FIGURE 1. Typical configuration of an wearable ECG monitoring system.

preferable to a reconfigurable system than an AFE with a
high-gain amplifier and low-resolution ADC architecture.

The successive-approximation-register ADC (SAR-ADC)
is a good selection for low-voltage and low-power biomedical
sensor interface circuits [4]–[6]. Since the frequency range
of biomedical signals is the DC to a few kHz [7], the SAR-
ADC can realize low power operations in exchange for low
speed operations. However, the resolution of the SAR-ADC
is limited by the insufficient accuracy of the internal digital-
to-analog converter (DAC). 1-6 ADCs [8], [9] are often
used for high resolution applications. However, they are not
easy to use in fast and multi-channel applications [10], [11].
Therefore, in order to achieve a high-resolution SAR-ADC,
a digital error correction technique is important.

To break through the above issues, the novel ADC called
successive-stochastic-approximation ADC (SSA-ADC) has
been proposed [11], [12]. This architecture is based on the
basic SAR-ADC and utilizes a stochastic flash ADC (SF-
ADC) [13] to detect a small signal under noise level.
A similar architecture called stochastic approximation
register (StAR) ADC was also proposed [14]. However,
the StAR ADC enhances its resolution by increasing the
input range of the SF-ADC with a SAR architecture and
noise sources. Therefore, it is not suitable for low volt-
age operation with smaller input range. On the other hand,
the SSA-ADC uses SF-ADC to enhance its resolution under
noise level. It also uses the SF-ADC as a digitally controlled
variable threshold comparator (DCVTC) to cancel the DAC
error of a SAR-ADC. The SSA-ADC is one of the good
digital-centric selections for a flexible architecture, because
trade-offs between power and resolution can be adjusted
by the number of comparators. In this paper, the system-
level implementation of the biomedical sensor system (espe-
cially ECG sensor) using the SSA-ADC is described,
which is based on previous AFE IC implementation [12].
In addition, off-chip calibration based on machine learning
algorithm is also described briefly based on the previous
work [11].

This paper is organized as follows. In Section II, the system
architecture is presented. In Section III, the detail of the
proposed AFE and its implementation are described. The
DAC error correction technique by the DCVTC is introduced
in Section IV. The error correction by machine learning

algorithm is presented in Section V. The experimental results
are introduced in Section VI. Conclusions are given in
Section VII.

II. SYSTEM ARCHITECTURE
The system architecture of the proposed biomedical sensor
system is shown in Fig. 2. For prototyping, a wireless link
is not included in this system. The proposed system consists
of an AFE IC and digital processing on an external PC. In
this paper, the proposed AFE IC is implemented in 130-
nm CMOS process. It consists of a low noise amplifier
(LNA), a low pass filter (LPF), the proposed SSA-ADC,
and other peripheral circuits such as a clock generator (Xtal
Oscillator, XO), bias circuit and SPI interface (SPI I/F). The
LNA reduces flicker noise by chopper modulation. The fre-
quency of the chopping clock can be chosen from 31.25 kHz
and 62.5 kHz. The gain is also selectable as 16.0 dB or
28.5 dB. The gain is lower than other AFEs [1] by using a
high-resolution ADC. This leads to the lower supply voltage
of 1.0 V for the LNA.

FIGURE 2. Architecture of the proposed biomedical sensor system.

The proposed SSA-ADC determines upper bits by
SAR-ADC operations (SAR-ADC mode). The lower bits are
determined by SF-ADC operations (SF-ADC mode). Due
to the resolution enhancement by the SF-ADC, the com-
parators (described later in Sec. III) can operate with 0.5 V
supply. In order to cancel the DAC error, a DCVTC real-
ized by the SF-ADC is used in the SAR-ADC mode. The
sampling frequency can be chosen from 62.5 kHz, 125 kHz
and 250 kHz. For high-resolution applications, the sampling
frequency of 250 kHz can be used to reduce noise by over-
sampling. For low-power applications, sampling frequency
of 62.5 kHz can be used to reduce dynamic power dissi-
pations. The raw ADC results are 24-bit combined data of
SAR-ADC and SF-ADC modes. In this study, in order to
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transmit the 24-bit and 250 kHz outputs, the AFE IC and the
external PC are connected with a wired (SPI) interface, which
is simplified from the typical case shown in Fig. 1

In the proposed system, an error correction and post fil-
tering are carried out on the external PC in order to enhance
the resolution without any additional power dissipation on the
sensor side. The error correction is based onmachine learning
algorithm, and parameters are obtained by foreground tests.
18-bit output is obtained from the 24-bit output by applying
an error correction function. In addition, the DCVTC opti-
mization is also carried out on the PC through controlling the
AFE IC. These parameters are fed back to the AFE IC through
the SPI interface.

III. AFE IC AND IMPLEMENTATION
A. STOCHASTIC FLASH ADC
The SF-ADC is a novel ADC architecture which utilizes
a stochastic resonance [13], [15]. Stochastic resonance is a
phenomenon that a weak periodic signal is emphasized by
optimum level of noise [16]. A single comparator can only
detect periodic and optimum level signal, but aperiodic signal
can also be detected by configuring a summing network of
comparators [17].

The block diagram of the SF-ADC is shown in Fig. 3.
The SF-ADC consists of an array of N comparators, which
are connected in parallel, and a ones adder. The ones adder
outputs a summation of comparator outputs. The ones adder
output is a binary code which corresponds to the number of
comparators outputting ‘high’ [13], [18]. The SF-ADC uses
random input-referred offset voltages Vos,i(i = 1, 2, · · · ,N )
and noise Vn,i of each comparator as thresholds. Note that the
input-referred offsets can be treated as DC noises. According
to the central limiting theorem, it can be assumed that theVos,i
and Vn,i follow a Gaussian distribution when the number of
comparators N is large enough [18]. The standard deviation
of the offset and noise σtot can be estimated as follows [11]:

σtot =

√
σ 2
off + σ

2
n , (1)

where σoff and σn are the standard deviations of Voff ,i and
Vn,i, respectively. Therefore, the probability that the output of

FIGURE 3. Stochastic flash ADC (SF-ADC).

a comparator is high P(Vin) follows a cumulative distribution
function of the Gaussian distribution, and can be written as
follows [15]:

P(Vin) =
1
2
+

1
2
erf
(

Vin
√
2 σtot

)
≈
nH
N
, (2)

where erf(x) = (2/
√
π )
∫ x
0 exp(−u2)du is the error function,

Vin is an input voltage. Here, it is assumed that the means of
Vos,i and Vn,i are zero. In addition, nH is the number of com-
parators which output high. Note that the nH is the ones adder
output of the SF-ADC. Figure 4 shows the I/O characteristic
of an SF-ADC. The output code nH monotonically increases
depending on the input level.

FIGURE 4. I/O characteristics of the SF-ADC and the principle of the
DCVTC.

According to the I/O characteristic of an SF-ADC,
a DCVTC can be realized by using a digital compara-
tor as shown in Fig. 5. The digital comparator compares
the SF-ADC output nH with a digital threshold Dth and
quantizes it to one-bit code. This can also be described
in Fig. 4. According to Eq. (2), the effective threshold volt-
age Vth,eff (Dth) can be expressed by using the inverse error
function erf−1 as follows [19]:

Vth,eff (Dth) ≈
√
2σtoterf−1

{
2
(
Dth
N
−

1
2

)}
. (3)

In the present study, the DCVTC carries out the DAC
error correction. In the previous study, the error correction
for an internal DAC of a multi-bit 1-6 ADC was also
proposed [19].

FIGURE 5. DCVTC with an SF-ADC and digital comparator in the SAR-ADC
mode.
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FIGURE 6. (a) Block diagram and (b) bit configuration of the proposed SSA-ADC.

B. SSA-ADC
The detailed block diagram of the SSA-ADC is shown
in Fig. 6. The SSA-ADC consists of an SF-ADC, digital com-
parator, dynamic threshold calculator and register table as
well as conventional SAR-ADC building blocks (a capacitor
DAC and SAR logic). In the SAR-ADC mode, a DCVTC is
used, which consists of the SF-ADC and the digital compara-
tor. The dynamic threshold calculator dynamically generates
a digital threshold Dth in order to cancel the DAC error. The
Dth is generated from the data stored in the register table. In
the SF-ADC mode, the error remaining after the SAR-ADC
mode is quantized. The shared noises generated by a DAC
and a buffer (described later and shown in Fig. 7.) cannot be
reduced enough by taking an ensemble mean [20]. Therefore,
the SF-ADC output is sampled by Ns times and averaged in
order to enhance resolution. Finally, The averaged SF-ADC
output becomes the lower bit output DL .

FIGURE 7. Capacitor DAC in the SSA-ADC (NU = 12).

Outputs from the SAR-ADC mode (MSB side) and
SF-ADC mode (LSB side) have NU bits and NL bits, and are
denoted as DU and DL , respectively. The total output Dout
is generated by an off-chip error correction function. The
parameters for this error correction are obtained by super-
vised machine learning described later.

The number of conversion steps for one sampling point
is at least NU + Ns + 1. In this design, one sampling
period is divided into 32 steps. 13 and 4 steps are used for

the SAR-ADC and SF-ADC modes, respectively. Sampling
phase uses time duration corresponding to 15 steps. The
total number of comparators is determined by the offset and
noise distribution and desired resolution. In the present study,
the total number of comparators N = 511, and oversampling
ratio Ns = 8 (using both clock edge for the above 4 steps),
to achieve the target resolution of 18 bits under limited speed
and area occupation. This is smaller than the previous studies
of the SF-ADC [13]. As a result,NL = log2((N+1)Ns) = 12.
In addition, NU = 12, NL2 = 6, and Nout = 18. Upper
NL1 = 4-bits are overlapped with DU in order to cancel
the error of the SAR-ADC mode. The NL1 is determined
by the upper bit LSB (DU ,0 in Fig. 6(b)) and the estimated
σtot . In the previous study, non-linearity of the SF-ADC is
canceled by re-quantization [21]. In this study, NL3 = 2
bits are assigned in DL as a fractional part for this purpose.
For high resolution, simple summation of the DU and DL is
not so sufficient. As detailed in Sec. V, encoding and error
correction are important.

C. CAPACITOR DAC
The capacitor DAC used in the SSA-ADC is shown in Fig. 7.
It consists of MIM capacitor array and MOS switches. Due
to a number of comparator array, the SF-ADC has a large
input capacitance. In order to drive this capacitance, a buffer
is implemented in the capacitor DAC. This buffer consists
of a class AB amplifier to satisfy settling requirement under
low power consumption. The supply voltage of the buffer is
1.0 V and output swing is ≈0.25 V. The sample and hold
function is embedded in the capacitor DAC. In the sampling
period, the switches connect the capacitors to input terminals
(VIN ,P,VIN ,N ). In the conversion period, the capacitors are
connected to VREF,P (Di = 1) or VREF,N (Di = 0), according
to the DAC input Di (i = 0, · · · , 11). Note that the VREF,P,
VREF,N and VCM are generated by a band gap reference,
regulators, and a resistive divider. They are buffered to drive
the capacitor DAC. In this design, split capacitors CC,p(n)
is used in order to reduce the area occupation. These split
capacitors have unit capacitance of CU , and cause some
errors [22].
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The mismatch of CU causes non-linearity error, therefore
the capacitor size must be large enough in conventional
designs. In this design, the capacitor mismatch is assumed
to be 0.3 %. In the proposed AFE, the unit capacitors CU
can be minimized unless the kT/C noise does not limit the
target resolution of 18 bit. In this design, the CU = 1.2 pF to
reduce kT/C noise to 7.34µV. Considering the oversampling
ratio of 25 (maximum sampling frequency of 250 kHz and
bandwidth of 5 kHz), the kT/C noise is reduced to less than
18-bit LSB= 1.47µV.Note that the switch size is determined
to satisfy the settling requirement.

D. COMPARATOR
A comparator is the key building block of the SF-ADC. In this
design, a dynamic latched comparator is used in order to
reduce the power dissipation. The dynamic comparator is
attractive for low power applications, because of no static
power consumption [23]. The schematic diagram of the com-
parator is shown in Fig. 8.

FIGURE 8. (a) Dynamic latched comparator used in the SF-ADC,
(b) dynamic latch in the last stage of the comparator, and (c) MOS
capacitors for offset calibration CV ,P(N).

In the SF-ADC, a number of comparators are connected
in parallel, therefore kick-back noise and clock feedthrough
become a serious problem. The kick-back noise is caused by
the coupling of the voltage swing of the regenerative node,
and clock feedthrough is caused by feeding through the clock
signal to the input terminal. In the present study, a static
pre-amplifier with small gain is used as a buffer in order to
reduce kick-back noise and clock feedthrough. The NMOS
load resistance in the pre-amplifier is useful for this purpose.
The supply voltage of the comparator VDDL ≈ 0.5 V, and bias
voltage VB1 ≈ 1.0 V. The NMOS load in the pre-amplifier
operates in linear region.

The input range and resolution of the SF-ADC is deter-
mined by σtot . In this design, the offset voltage can be
adjusted by digital control of the capacitances: CV ,P and
CV ,N [24]. According to Monte Carlo simulations, the σoff
is estimated to be 3 mV after the offset calibration by
CV ,P(N ). The σoff of 3 mV can ensure 12-bit resolution of the
SAR-ADC mode output (≈ 120 µV) by using the DCVTC.
The estimated comparator input-referred noise σn = 875 µV.
This is usually too large for 18-bit resolution, but the SF-ADC
realizes a detection of signals under the noise in the proposed
system. The power consumption of each comparator is esti-
mated at ≈ 1.4 µW under a sampling frequency of 250 kHz
and a 0.5 V supply.

E. CHOPPER-STABILIZED LNA AND LPF
In the proposed AFE, a chopper-stabilized LNA [25] shown
in Fig. 9 is used as an input amplifier in order to ensure
flicker noise reduction regardless of device characteristics,
although some papers do not use this technique [26], [27].
The gain can be selected from 16.0 or 28.5 dB by switching
the feedback resistance RF . Dummy switches are used in
the CMOS switches in order to reduce the charge injection.
In addition, low-swing (≈ 0.5 V) clock is used as chopping
clock in order to reduce clock feedthrough.

FIGURE 9. Chopper-stabilized LNA with low-swing (0.5 V) chopping clock
and LPF in the AFE.

The LNA output is filtered by a passive RC-type LPF. This
LPF is used as an anti-aliasing filter and attenuates out-of-
band noise including flicker noises modulated by the LNA.
The cut-off frequency is ≈ 5 kHz in order to address various
kinds of biopotential signals. The total resolution at the input
of the AFE is ≈ 2 µV with a gain of 28.5 dB because of
the high-resolution SSA-ADC. The power consumption is
estimated to be 200 µW with a supply of 1.0 V.

IV. DAC ERROR CORRECTION BY DCVTC
The positive-side (negative-side) capacitors Ci,p(n) are
weighted by powers of two. However, these capacitors
include errors originated from mismatches expressed as
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follows [4], [11]:

Ci,p(n) =


2iCU

(
1+ εi + sp(n)

1εi

2

)
, i ≤ 5

2i−6CU

(
1+ εi + sp(n)

1εi

2

)
, i > 5,

(4)

where sp = 1, sn = −1, CU is a unit capacitance, εi is
the relative deviation from (Ci,p + Ci,n)/2, and 1εi is the
relative difference between positive-side capacitanceCi,p and
negative-side capacitance Ci,n. The split capacitor CC,p(n)
is used in order to scale Ci,p(n) and reduce the capacitance
area. This split capacitor causes some errors because the
CC,p(n) has a capacitance of CU instead of fractional value
of CU [22]. In addition, parasitic capacitances Cp1,p(n) and
Cp2,p(n) such as wiring capacitances lead to the DAC errors.
Because of these mismatches, split capacitors, and para-
sitic capacitances, the actual DAC output VDAC is differ-
ent from the ideal DAC output VDAC,ideal . Considering the
non-linearity of capacitances (voltage coefficient of MIM
capacitors, the buffer input capacitance, and the parasitic
capacitance of MOS switches connected to VCM as shown
in Fig. 7), the DAC error 1VDAC = VDAC − VDAC,ideal
depends on capacitance selection by the digital input Din =
(DNU−1, · · · ,D1,D0)2 [11].
According to the DAC error modeling by the previous

study [11], the DAC error can be divided into the errors which
are independent from capacitance selections, and the errors
which depend on capacitance selections. As a result, the DAC
error for the digital input Din can be simplified as follows:

1VDAC (Din) = Eoff +
NU−1∑
i=0

Ei(Di), (5)

where Eoff is the error which does not depend on the input
code Di. and Ei(Di)(i = 0, · · · ,NU − 1) is the error which
only depends on the input code Di. The DAC error can
be canceled when Vth,eff (Dth) = 1VDAC (Din). Therefore,
the optimal values of the digital threshold Dth,opt is the func-
tion of the DAC inputDin. The number ofDth,opt for all cases
of Di (i = 1, · · ·NU − 1) is 2NU−1. In this design, NU = 12
and the number of Dth,opt is 2,048. It is not practical consid-
ering the area occupation for registers storing these Dth,opt .
Therefore, the proposed SSA-ADC dynamically generates
the Dth,opt according to Din. As shown in Fig. 6, this function
is implemented as the dynamic threshold calculator.

In order to generate Dth,opt efficiently, the configuration
data Dth,std and Dth,j(j = 0, · · · ,NU − 1) are used. Dth,std
is the standard value of digital threshold for all zero input
(Di = 0 (i = 0, · · · ,NU − 1)). Its effective threshold
Vth,eff (Dth,std ) equals to the DAC error of all zero input. Thus,
Vth,eff (Dth,std ) can be expressed as follows:

Vth,eff (Dth,std ) = Eoff +
NU−1∑
i=0

Ei(0). (6)

TheDth,j is the difference of digital thresholds from theDth,std
for the input with Di = δij (i = 0, · · · , j, · · · ,NU − 1). Note

that the δij is the Kronecker’s delta and can be expressed as
follows:

δij =

{
1 (i = j)
0 (i 6= j).

(7)

Therefore, the effective threshold Vth,eff (Dth,std + Dth,j) can
be expressed as follows:

Vth,eff (Dth,std + Dth,j) = Eoff +
NU−1∑
i=0

Ei(0)+ Ej(1)− Ej(0).

(8)

In the proposed system, the Dth,opt is generated by using
Dth,std and Dth,j as follows. First, Dth is set to Dth,std . Then,
when Dj = 1, Dth,j is added to Dth. Otherwise, nothing is
done. As a result, the Dth,opt for the DAC input Din can be
expressed as follows:

Dth,opt (Din) = Dth,std +
NU−1∑
j=0

DjDth,j. (9)

From Eqs. (8)-(9), the effective threshold Vth,eff (Dth,opt (Din))
becomes approximately equal to the DAC error1VDAC (Din).
By using this technique, the proposed DAC error correction
for all patterns (2NU−1) of DAC input codes can be carried
out with one standard value Dth,std and NU differences Dth,j.
In this design, NU = 12 and Dth,opt can be generated from
only 13 data. These data are written in the register table. In the
SAR-ADC mode, these configuration data are read from the
register table and the Dth,opt is calculated by the dynamic
threshold calculator.

The configuration data Dth,std and Dth,j are obtained by
sinusoidal test signal inputs so as to maximize the SNDR
performance. First Dth,std is swept around (N + 1)/2 = 256,
and the value which provides the maximum SNDR is stored.
Next, Dth,NU−1 is swept around 0 based on the same criteria.
Then, the same operations are carried out down to Dth,0.

V. ENCODING AND ERROR CORRECTION BY BAYESIAN
LINEAR REGRESSION
A. RE-QUANTIZATION FOR 18-BIT OUTPUTS
In the SF-ADC mode, lower-bit output DL corresponds to
the probability of the residual error in the SAR-ADC mode.
However, the full scale range of the SF-ADC mode does not
correspond to the LSB of the SAR-ADC mode as shown
in Fig. 10. This is because the SF-ADC uses the comparator
offsets including input-referred noise as reference voltages,
and the full scale range is determined by these random refer-
ences. This means that the full scale range of the SF-ADC
is independent from the SAR-ADC reference. Therefore,
in order to generate total ADC output Dout , DL must be
encoded as the code having the same scale of the DU . This
function can be realized by re-quantization of the output
DL . The parameters for this encoding should be determined
after the chip is fabricated. This function is implemented in
software level on an external PC, therefore additional power
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FIGURE 10. Re-quantization of the SF-ADC mode outputs.

and area are not required at sensor nodes. In the previous
study, the encoding with re-quantization improved the SNDR
characteristics of the SF-ADC [21]. Similarity to the previ-
ous study, the encoding in the SSA-ADC can also improve
the SNDR performance and resolution. As described in the
previous section, lower NL bits are prepared for this function.
Note that the DAC error can be corrected by the DCVTC

in the SAR-ADC mode. The main target of the error cor-
rection by the DCVTC is the error caused by capacitance
mismatches. In the present study, the encoding with error
correction is used for generating 18-bit ADC output Dout
and minimizing the error which remains even after the DAC
error correction described in section IV. In order to carry out
this encoding and error correction, parameters are required
and must be determined. In the present study, supervised
machine learning using Bayesian linear regression [28], [29]
was introduced in order to obtain these parameters.

B. DEFINITION OF ERROR MINIMIZATION PROBLEM
In the present study, the test analog voltage Vin,ideal is applied
to the ADC input and training data set is obtained. The
training data set D includes the MSB-side outputs DU and
the LSB-side output DL from SSA-ADC. D also includes
the ideal output codes corresponding to the each test inputs,
Dout,ideal . Therefore, D(k)

= (D(k)
out,ideal,D

(k)
U ,D

(k)
L ), where k

is the index of the training data set. TheD(k) has the following
bit configurations.

D(k)
U = (D(k)

U ,NU−1
, . . . ,D(k)

U ,0),

D(k)
L = (D(k)

L,NL−1
, . . . ,D(k)

L,0), (10)

D(k)
out,ideal = (D(k)

out,ideal,Nout−1
, . . . ,D(k)

out,ideal,0).

Here, an error correction function hw(D
(k)
U ,D

(k)
L ) is intro-

duced. This correction function predicts the ideal output code
D(k)
out,ideal by using the measured upper and lower outputs

D(k)
U and D(k)

L . In this work, hw(D
(k)
U ,D

(k)
L ) is defined as

follows [11]:

hw(D
(k)
U ,D

(k)
L ) =

NU−1∑
i=0

2i+NL2D(k)
U ,i

+

NU−1∑
i=0

2i+NL2eiD
(k)
U ,i

+

NU−1∑
i=0

2i+NL2D(k)
U ,i

NU−1∑
j=i+1

fi,jD
(k)
U ,j

+

2NL1+NL2−1∑
i=1

hip
(k)
i

+

NL3−1∑
i=0

2i−NL3D(k)
L,i (gi + 1)

+ δ, (11)

where D(k)
U ,i is the i-th digit of D(k)

U in binary code, and p(k)i is
the i-th bit of a (2NL−NL3 − 1)-bit thermometer code, which
corresponds to theD(k)

L . The parameters of the hw(D
(k)
U ,D

(k)
L ),

e, f , h, g, and δ:

e = (e0, . . . , eNU−1)
T, (12)

f =
(
f0,1, . . . , f0,NU−1, f1,2, . . . , f1,NU−1,

. . . , fNU−3,NU−2, . . . , fNU−2,NU−1
)T
, (13)

h = (h1, . . . , h2NL1+NL2−1)
T, (14)

g = (g0, . . . , gNL3−1)
T, (15)

are determined by machine learning algorithm. The super-
script T indicates transpose, and in addition, a vector is
defined as follows:

w = (eT, f T,hT, gT, δ)T. (16)

The second and third terms on the right-hand side of Eq. (11)
are corrections for the error of binary weighted value and
the error depending on switch selections, respectively. These
errors are caused by the capacitor mismatches. The fourth
term is for encoding and error correction for the SF-ADC
mode output. The fifth term is also the correction for the
SF-ADC mode, but for the NL3 bits of the fractional part.
By determining the set of parameters w, a corrected ADC

output Dout = (Dout,Nout−1, . . . ,Dout,0) can be calculated
fromDU andDL by usingDout,D = hw(DU ,DL). TheDout,D
is the decimal expression of the corrected output as follows:

Dout,D =
Nout−1∑
i=0

2iDout,i. (17)

The error of the corrected output Ew(D(k)), is defined as the
difference from the ideal code as follows:

Ew(D(k)) =
∣∣∣hw(D(k)

U ,D
(k)
L )− D(k)

out,ideal,D

∣∣∣ , (18)

D(k)
out,ideal,D =

Nout−1∑
i=0

2iD(k)
out,ideal,i, (19)

and the optimal set of w minimizes the Ew(D(k)). Therefore,
the targeted error minimization problem can be expressed as
follows:

min
w

∑
k∈T

Ew(D(k))2 + cr1||e||22 + cr1||f ||
2
2

+ cr2||g||22 + cr3||h||
2
2, (20)
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where || · ||2 is the Euclidean norm, cr1, cr2, and cr3 are
regularization constants [29], [30]. Their related terms are
used in order to prevent ei, fi,j, gi, and hi from becoming
extremely large values.

In the proposed system, the above minimization problem
is solved by machine learning algorithm (Bayesian linear
regression), as described in the next subsection.

C. BAYESIAN LINEAR REGRESSION
Now, we define the vector φ(DU ,DL) of basis functions as
follows:

φ(DU ,DL) = (2NL2DU ,0, . . . , 2Nout−1DU ,NU−1,

2NL2DU ,0DU ,1, . . . , 2NL2DU ,0DU ,NU−1,

2NL2+1DU ,1DU ,2, . . . , 2Nout−1DU ,NU−2DU ,NU−1,

p, 2NL3−1DL,NL3−1, . . . , 2
0DL,0, 1)T, (21)

where p is a (2NL−NL3 − 1)-bit thermometer code. The error
correction function hw can be rewritten as,

hw(DU ,DL) = wTφ(DU ,DL). (22)

The error minimization problem expressed by Eq. (20)
can be solved analytically. However, the training data set
includes errors due to the thermal noise, external disturbance
and insufficient accuracy of an external test input source.
Under this constraint, the linear regression using the Bayes
estimation (Bayesian linear regression) is suitable for obtain-
ing the optimal value of w [11], [29]. The Bayes estimation
is a method of estimating the posterior distribution under the
prior distribution of the parameters of a model from obtained
data set [29].

First, we assume that the training data follows a normal
distribution N

(
Dout,ideal,D| hw(DU ,DL), β−1out

)
, where βout

is the constant which is related to the variance of the corrected
data. In addition, the prior distribution of w follows a normal
distribution N (w| 0,6c), where

6−1c = diag {cr1, . . . , cr1, cr3, . . . , cr3, cr2, . . . , cr2, 0}

(23)

Note, it is assumed that δ follows a uniform distribution.
The posterior distribution after obtaining the training data

set DT can be expressed as p(w|DT ). Here, by maximizing
p(w|DT ) for w, we can obtain [29],

p(w| DT ) = N (w| µT ,ST ), (24)

µT = βout ST8
T
T dT , (25)

S−1T = 6
−1
c + βout 8

T
T 8T , (26)

where 8T is a matrix of which rows consist of
φ(D(k)

U ,D
(k)
L )T, k ∈ T . dT is a column vector of which

elements are D(k)
out,ideal,D − D(k)

U ,D, k ∈ T . µT is the optimal
value of w obtained by DT .

Bayesian linear regression is suitable for incremental learn-
ing which can realize effective learning with a limited number
of training data [11]. An incremental learning with the Bayes

estimation was proposed [29]. The parameter set wl for l-th
training, can be renewed by STl , where Tl is the index set of
l-th training data set [11].

VI. EXPERIMENTAL RESULTS
The proposed AFE IC was fabricated in 130-nm CMOS
process. The total chip area of the AFE IC is 2×2 mm2,
and it was packaged in a 24-pin QFN. Figure 11 shows
the die micrograph and physical layout with the annotated
blocks. The chip is the same as the previous study [12], but
bias conditions are changed in this paper. In the following
measurement results, the performances are evaluated on an
evaluation board.

FIGURE 11. (a) Chip micrograph and (b) layout image of the prototype
AFE IC.

Power dissipation of each block is shown in Fig. 12. The
power consumption is 5.48 mW in total. The supply voltages
of the analog circuits (e.g., LNA, comparators) are provided
by a regulator from 1.2 V supply. In the following measure-
ment results, the supply of comparators VDDL = 0.53 V
is provided by the regulator. The chopping clock swing is
also 0.53 V. The VB1 in Fig. 8 is 1.0 V. The measured ref-
erence voltages of the capacitor DAC (VREF,P and VREF,N
in Fig. 7) are 0.40 V and 0.14 V, respectively. Note that the
power dissipation of the digital blocks in the SSA-ADC (ones
adder, SAR logic and so on) is included in the power of
logic circuits. The power consumption of the LNA is kept
low by using the high-resolution SSA-ADC. In this design,
the noise of the capacitor DAC is not dominant, therefore,
the power consumption of the LNA and the reference buffers

FIGURE 12. Power dissipation of each block (total 5.48 mW).
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can be reduced by reducing the unit capacitanceCU . Note that
increasing mismatches can be canceled by the proposed error
correction techniques. The power of the buffer in Fig. 7 and
the 511 comparator array (both are included in the power of
the ADC) are 1.83mWand 1.77mW, respectively. The power
of the buffer is large in order to drive the input capacitances
of the comparators. This power consumption can be reduced
by using a fine process to reduce these input capacitances.

Figure 13 shows the DNL and INL of 12-bit DU output
before the proposed DCVTC optimization. The DNL and
INL are measured by a 219 points histogram test with a
20.5 Hz full scale sinusoidal input. The peak DNL and INL
are −0.82/+0.82 LSB and −1.32/+0.82 LSB, respectively.
Figure 14 shows the DNL and INL after the DCVTC opti-
mization and both DNL and INL are −0.54/+0.76 LSB and
−0.77/+0.94 LSB of 12-bit DU .

FIGURE 13. (a) DNL errors and (b) INL errors of the upper 12-bit output
DU before the DCVTC configuration is optimized (219 samples).

FIGURE 14. (a) DNL errors and (b) INL errors of the upper 12-bit output
DU after the DCVTC configuration is optimized (219 samples).

Figure 15 shows the error of 18-bit output DOUT without
and with the machine learning. The errors are difference
between actual ADC output codes and ideal (expected) output
codes. The output code of the result without machine learning
is generated by simply combining the upper and lower bits
as shown in Fig. 6(b). The training data set is obtained by a
sinusoidal input from a high precision audio analyzer (Audio
Precision SYS-2722). As shown in Fig. 15(a), the standard
deviation of code errors is 45.0 LSB without machine learn-
ing. The standard deviation of code errors with machine
learning is reduced to 26.7 LSB as shown in Fig. 15(b). Note
that 200 training data sets are used for the initial learning and
the number of incremental learning is 5. The number of data at
each incremental learning is 100. As a result, the total number
of data sets is 700. This is only 0.27% of all 218 patterns of
data. The proposed technique can reduce the errors with less
than 1 % of all patterns of data. The residual errors are caused
by shared noise which is different in each training situation,

FIGURE 15. 18-bit ADC code error histogram with and without machine
learning (without LPF, 219 samples).

therefore cannot be canceled enough. However these noises
can be filtered by a digital LPF to some extent.

Figure 16 shows the measured spectrum of the 18-bit
ADC output after the DCVTC optimization and the machine
learning for a full scale sinusoidal input. The input frequency
Fin is 20.5 Hz and sampling frequency Fsamp is 250 kHz and
the number of FFT points are 219. The ADC outputs were
filtered by a 6-th order digital LPF with a cut-off frequency
of 70 Hz, which was also implemented in software level. The
cut-off frequency is typical bandwidth for ECG monitoring
systems. As shown in Fig. 16, the total SNDR is 88.2 dB,
therefore the effective number of bits (ENOB) is 14.4 bits.
Without the digital LPF, ENOB is 10.6 bits. The total har-
monic distortion (THD) and SFDR are−93.7 dB and 94.4 dB,
respectively. The ENOB is slightly improved comparing with
the previous study [12], even though the full-scale range is
reduced. This is because the characteristics of the buffer
in Fig. 7 is adjusted to reduce noise. The ENOB is limited

FIGURE 16. 219 points FFT spectrum of corrected and filtered ADC output
for full-scale input (bandwidth of digital LPF: 70 Hz).
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as a 18-bit ADC, this is because of the shared noise of the
buffer shown in Fig. 7

Figure 17 shows the AFE (LNA and SSA-ADC) I/O char-
acteristics for two types of gain settings. Input signal fre-
quency is 20.5 Hz and chopping frequency is 62.5 kHz. The
AFE demonstrated a 78.9 dBµV and 91.0 dBµV maximum
input for the gain of 28.5 dB and 16.0 dB, respectively.
The maximum input is defined as an input level at the 1-dB
compression point.

FIGURE 17. I/O characteristics of the AFE with the LNA gain of 28.5 dB
and 16.0 dB.

Figure 18 shows the frequency responses of the AFE gain
for two gain settings. The input amplitude is 71 dBµV and
AFE outputs are not filtered by a digital LPF. The −3 dB
cut-off frequencies are both 5.3 kHz. The cut-off frequency is
determined by the anti-aliasing LPF in Fig. 9. Due to the rela-
tively high bandwidth, the proposed AFE can be used for sev-
eral applications, such as ECG, electroencephalogram (EEG)
or electromyogram (EMG)). The bandwidth of the system can
be configured by a off-chip digital LPF.

FIGURE 18. Gain frequency response of the AFE.

Figure 19 shows the input-referred noise spectral density of
the AFE. The LNA gain is 28.5 dB and chopping frequency
is 62.5 kHz. The total noise is 2.52 µVrms in a bandwidth
of 1 - 70 Hz. Therefore, the dynamic range is 70.9 dB for the
gain of 28.5 dB. Note that the dynamic range is smaller than
the previous study [12]. In the previous study, the dynamic
range was calculated as the ratio of the maximum input level
and the input-referred 18-bit LSB. In this paper, the dynamic

FIGURE 19. Measured input-referred noise spectral density of the AFE
(LNA gain: 28.5 dB).

range is calculated as the ratio of the maximum input level
and the input-referred noise. The performance summary of
the prototype AFE is shown in Table 1.

TABLE 1. Performance summary of the prototype AFE.

The ECG monitoring function is demonstrated with the
prototype AFE IC. An ECG signal with 60 beats per
minute (bpm) is generated by an ECG checker (NIHON
KOHDEN AX-301D) and captured by the AFE IC. The
measured ECG signal is shown in Fig. 20. Note that the result
is 18-bit output and filtered by a 6-th order LPF with cut-off
frequency of 70 Hz. Table 2 shows the comparison with
state-of-the-art biomedical sensor AFE with high resolution
(> 12 bits). The proposed system realizes similar resolu-
tion even under lower supply voltage and smaller full-scale
range.

FIGURE 20. ECG waveform measured by the proposed system.
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TABLE 2. Performance comparison with high-resolution (> 12 bit),
state-of-the-art biomedical sensor AFEs.

VII. CONCLUSION
The paper proposed a biomedical sensor system with a
novel SSA-ADC which integrates an SF-ADC into a SAR-
ADC. The SSA-ADC is a flexible architecture because it
is a digital-centric architecture. The proposed system also
includes the error correction technique based on machine
learning. In the proposed SSA-ADC, the SF-ADC is embed-
ded in a simple SAR-ADC and used as a DCVTC with a
digital comparator in MSB-side conversion. The SF-ADC
also used for the conversion of the lower bits to enhance
a resolution under noise level. In this paper, the encoding
and error correction are defined as a minimization problem.
The parameters for an error correction function is obtained
by incremental learning based on Bayesian linear regres-
sion. The DNL and INL performance was improved by the
proposed error correction technique using the DCVTC for
12-bit output. The error correction by machine learning also
improved the performance of the AFE. The ADC in the pro-
posed AFE achieved 88 dB SNDR at a sampling frequency
of 250 kHz with 20.5 Hz full-scale input. Since the present
study is focusing on the feasibility of the proposed system,
the performance of an AFE IC can be improved by circuit
level. For example, as the SSA-ADC is a scalable architec-
ture, the power and area occupation can be reduced without
degrading resolution and speed by using a more advanced
process. As an example, the ECG waveform was measured
by the AFE. The proposed system can also be used for other
multi-channel biomedical sensors (e.g., EEG or EMG) due to
its high sampling rate up to 250 kHz.
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