
Received September 20, 2018, accepted November 16, 2018,
date of publication February 7, 2019, date of current version February 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2886707

Keyed User Datagram Protocol: Concepts and
Operation of an Almost Reliable Connectionless
Transport Protocol
NUNO M. GARCIA 1,2, FÁBIO GIL1,3, BÁRBARA MATOS1,4,
COULIBALY YAHAYA5, (Member, IEEE), NUNO POMBO1,2, (Member, IEEE),
AND ROSSITZA IVANOVA GOLEVA6
1Departamento de Informática, Faculdade de Engenharia, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
2Instituto de Telecomunicações, 6200-001 Covilhã, Portugal
3ECATI, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal
4Department of Artificial Intelligence and Systems Engineering, Faculty of Computer Science and Information Technology, Riga Technical University,
LV-1658 Rı̄ga, Latvia
5Université de Ségou, Ségou, Mali
6Department of Informatics, New Bulgarian University, 1618 Sofia, Bulgaria

Corresponding author: Nuno M. Garcia (ngarcia@di.ubi.pt)

This work was supported by Grant FCT UID/EEA/50008/2013.

ABSTRACT Departing from the well-known problem of the excessive overhead and latency of connection
oriented protocols, this paper describes a new almost reliable connectionless protocol that uses user
datagram protocol (UDP) segment format and is UDP compatible. The problem is presented and described,
the motivation, the possible areas of interest and the concept and base operation modes for the protocol
named keyed UDP are presented (here called KUDP). Also, discussed are some of the possible manners in
which the KUDP can be used, addressing potential problems related with current networking technologies.
As UDP is a connectionless protocol, and KUDP allows for some degree of detection of loss and re-ordering
of segments received out-of-sequence, we also present a proposal for a stream reconstruction algorithm. This
paper ends by mentioning some of the research issues that still need to be addressed.

INDEX TERMS User datagram protocol, almost reliable protocol, data transmission statistics in UDP,
algorithms for data traffic.

I. INTRODUCTION
When a user sits at a computer and, e.g., using a popular
communication software, starts chatting with another user
who sits at another computer in another continent, computer
networks provide the technologic platform that allow the
information coded in that data to be conveyed from one point
of the globe to the other [1], independently of the type of
the machine that is at each end of the communication. The
characters typed by a user at the keyboard are formatted and
inserted successively into different envelopes until the final
envelope is sent to the other user using the copper (or wire-
less) and optical fibre cables that connect all the computers
that are hooked to the Internet. If all goes well, at the other
end, the envelopes are successively opened and the characters
the first user typed are delivered to the chat window.

At some point inside the first user’s computer, one of these
envelopes will be formatted according to the Transmission
Control Protocol [2], making this an envelope a TCP segment,

or, following the Open Systems Interconnection (OSI) nota-
tion, an OSI Layer 4 [2] Protocol Data Unit (PDU). Although
there are several protocols that can be used at the transport
layer / layer 4 level, the most common are the TCP and the
UDP, this latter standing for User Datagram Protocol [2].

The major difference between the way TCP and UDP
work, stands on the warranties that each protocol gives to
the user or application, regarding the effective and ordered
delivery of the content from one end to the other of the
communication network. While TCP guarantees that all seg-
ments will be delivered in the order they were created, and
if not, the source machine will be notified, UDP sends all
segments using a best-effort approach, i.e., if the network is
overloaded and the packets containing the UDP segments are
dropped at an overloaded or malfunctioning router, neither
the transmitting nor the receiving machines will be aware of
that. In this case, the user who was trying to engage in a live
video conversation with another user who is at another point

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

18951

https://orcid.org/0000-0002-3195-3168


N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

of the Internet (e.g.), will perceive the bad quality of the call
as consequence of the faulty/incomplete data transmission,
this scenario being classified as faulty data transmission that
results in poor quality of experience.

Because TCP includes mechanisms [2] that allow for the
sequencing and acknowledgment of sent and received pack-
ets, individually or in dynamic or static transmission win-
dows, to simplify a more complex set of mechanisms that
several flavors of TCP use (and that are not the subject of
this paper), it is only natural to conclude that a commu-
nication using TCP has a greater overhead than a similar
UDP communication would have [2]. On the one hand, this
issue is never a real problem, because when a user wants to
transmit a file from one machine to another, or chat with
another user, or download a web page, all the packets have
to be sent and received at the correct order or reordered
at the destination machine, because if one single packet is
lost or two packets are received in switched order, that will
render the file unusable and maybe unreadable, or possibly
cause the conversation on the chat to end up being interpreted
by the person on the other side in a different manner that it
was intended to be. Yet on the other hand, if one is doing a
video conference, one can afford to lose or reverse the order
of arrival of a couple of packets, and most of the times this is
irrelevant to the user’s perceived quality of the experience of
the transmission.

But for scenarios where the received data must mimic in
perfection the transmitted data, the mechanism that TCP uses
to start a ‘‘conversation’’ between two machines may be just
too heavy for networks that have scarce resources. Or, if a
network has a low bandwidth, the TCP protocol will adapt
by creating more frequent acknowledgment packets, result-
ing from smaller transmission windows [2], increasing the
overhead of the communication. This is also why at Layer 4,
we can consider that a communication of data occurs in a
Stream for TCP transmissions, but for UDP, data communi-
cation occurs in a segmentper segment basis, as there is no
manner to establish an order relation among the individual
segments that constitute the initial set of packets that were
formed as a response to a data communication request.

Such is the case of sensor networks, typically consisting in
networks of disperse devices with power, network and trans-
mission constrained capabilities, called nodes, who commu-
nicate with e.g. a central node in order to provide readings of
the sensors in these peripheral devices to the data storage and
processing host machine. For example, if a sensor must peri-
odically send small files or pieces of data to a central machine,
maybemissing one file over a period of several readings is not
critical to the purpose of the system. Yet, it would be useful
to know if a received file is usable or not, not being usable
meaning that maybe the packets were received in a different
order they were sent, or maybe a packet is missing from the
series of packets that formed the initial file transmission set.

There are other examples that may benefit from a fast
transmission of packets between two machines, including
chat applications, as long as the receiving application is able

to inform the user that some text is missing or that a garbled
message has been received.

For example, with the increase in number and in size of
sensor networks, but also the increase of the need to trans-
mit multimedia contents, it is expectable to see an increase
in these two traffic profiles, one consisting of many short
streams of very small packets, and others consisting of many
long streams of larger packets (yet packets will still be smaller
than 1500 bytes, a limit that is imposed by payload size from
the underlying Ethernet frame [3]).

Or, in another scenario, it would be extremely useful if pop-
ular video call applications (e.g. Skype, Whatsapp or Face-
book) could automatically assess or infer the quality of expe-
rience of any given call. For example, after closing a Face-
book Messenger video call, the application shows a feedback
dialog window where the user is expected to rate how well
the communication was experienced, and what the user felt
went wrong (please see Figure 1 and Figure 2).

FIGURE 1. Feedback request dialog box shown after a Facebook
messenger video call.

FIGURE 2. Feedback request dialog box shown after a Skype video call.

For all of the above examples, but also to other examples
where some type of data imputation [4] could be done to e.g.
replace the missing data in lost packets, or when the plat-
form needs to know the success metrics of the transmission,
it would be desirable that one could use an almost reliable
zero overhead type of transport protocol.

The purpose of this paper is to propose a new com-
munication protocol based on standard UDP, that config-
ures an almost reliable, zero overhead mean to transmit

18952 VOLUME 7, 2019



N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

data between two machines by allowing some degree of
connection-oriented features in a connectionless transmis-
sion, foreseeing its applicability in sensor networks and in
real time video and audio applications.

Yet, as the goal of this paper is also to also invite
researchers to further extend this concept, this paper does not
present comparative results for this new protocol, being this
a subject of future, hopefully, cooperative work. This new
protocol is named Keyed User Datagram Protocol (KUDP;
we choose to read it as ‘‘Keyed UDP’’).

The remainder of this paper is organized as follows: this
paragraph concludes Section 1 where an introduction to
the topic was presented; Section 2 presents a brief history
and state of the art for TCP and UDP data transmissions;
Section 3 presents with detail the new KUDP and discusses
the operating manners in which the KUDP may be used, and
Section 4 presents a proposal the KUDP reconstruction algo-
rithm and some results. Section 5 concludes the paper with the
appropriate remarks. As this paper is focused on presenting
and discussing the new KUDP, the extended simulations that
will confirm or infer its merits will be addressed in future
work, being also the intention of this paper to put KUDP
forward to open discussion by the research community, with
the goal of attracting momentum for the creation of a Request
For Comments (RFC).

II. TCP AND UDP TRANSMISSIONS: A QUICK REVIEW
This section briefly addresses the TCP and UDP protocols, its
operation, and also previous attempts made to solve the prob-
lem of lowering the TCP communication overhead while still
keeping full control over the transmission outcome. As these
protocols are well-established from a long time, this section
will not discuss these with detail but will instead introduce
them briefly and point the interested reader to further reading,
as much of the significant research occur for specific types of
networks such as e.g. mobile networks or data centers [5].

The Transmission Control Protocol (TCP) [6] is the
golden standard for reliable communications between differ-
ent devices. TCP insures reliability and integrity of data trans-
missions because of the mechanisms it implements, namely,
the Three-Way Handshake, that is responsible to establishing
connections of TCP, the Additive Increment Multiplicative
Decrement (AIMD) and others. Problems with TCP have
been discussed in extensive literature, and the interested
reader can refer to [1], and [7]–[12].

TCP exchanges control packets between the two commu-
nicating machines to acknowledge and control the flow of a
window of packets, and resizes this windows in response to
overload in communication channels. It also uses a time-out
mechanism to detect packet loss [13].

Being the first example of a Connection-Oriented protocol
because it simulates a connection between the sender and
the receiver, and as a result of the way TCP is designed,
TCP has become one of themost prevalent transport protocols
in networks [2], despite the number of messages it needs to
transmit.

Opposed to TCP, the connectionless User Datagram
Protocol (UDP) [2] does not guarantees the reliability and
integrity of data transmission. UDP has been mostly used in
for real-time applications that demand low latency and can
afford some packet loss and out-of-sequence receptions such
as video and voice over IP (VoIP) [14].

Recognizing the high latency of TCP and the unreliability
of UDP, researchers have suggested a significant number
of protocols that try to reach a compromise between the
overhead in communications generated by the need of control
and the willingness to, in some scenarios, afford to lose some
data.

The Stream Control Transmission Protocol (STCP) [15]
aims to be a general purpose transport protocol similar to TCP
but able to take advantage of the features of modern IP net-
works, such as multihoming. For STCP multihoming means
that it will try to use the addresses that are associated with
different network interface cards present in one single host to
improve the data transmission efficiency. Yet, STCP adopts
congestion control and set up and tear down procedures that
are similar to those of TCP and therefore it does not diminish
the overhead relative to TCP, on the contrary, as its control
procedures are more complex. Chellaprabha et al. [12] tested
the performance of TCP, UDP and STCP for wireless sensor
networks and concluded that given the negligible packet loss
for these types of networks, UDP performs best in terms of
average throughput of data for the studied scenarios.

Acknowledging the slow start and the unfairness of shorter
Round-Trip Time (RTT) transmissions relative to longer RTT
in TCP, Gu et al. [16] andGu andGrossman [17] proposed the
UDP with congestion control and acknowledgement mecha-
nisms, also called UDT. The data and the control messages
exchanged use two pairs of ports at the sender and receiver
machines, and the protocol considers timers, acknowledg-
ments and congestion control mechanisms among other tech-
niques. As it adds control messaging to UDP it configures a
higher overhead protocol than UDP.

Considering the specific needs of real-time control sys-
tems, the poor latency of TCP and the unreliability of UDP,
CRETP (for Conditional Retransmission Enabled Transport
Protocol) [18] proposes the use of UDP accompanied by
retransmission and acknowledgment features, by using timers
that detect, for a given real-time data transmission, if a given
packet must be retransmitted or not.

Malhotra et al. [19] developed an UDP based chat appli-
cation that exchanges acknowledgments after each message.
Here the focus was not a real-time application but rather to
limit the overhead induced by TCP when the data window is
composed of a single small data packet.

Aiming to reach a compromise between the unreliable
UDP and the high latency TCP, but being aware that video
transmission does not have to be 100% perfect, Porter and
Peng [20] suggest a hybrid protocol, where TCP is used to
transmit the most important packets of data, and UDP is
used to the other packets, reporting an improvement in the
performance of the transmission even at moderate loss rates.

VOLUME 7, 2019 18953



N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

FIGURE 3. Average IPv4 daily packet sizes, between 1/1/2004 and 31/12/2013 (in Bytes).

A class of reliable UDP-based adaptive transport proto-
cols [21] (RUNAT) was proposed. With the goal of achieving
a high throughput at the application level, the protocol uses
a rate control scheme founded on the stochastic approxima-
tion method. RUNAT relies on messages fed back from the
receiver to the sender to adapt its transmission throughput as
to generate flows that, according to the authors, are friendly to
TCP traffic. By using feedback messages to notify the sender,
RUNAT increases the overhead of transmission when com-
pared to pure UDP and is unable to resolve out-of-sequence
arrivals.

Comparing to RUNAT, older protocol SABUL [22] uses
UDP to transmit data and TCP to convey control mes-
sages and uses special message formats to achieve high data
throughput in grid applications.

Assessing and comparing the performance of four types
of UDP protocols, the Yue et al. of [23] show that RUBDP,
Tsunami, UDT, and PA-UDP conclude that PA-UDP per-
forms the best. The authors also briefly describe these pro-
tocols: RUBDP uses TCP to acknowledge the reception of all
packets in a stream; Tsunami relies on negative acknowledg-
ments sent by the client as to packets that did not arrive; and
PA-UDP implements a three-way-handshake to start its data
transmission (UDT was discussed previously in this section).
From this analysis stems that all these protocols need to use
control messages to implement its specific features.

III. KEYED USER DATAGRAM PROTOCOL
This section describes the operation of the KUDP. It starts by
identifying the problem, and proceeds with the description of

the manner KUDP will be used. This section also describes
how the port keys can be defined and how to address the prob-
lems that KUDP may present. As to simplify the language,
it will be assumed that KUDP is already implemented, and
therefore the verbs in the sentences will be used in its present
form.

A. THE PROBLEM
Figure 3 shows the daily average packet size for IPv4 packets,
along a 10-year time frame, between 2004 and 2014. This
data was collected from a Japan-USA link, by the MAWI
project [24], and the chart shows three distinctive areas
(or maybe five), of which the first two are relevant for the
purpose of this paper.

In order to better understand this figure, a brief explanation
of the collection process is in order. The collection refers to
a daily 15 minutes recording of Internet traffic passing in
a link connecting Japan and the USA, between 14:00 and
14:15 hours Japanese standard time. This period of time often
contains between 300k and 500k unique IP addresses. It is
therefore assumed that the traffic is ergodic, also because it
contains communications between academic institutions and
the rest of the Internet. At sample point B, congestions were
often observed, as this was an 18Mb/s link, with a 100Mb/s
committed access rate. MAWI reports that in July 2006,
the overloaded link B was replaced by the overprovisioned
link F, which started as a full 100Mb/s link and was upgraded
to a bandwidth of 150Mb/s on the 1st of June 2007. For more
information on the naming of the collection points, please
see [25].

18954 VOLUME 7, 2019



N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

Observing Figure 3, it can be seen that between 2004 and
July 2006, the average packet size is around 400 bytes, and
after the link change, shown as a disruption in plotted data,
the average packet size jumped to over 600 bytes. In fact,
these are the two main areas of Figure 3 that interest this
research, being the others, eventually, the following: the third
one, between the November 2011 and January 2013, depict-
ing a higher variability on the average packet size, the fourth
one, between January 2013 and August 2013, showing again
another decrease in the average packet size, and possibly,
the fifth and final one, between August and December 2013,
showing an increase in the average packet size. Yet, these last
observations are not to be considered as they are just visual
observations and also because these are not relevant for the
purpose of this paper.

Taking Figure 3 into consideration, it has to be asked how
is it possible that there is a 66% increase in the average
packet size, from 404 bytes to 670 bytes, regarding the two
previous and the two consecutive years of changing the link,
particularly because the change in the average packet size can
be observed immediately before and after the upgrade of the
link.

Also, as the generation of traffic is done by applications
at the host computers, there is no ground to assume that
all or a large majority of the users have changed their traffic
generating applications in the short amount of time needed
to change from an overloaded link to an overprovisioned
link. On the contrary, it can only be assumed that the traf-
fic generation applications in the tributary computers did
not changed significantly over that period of time, let alone
changed drastically in the course of a few months in 2006.

As a base research hypothesis, one must assume that over
this period of time, the application layers at all the tributary
host computers have continued to generate payloads that have
resulted in IP packets whose size is only determined by the
nature of the tributary applications themselves and limited by
the payload size of the underlying Data Link layer, usually the
1500 Bytes MTU imposed by the 30 plus year old Ethernet.
And as we have no data that can support or refuse this base
hypothesis, one has to rely on the knowledge of the software
ecosystem of the time to conclude that the in fact there
was no massive change in the nature and type of the users’
applications that could have produced an 66% increase in the
average packet size over a short period of time.

If layer 7 did not change its nature in the tributary comput-
ers, the reason for the change in the average packet size needs
to be researched at the lower layers. Yet, it is not expected
nor plausible that the Physical, nor the Data Link, nor the
Internet layers suffered any change because of increase of
capacity of the link; at the host level, the Physical layer
concerns solely the transmission of bits over the medium and
is completely oblivious about link underloads or overloads;
the Data Link layer typically imposes the Internet Maximum
Transmission Unit (MTU) as 1500 bytes by means of the
Ethernet standard frame maximum payload size, and is also
oblivious for network load conditions; finally, the Internet

layer handles IP addressing, and has no mechanism to detect,
prevent or circumvent link overload.

After ruling out all the possible sources for this behavior,
and also because there were no other changes of this magni-
tude observed in this period [26], and taking in consideration
that this metric is an average packet size, i.e., is the average
of the size of all packets captured in this time-frame, it has
to be considered that the packets that were transmitted by
the tributary machines are not only the ones generated by the
applications at layer 7, but also the packets that are generated
at these same machines by the protocols as e.g. TCP control
messages.

This is to say that the increase in the average packet size
was very likely caused because fewer very small packets were
transmitted, i.e., there was less intervention of the transmis-
sionmechanisms for the TCP protocol, that detect and prevent
transmission errors by adjusting not only the maximum seg-
ment size, but more importantly, the size of the transmission
windows, fitting these to the capacity of the link, to assure
that all packets in a transmission were either transmitted with
success or its errors dully acknowledged.

As a conclusion, it has to be assumed that in the first period
of this observation, between early January 2004 until early
summer 2006, it was the generation of many small packets
resulting from TCP transmission control mechanisms that
lowered the average packet size, and these machine/protocol
generated packets were the fact that caused the observed
behavior.

Moreover, as a side conclusion of this paper and following
this line of reasoning, the hypothesis that overloaded links
tend to show smaller packet size averages needs to be further
researched. It can also be assumed that these changes in the
average packet sizes will happen for both IPv4 and IPv6.
Unfortunately, it’s not possible to assess this assumption for
IPv6 because at this time there was still not enough IPv6
captured traffic.

B. A KEYED UDP PROTOCOL
As an introductory note, let us define KUDP as an extended
UDP protocol that is implemented in network protocol stack
in the source and/or destination hosts at layer 4 and that
KUDP data segments are standard UDP segments. Similar to
UDP, KUDP is an end-to-end unicast protocol.

In the remainder of the paper, we will use of some freedom
referring to packets and segments. When we say that packets
are sent from port 10000 (e.g.) wemean that packets were sent
from the IP address of the source machine and contained a
segment that was generated at port 10000.We take this liberty
of language because although segments correspond to ports,
segments are not transmitted per se, but packets are.
Consider the following sample UDP transmission: at the

source machine, an ordered set of ten UDP segments encap-
sulated in the corresponding packets is sent from e.g. port
10000. While the source port will be a random port that the
application managing the transmission has acquired because
it was available, usually, the destination port at the destination

VOLUME 7, 2019 18955



N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

FIGURE 4. Scheme depicting the sending of an ordered set of several packets between two machines, using UDP.

FIGURE 5. Scheme depicting the sending of an ordered set of 5 packets between two machines, using Keyed UDP.

FIGURE 6. Basic loss sample scheme, depicting a transmission with a lost packet.

machine will be fixed and predetermined, e.g., port 7000.
At the destination machine, a server software application
will have previously reserved, opened and started listening
to port 7000 as a way to be able to receive all the incoming
packets, extract its payload and proceed to do whatever it is
meant to do, e.g. to forward the payload to the video chat
window (see Figure 4). Using UDP, the destination machine
has no way to assess if all the transmitted packets were
received, or if there were packets that have arrived out of
sequence.

Moreover, if the received packets do not have the same
order in which they were sent, the destination machine has
no manner to re-establish the initial order of the received
packets, because the UDP segment header has no field in
which to record the sequence number in which the packets
were generated at the source machine.

C. DESTINATION KEYED UDP
Now consider that the source machine sends the ten packets
to the destination machine, but instead of sending all the
segments to e.g. port 7000, sends the segments to e.g. ports
7000, 7001, 7002, 7003, 7004, and again 7000, 7001, 7002,
7003, and finally 7004. Let us also momentarily consider that
these port numbers are somehow hardcoded or defined as
parameters into the application software both at the client and
at the server side. At the destination machine, the application
software has reserved and opened ports 7000 up to 7004 and
expects to receive packets in all these ports. Figure 5 depicts
the transmission of the first five packets between these
two machines, arbitrarily addressed (figure shows IPv4 for
convenience of example).

As the reception machine knows the expected reception
sequence, this information allows this machine to assess

18956 VOLUME 7, 2019



N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

FIGURE 7. Source keyed UDP sample transmission.

two scenarios: basic loss and basic out-of-sequence. In this
example, the server software is listening to a set of 5 ports,
therefore the length of the key is defined as 5, i.e, in a single
side keyed UDP transmission, the length of the key is n if
n+1 is sum of the number of ports that will be used at the
transmission by both sides. In a double KUDP transmission
n is the length the key if the transmitting side is using s ports,
and the receiving side is using d ports and s+ d = n.

D. SOURCE-DESTINATION-KEYED UDP AND TCP/IP
PROTOCOL STACK
It is also possible to conceive a double keyed UDP, or
sdKUDP for source-destination KUDP, where the source
sends packets from a range of ports to another range of ports
at the destination, possibly with different port range lengths.
It is conceivable that, known by both applications, a sequence
of packets is sent from, e.g., a set of three source ports to a
set of five destination ports.

The proposal of the KUDP can correspond to the inser-
tion of an additional sublayer at the transport level of the
TCP/IP protocol stack, as shown in Figure 8. The UDP layer
is replaced by the KUDP and the Stream Reconstruction
Algorithm, as these two sublayers work together to imple-
ment the features of KUDP.

FIGURE 8. Sub-layering the transport layer at the TCP/IP protocol stack.

In the descending direction, the application layer com-
municates directly with the KUDP layer, i.e., the KUDP
layer receives the data from the application layer and per-
forms the UDP tasks with the additional port keying activ-
ity. In the ascending direction, after the packets have been
received from layer 3 and passed to the KUDP layer,

the Stream Reconstruction Algorithm will attempt to rebuild
the original data stream. The application layer is referred as
‘‘Application∗’’ as the applications may be KUDP aware,
in which case the Stream Reconstruction Algorithm will
provide statistics and control data to the application.

If this is not the case, and the transport layer is to remain
unchanged, meaning that the applications must use standard
UDP in all cases, then the application itself must encode all
the features of the KUDP and manufacture the segments as to
use standard UDP at the lower layers.

E. NON-CONSECUTIVE PORT KEYS
Finally, it is also conceivable that the packets are send
from or to a list of non-consecutive ports, or, following
another pre-defined key, e.g., packets are sent from or to ports
10000, 10000, 10001, 10001, 10005, 10003, as if each port
corresponds to a music note and there is a song to be played.
This feature can prove to be more complicated to implement
because of active Network Address Translation (NAT-PT)
policies, but let us keep in mind that NAT-PT machines may
alter the source IP address and source port, but not the destina-
tion address nor the destination port, although the destination
address may be changed by some IPv4 to IPv6 translation
mechanisms (or vice-versa) [27]. These and other potential
problems will be subject of additional research.

For all the three scenarios, source destination keyed UDP,
source keyed UDP or destination keyed UDP, it is possible
to use a single port, or a range of ports, or list of ports, not
necessarily consecutive. Themanner in which the packet flow
is addressed from and/or to these ports is referred to as the
transmission port key.

As a summary, and to simplify the description of the initial
concept, as long as the sending and receiving applications
know in advance what is the port key i.e. what are the source
and/or destination ports, the communication can be estab-
lished with some features that allow for basic loss detection
and/or out-of-sequence detection and correction.

F. MUTUAL DEFINITION, AGREEMENT OR DISCOVERY
OF THE TRANSMISSION PORT KEY
First of all, we have to consider the differentmanners inwhich
the source and destination applications know from and/or

VOLUME 7, 2019 18957



N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

to which ports they should transmit to and/or receive data
packets.

As with every other application that needs to transmit data
over the Internet or over a computer network in general,
the client application has the information on which port the
server application is listening, i.e., the destination port is often
hard coded into the client and server applications. Such is the
case of standard HTTP communications [2] and many others
that use the Well-Known port list [2].

For KUDP we can have two basic scenarios. The first
one consists in a previously agreed and hardcoded defini-
tion of the port key into the client and server applications.
In this scenario, the port key is said to have been determined.
A determined port key has different implications for the
sKUDP, dKUDP and SDKUDP. The second scenario consists
in using a communication agreement protocol that allows the
source and the destination applications to define and agree
on the manner and on the port key for the KUDP commu-
nication. In this scenario, the port key is said to have been
agreed. A third non-basic scenario considers keys that were
not determined nor agreed, but rather are discovered.

Let us consider hardcoded port keys for dKUDP. In this
case, the source application will know beforehand to which
ports it will be transmitting and the destination application
will have previously reserved and opened the predefined set
of ports. After receiving the packets and performed reorder-
ing, detecting faults, and eventually, doing packet data impu-
tation, the destination application can therefore proceed to
send the corresponding payloads to the upper layers.

Considering hardcoded keys for the sKUDP gives us again
two possible scenarios, because the destination application
may or may not know beforehand from which ports it will
be receiving the data packets. Let us assume that the desti-
nation application knows beforehand that it will be receiving
packets from ports {p1, p2, p3, . . . , pk} and let us assume that
these ports are not changed by means of a Network Address
Translation/Port Translation (NAT-PT) or other mechanisms
that the packetsmay encounter while traveling in the network.
In this case, the key is still said to have been determined
and the destination application will receive packets whose
segments are identified as having been transmitted from the
{p1, p2, p3, . . . , pk} ports and proceed to interpret these
accordingly, implementing the loss and out-of-sequence
detection algorithms.

It is also possible that the destination application does not
know beforehand from which ports it will receive the UDP
packets. Again, let us consider that the source application
decides to send segments from the ports {p1, p2, p3, . . . , pk}.
The destination machine will then be able to infer what is the
source key once it has received the first two ports that are
repeated in the sequence, i.e., once it has received packets
from at least ports {p1, p2, p3, . . . , pk,p1}. This is considering
that there were no errors in the first transmission and that the
port key is a trivial port key, or more specifically, that the first
port is not repeated in the port key. For non-linear non-trivial
port keys, i.e. for port keys that are not composed by a linear

sequence of non-repeated ports, or for cases where there have
been errors in the initial transmission of the segments, the port
key and the port key length can still be inferred in a dynamic
manner but at the cost of additional computation. In the case
that the destination application does not know beforehand
what is the port key, the key is said to have been discovered.

For hardcoded sdKUDP the joint application of the above-
mentioned procedures is still valid.

The second scenario includes a setup where the source
and destination applications need to agree on the port key
before the actual data transmission begins. Although this will
be subject of additional research, it can be considered that
it is possible to establish one communication on a specific
port, and that by means of this communication, the source
and destination applications will agree on the mutual port
key or keys, in the case of a sdKUDP data transmission. This
will of course mean an additional overhead in the communi-
cation, but it will also bring advantages for data transmission
in networks where ports are blocked or are scarce. This setup
is termed Key Definition Protocol and will be subject of
further research.

Table 1 summarizes the data transmission scenarios. Each
line corresponds to a type of KUDP, each column corresponds
to a port key definition scenario and each cell describes the
means by which the port key is defined.

TABLE 1. Means of definitions for port keys in KUDP.

G. RETRO-COMPATIBILITY WITH STANDARD
UDP APPLICATIONS
It is possible that the destination application in a sKUDP
data transmission can still receive data packets that were
transmitted from a standard UDP source application, as the
formatting of the segments still adheres to the UDPRFC [14].

If the source application is standard UDP and if sKUDP
is used, the destination KUDP application will receive a set
of packets that are sent from a single source port, therefore
making it impossible to assess loss or out-of-sequence events.
If the source application is standard UDP and if dKUDP is
used, the destination KUDP application will receive a set of
packets that are sent to a single destination port, also making
it impossible to assess loss and out-of-sequence events.

For sKUDP, if the source KUDP application sends packets
to a non-KUDP destination application, this will almost be
the for a standard UDP communication, as the destination

18958 VOLUME 7, 2019



N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

application will still receive a set of packets at a single
destination port.

For dKUDP, if the source KUDP application sends packets
to a non-KUDP destination application, the n−1 packets in
each set of n packets will be lost because the source appli-
cation does not know and cannot confirm that the packets
sent to e.g. ports 10001, 10002, 10003 and 10004 will not
be received because the destination application is expecting
packets in just e.g. port 10000.

Table 2 summarizes the results of data transmission in
sKUDP and dKUDPwhen either the source application or the
destination applications use standard UDP data transmission
methods.

TABLE 2. UDP to KUDP communication.

H. KEYED IPv6
One of the possible adaptations of KUDP is to not consider
the use of keyed sets of ports, but rather to use a range of
IPv6 addresses that are configured at the appropriate interface
of the sender and/or receiver machine. In fact, a hybrid model
using different IPv6 and different ports can be devised. One
can imagine that from an observer point of view, such a stream
of packets would look like different communications between
different applications in different machines, more so if the
correspondent payloads were to be encrypted.

We named this the Keyed-IPv6 and all previous and follow-
ing considerations still apply, adapting the concept from port
to IP Address. It may happen that some operating systems
may not allow the assignment of several IPv6 addresses to
the same interface [28], although this is technically feasible.
Keyed-IPv6 will likely overload ARP tables at the machines
in its respective local networks, although this has to be further
investigated.

I. ADDITIONAL CONSIDERATIONS
Additional issues deserve extended research, starting from
what can be done once the destination application identifies
a faulty transmission because of missing data packets. Again,
there are different possible scenarios. The trivial one is to do
nothing but to keep statistics on the data transmission quality,
informing the upper layers and/or themonitoring applications
of the found errors. A non-trivial one would be to perform
data imputation. In fact, having the few previous packets and
the few following packets, imputation can be performed at the
application layers, or as soon as the payloads of the packets
are interpreted. This can make some sense in video or voice
applications, for example. Once more, this is a new field open
to further research.

Finally, it is conceivable that the destination application
can signal the source application that some packets in the
set have not arrived. Provided that the source application
has kept a copy of the initial set, or a copy of the p last
packets, the retransmission can be attempted. The signal-
ing of the missing packets message as well as missing
packets re-transmission can be done using a set of dif-
ferent ports used for signaling, i.e., a set of ports that
are used as mean to convey control data between the two
applications.

Time-stamping the packets at arrival can also prove help-
ful while identifying loss events, port key inference and
other communication events, such as e.g. the end of data
transmission.

Complexity can be added into the protocols by way of the
definition of dynamic port keys instead of the static port keys
addressed in this paper, e.g. by using a port list that changes
from one moment to the other, e.g. following some function
of time or number of packets sent. Additionally, the sending
application can intentionally garble the original message by
sending out-of-sequence packets that later can be reordered
at the destination machine.

One possible problem may rise from the existence of
Network Address Translation (NAT) machines in the middle
of the communication. NAT machines often perform also
Port Translation (NAT-PT) [29] in both IPv4 and IPv6 [2].
A typical scenario happens when a NAT-PTmachine receives
a packet with source address e.g.192.168.1.1 and desti-
nation address 193.165.66.1 and source and destination
ports 7000 and 10000 respectively. To achieve its purpose,
the NAT-PT machine will remanufacture the packet in a
way that the source IP address and port address may be
changed, i.e., the packed that is transmitted into the network
after the NAT-PT machine may have source IP address
193.165.6.2 and port address 7890 and keep the original
destination IP and port addresses, while it will maintain a
translation table where it records at least the information
that at date-time µ the pair address-port 192.168.1.1 and
7000 was transmitted as 193.165.66.2 and 7890. As the
NAT-PT machine does not alter the destination IP and port
addresses, the dKUDP port key is not altered by the action of
NAT-PT machines.

VOLUME 7, 2019 18959



N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

As long as the source and destination address spaces are
translated with homomorphic functions that are persistent
over the time adequate to complete a data streaming transmis-
sion, sUDP and sdUDP will still be able to work. A potential
problem will be the increase on the length of the translation
tables for NAT-PT machines, as one set of KUDP data trans-
mission will increase the number of entries from one to n,
where n is the length of the port key.

Multicast in KUDP can be implemented as themulticasting
feature is implemented at the 3rd layer of the protocol stack.
Therefore, a stream of packets coming sent to a multicast
address would still be replicated at the routers, independently
of the destination ports.

We will also have to address issues like security from at
least two perspectives: the first one is what new vulnerabil-
ities will this new protocol bring forward, and the second
one is, the integration of encryption in KUDP. Finally,
we can also use this method to measure latency and jitter
in UDP; departing from the assumption that the packets at
the source are transmitted at a constant rate, we can mea-
sure the delays between packets and the variability of these
delays.

IV. A PROPOSAL FOR THE STREAM RECONSTRUCTION
ALGORITHM FOR KUDP
This section presents a proposal for a stream reconstruction
algorithm for KUDP. The algorithm will be discussed by
presenting on an example of a dKUDP transmission with key
length 6, considering both packet loss and packet switching.
The following example consists in a transmission from one
port to a sequence of six ports, numbered 1 to 6 for simplifica-
tion purposes. This sequence consists in a series of 30 packets,
sent to ports 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, . . . and
so on. Also for simplification purposes, please note that the
number of packets to be sent are a multiple of the size of the
key.

In this example, we considered a scenario where 5 packets
were lost and 5 packets arrived out-of-sequence. For clarity
of this example, we numbered the packets as 1a, 2a, 3a, 4a,
5a, 6a, 1b, 2b, 3b, 4b, . . . , 1e, 2e, 3e, 4e, 5e and 6e, just
to allow us to keep track of the behavior and results of the
algorithm. In this numbering scheme, 1, 2, 3, 4, 5, 6 are the
port numbers and a, b, c, d and e are the first round of packets,
the second round of packets and so on. As it can be seen,
the algorithm considers only the number of the port in its
sorting procedures.

For this example, we have the following transmitted (Ts)
and received sets (Rs):
Ts = {1a, 2a, 3a, 4a, 5a, 6a, 1b, 2b, 3b, 4b, 5b, 6b, 1c, 2c,

3c, 4c, 5c, 6c, 1d, 2d, 3d, 4d, 5d, 6d, 1e, 2e, 3e, 4e, 5e, 6e}
Rs = {1a, 3a, 4a, 6a, 5a, 2b, 4b, 6b, 3b, 2c, 3c, 1c, 4c, 6c,

1d, 2d, 4d, 3d, 5d, 6d, 1e, 3e, 4e, 6e, 5e}
As it can be seen from the above example, 30 packets

were transmitted and 25 were received. Randomly market for
loss are packets 2a, 1b, 5b, 5c and 2e, marked in red. Also
randomly market for out-of-sequence reception and marked

in yellow background, are packets 5a, 3b, 1c, 3d and 5e.
The later reception of these packets is 1, 2, 2, 1 and 1 respec-
tively, meaning that that packet 5a was delayed and arrived
after 1 packet in the sequence, packet 3b was delayed and
arrived after 2 packets in its sequence and so on.

At the receiving machine, the algorithm builds a buffer
that is 5 packets long, i.e. it builds a n−1 long buffer, where
n is the size of the key. The value for n−1 was found in
an empirical manner, as a window of size n or n+1 do not
offer additional information for the algorithm and windows
of size smaller than n−1 do not allow the construction of
a significant election set. Nevertheless, this is something
that needs to be researched with additional detail, as other
sizes of sorting windows and other approaches have not been
attempted.

This buffer is updated each time a packet arrives, as
Figure 9 shows, and for each set of received packets, a newly
sorted vector of packets is produced.

Figure 9 shows the first 10 iterations for this 25 packets
stream.

If the transmitting stream has k packets, then k iterations
will be made. Please note that these iterations can be made
as soon as the nth packet arrives, i.e. the algorithm can run in
real time with an initial delay of n packets.

Let us analyse some of the iterations shown in Figure 9. For
iteration 1, the algorithm will already have received the first
n−1 packets. In this case, the reception machine will have
received the packets {1a, 3a, 4a, 6a, 5a}. The algorithm will
place these packets in an array, placing all the packets in order,
i.e., it will create the following output {1a, f, 3a, 4a, 5a, 6a}.
The f in position 2 is placed because the algorithm recognizes
that the list it received should have a packet destined to port 2.
As this packet is missing, its position is occupied with a f for
failure to receive.

This is also de case of iteration 7, among others in the
above example. Iteration 7 will look to start filling its array
at position 1, as 1 = 7 mod n, where n is the size of the key,
6 in our example. Iteration 7 receives the packets {4b, 6b, 3b,
2c, 3c}, by this order. As it is expecting a packet in position 1
and there is none in the list, its output for the first position
will be f . The only packet received in port 2, the packet
labeled with 2c, will occupy the second position. The third
position will be occupied with the first packet received to
port 3, the packet 3b. The 4th position will be occupied by
packet 4b, the 5th position will hold f , and the 6th position
will store packet 6b.Yet, as packet 3c still needs to be placed,
the 7th and 8th positions will hold f and packet 3c will be
stored in 9th position of the sorting vector. The algorithm
will fill positions with f or with packets as long as there are
packets that were received and need to be sorted. Therefore,
iteration 7 will output this sorted vector: {f, 2c, 3c, 4b, f, 6b,
f, f, 3c}. Please note that although the sorting windows has
always a n−1 size, the sorting set will vary in size, depending
on the packets it needs to place in order.

The packets can be sorted and missing packets
can be acknowledged as soon as the iteration moves,

18960 VOLUME 7, 2019



N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

FIGURE 9. First 10 iterations and corresponding sorting sets. At the left of each iteration, the received set of packets, at the right of each iteration,
the sorted set of received packets, showing eventual missing packet. In black background, the candidates for the election for port number 6.

i.e., the first received packet can be inferred after iteration 1,
the second received packet can be inferred after iteration 2,
and so on.

The final choice for the packet in position ith can be made
as soon as the iteration ith, i.e., as soon as the i+n−1 packet
has arrived.

This choice procedure is an election made among the can-
didate packets in each of the previous iterations, for example,
reading the sorting results line by line, one can see that the
candidates for the packet in the 6th position are {6a, 6a, 6a,
6a, 6b, 6b} (see Figure 9, consider the elements in the line
for 6a, shown in back background and white font color). The
election procedure is detailed by example as follows:
• For the 1st packet there is only one candidate, this is
packet 1a, therefore, packet 1a takes the first position;

• For the 3rd packet the candidates are {3a, 3a, f}, there-
fore, packet 3a wins;

• For the 2nd position, the candidates are {f, 2b}. As there
is a tie between f and 2b, the first candidate wins,
i.e., the algorithm concludes that the 2nd packet never
arrived;

• For the 4th position, the candidates are {4a, 4a, 4a, 4b},
therefore, 4a wins.

The candidates for the remaining positions (5 to 10) are,
respectively:

5th: {5a, 5a, 5a, 5a, 5a}, elected 5a
6th: {6a, 6a, 6a, 6a, 6b, 6b}, elected 6a
7th: {f, f, f, f, f}, elected f
8th: {2b, 2b, f, 2b, 2c, 2c}, elected 2b
9th: {f, f, 3b, 3b, 3c, 3b, 3b}, elected 3b
10th: {4b, f, 4b, 4b, 4b, f, 4c, 4c}, elected 4b.

Please note that for any given position, the number of
candidates is not deterministic, as it depends on the relative
position of the sorted packets inside each iteration.

After all the iterations (not shown here), the final sorted
packet set looks like this:
Fs = {1a, f, 3a, 4a, 5a, 6a, f, 2b, 3b, 4b, f, 6b, 1c,2c, 3c,

4c, 5d, 6c, 1d, 2d, 3d, 4d, 5d, 6d, 1e, f, 3e, 4e, 5e, 6e}.
In this example, the loss ratio was 5/30 (16.67%) and

the out-of-sequence ratio was 5/25 (20.00%), and the tests
demonstrated that it is possible to create a maximum likeli-
hood sequence, acknowledging the packets that were effec-
tively not received.

Given a number of candidates, the election rules are as
follows:

1) the candidate with most occurrences wins;
2) in case of a tie, the first occurrence for that candidate

wins;
3) in case of a hidden packet, fit the packet in the first

corresponding free slot;
4) finally, once elected, a candidate cannot be eligible

again, i.e., no duplicates are allowed.
Hidden packets are packets that never get elected but that
were received nevertheless. There are cases of hidden packets
for packet loss and out-of-sequence ratios higher than 20%.
In this case, the system may not recover in almost-real-time
for the hidden packets because these can only be acknowl-
edged some time before the sequence has been produced.

Also, as it can be seen in Fs, packet 5d(in bold) appears
as an elected candidate for both position 5c and position 5d,
violating election rule 4. For some applications having a
duplicate packet may be acceptable, so research on the impact

VOLUME 7, 2019 18961



N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

of hidden and duplicate packets also needs to be further
researched.

V. CONCLUSIONS AND NEXT STEPS
In this paper, we have presented the concept for a zero over-
head almost reliable manner to transmit data packets in an
UDP-like manner. The main argument for the conception of
this protocol is that when networks are overloaded, the TCP
control packets cause a reduction on the overall average
packet size that impairs the usefulness of the scarce available
bandwidth.

The definition of port key, and themanner in which the data
packet transmission would occur, in a source, destination or
source-destination manner was also discussed. The concepts
of detection of packet loss and detection and correction of
out-of-sequence reception of packets were also presented for
the different protocols.

Some potential problems were discussed with particular
detail the ones related to the interference that can be intro-
duced in the communication by NAT-PT machines that are
in the communication path, namely consisting of two prob-
lems: the potential increase in size of the NAT-PT translation
tables, and the problems that non-homomorphic translation
algorithms can cause to the correct identification of the port
keys.

Also, and because the concepts in this paper are still only
concepts, some lines of future research were pointed. First
and foremost, the validation and simulation of the efficiency
of the sKUDP, dKUDP and sdKUDP for data transmission;
secondly, the variation of average packet size as a mean to
assess network link overloads; thirdly, the definition of a
signaling protocol that will enable the agreement of the port
keys and eventually the signaling of statistics and data re-
transmission requests.

Resilience to non-homomorphic algorithms in NAT-PT
machines is also worth of additional research, as well as
the use of packet time-stamping to enhance loss and end-
of-transmission events. Moreover, complexity as a security
feature can be researched by means of the use of dynamic
port keys.

There is work to be done regarding the definition of addi-
tional communication protocols that may bring to KUDP
some of the main features of a transmission in TCP.

Also to be researched is the trade-off between the
number of ports in a key and the effort posed on the Stream
Reconstruction Algorithm, as increasing the number of ports
allows for a greater degree of certainty on the lost and out-
of-sequence packets, but it increases the effort on the recon-
struction algorithm as it increases the size of the sorting sets.
In the context of the definition of the control protocol, it is
possible to define keys that increase or decrease dynamically
in size when the quality of the communication decreases or
increases, respectively.

Finally, there is also research work to be done on the
redefinition / mapping of the layers at the OSI model, as to

integrate the manner the KUDP extends its mechanisms to
layers 4 and 7.

Recovering a paragraph from the introduction section,
this paper presents the concept for a new zero overhead
almost reliable protocol, also with the goal to open dis-
cussion by the research community, and of attracting the
interest of researchers for the creation of a Request For
Comments (RFC).

ACKNOWLEDGMENT
This article/publication is based upon work from COST
Action IC1303 - AAPELE - Architectures, Algorithms and
Protocols for Enhanced Living Environments and COST
Action CA16226 - SHELD-ON - Indoor living space
improvement: Smart Habitat for the Elderly, supported by
COST (European Cooperation in Science and Technology).
More information in www.cost.eu.

REFERENCES
[1] V. G. Cerf and R. E. Icahn, ‘‘A protocol for packet network intercom-

munication,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 2,
pp. 71–82, 2005.

[2] B. A. Forouzan, TCP/IP Porotcol Suite. New York, NY, USA:
McGraw-Hill, 2002.

[3] N. M. Garcia, M. M. Freire, and P. P. Monteiro, ‘‘The Ethernet frame
payload size and its effect on IPv4 and IPv6 traffic,’’ in Proc. Int. Conf.
Inf. Netw. (ICOIN), Jan. 2008, pp. 1–5.

[4] Y.Wexler, E. Shechtman, andM. Irani, ‘‘Space-time completion of video,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3, pp. 463–476,
Mar. 2007.

[5] A. Bakre and B. R. Badrinath, ‘‘I-TCP: Indirect TCP for mobile hosts,’’ in
Proc. 15th Int. Conf. Distrib. Comput. Syst., May/Jun. 1995, pp. 136–143.

[6] J. B. Postel, Ed., Transmission Control Protocol, document IETF RFC 793,
Sep. 1981.

[7] M. Allman, V. Paxson, and W. Stevens, TCP Congestion Control,
document IETF RFC 2581, Apr. 1999.

[8] W. Stevens, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms, document IETF RFC 2001, Jan. 1997.

[9] M. Handley, S. Floyd, J. Padhye, and J. Widmer, TCP Friendly Rate
Control (TFRC): Protocol Specification, document IETF RFC 3448,
Jan. 2003.

[10] O. Ait-Hellal and E. Altman, ‘‘Analysis of TCP vegas and TCP reno,’’
Telecommun. Syst., vol. 15, nos. 3–4, pp. 381–404, 2000.

[11] L. S. Brakmo and L. L. Peterson, ‘‘TCP Vegas: End to end congestion
avoidance on a global Internet,’’ IEEE J. Sel. Areas Commun., vol. 13,
no. 8, pp. 1465–1480, Oct. 1995.

[12] B. Chellaprabha, D. S. ChenthurPandian, and D. C. Vivekanandan, ‘‘Per-
formance of TCP, UDP and SCTP on sensor network with different data
reporting intervals,’’ IOSR J. Eng., vol. 2, no. 4, pp. 621–628, 2012.

[13] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, ‘‘Modeling TCP through-
put: A simple model and its empirical validation,’’ ACM SIGCOMM Com-
put. Commun. Rev., vol. 28, no. 4, pp. 303–314, 1998.

[14] J. B. Postel, User Datagram Protocol, document IETF RFC 768,
Aug. 1980.

[15] T. Dreibholz, E. P. Rathgeb, I. Rungeler, R. Seggelmann, M. Tuxen, and
R. R. Stewart, ‘‘Stream control transmission protocol: Past, current, and
future standardization activities,’’ IEEE Commun. Mag., vol. 49, no. 4,
pp. 82–88, Apr. 2011.

[16] Y. Gu and R. Grossman. Using UDP for Reliable Data Transfer Over
High Bandwidth-Delay Product Networks. Accessed: Nov. 22, 2018.
[Online]. Available: https://www.researchgate.net/publication/248287123_
Using_UDP_for_Reliable_Data_Transfer_over_High_Bandwidth-
Delay_Product_Networks

[17] Y. Gu and R. L. Grossman, ‘‘UDT: UDP-based data transfer for high-speed
wide area networks,’’ Comput. Netw., vol. 51, no. 7, pp. 1777–1799, 2007.

[18] L. Gui, Y.-C. Tian, and C. Fidge, ‘‘A conditional retransmission enabled
transport protocol for real-time networked control systems,’’ in Proc. IEEE
36th Conf. Local Comput. Netw. (LCN), Oct. 2011, pp. 231–234.

18962 VOLUME 7, 2019



N. M. Garcia et al.: KUDP: Concepts and Operation of an Almost Reliable Connectionless Transport Protocol

[19] A. Malhotra, V. Sharma, P. Gandhi, and N. Purohit, ‘‘UDP based chat
application,’’ in Proc. 2nd Int. Conf. Comput. Eng. Technol. (ICCET),
Apr. 2010, pp. V6-374–V6-377.

[20] T. Porter and X.-H. Peng, ‘‘HYBRID TCP/UDP video transport for
H.264/AVC content delivery in burst loss networks,’’ in Proc. IEEE Int.
Conf. Multimedia Expo (ICME), Jul. 2011, pp. 1–5.

[21] Q.Wu andN. S. V. Rao, ‘‘A class of reliable UDP-based transport protocols
based on stochastic approximation,’’ in Proc. 24th Annu. Joint Conf. IEEE
Comput. Commun. Soc. (INFOCOM), Mar. 2005, pp. 1013–1024.

[22] Y. Gu and R. Grossman, ‘‘SABUL: A transport protocol for grid comput-
ing,’’ J. Grid Comput., vol. 1, no. 4, pp. 377–386, 2003.

[23] Z. Yue, Y. Ren, and J. Li, ‘‘Performance evaluation of UDP-based high-
speed transport protocols,’’ inProc. IEEE 2nd Int. Conf. Softw. Eng. Service
Sci. (ICSESS), Jul. 2011, pp. 69–73.

[24] (Dec. 1, 2012). MAWI (Measurement and Analysis on the WIDE Inter-
net) Working Group Traffic Archive. [Online]. Available: http://mawi.
wide.ad.jp/mawi/

[25] K. Cho, K. Mitsuya, and A. Kato. Traffic Data Repository Maintained
by the MAWI Working Group of the WIDE Project. [Online]. Available:
http://mawi/.wide.ad.jp/mawi

[26] M. Karikari, ‘‘Analysis of Web protocols evolution on Internet traffic,’’
M.S. thesis, Dept. Comput. Sci., Univ. Beira Interior, Covilhã, Portugal,
2014.

[27] P. Wu, Y. Cui, J. Wu, J. Liu, and C. Metz, ‘‘Transition from IPv4 to IPv6:
A state-of-the-art survey,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 3,
pp. 1407–1424, 3rd Quart., 2013.

[28] R. M. Hinden, ‘‘IP next generation overview,’’ Commun. ACM, vol. 39,
no. 6, pp. 61–71, 1996.

[29] G. Tsirtsis and P. Srisuresh, Network Address Translation-Protocol Trans-
lation (NAT-PT), document IETF RFC 2766, Feb. 2000.

NUNO M. GARCIA received the B.Sc. degree
(Hons.) in mathematics/informatics, and the Ph.D.
degree in computer science and engineering from
the Universidade da Beira Interior (UBI), Cov-
ilhã, Portugal, in 2004 and 2008, respectively.
He was the Founder and also the Coordinator of
the Assisted Living Computing and Telecommu-
nications Laboratory, a research group within the
Instituto de Telecomunicações, UBI. He was also
the Co-Founder and is currently the Chair of the

Executive Council of the BSAFE LAB–Law enforcement, Justice and Public
Safety Research and Technology Transfer Laboratory, a multidisciplinary
research laboratory in UBI. He is the Coordinator of the Cisco Academy,
UBI. His main interests include next-generation networks, algorithms for
bio-signal processing, distributed and cooperative protocols, and the battle
for a free and open Internet. He is a member of the ISOC, and the Non-
Commercial Users Constituency, a group within GNSO in ICANN. He was
the Chair of the COST Action IC1303 AAPELE–Architectures, Algorithms
and Platforms for Enhanced Living Environments, Brussels, Belgium.

FÁBIO GIL received the B.Sc. degree in
computer science engineering. He is currently
pursuing the M.Sc. degree in computer science
engineering with the Universidade da Beira
Interior. He is currently a Quality Assurance
and Deploy Automation Analyst with Readiness
IT-Systems Integration, Fundão, Portugal. He is
also a Junior Researcher with the Instituto de
Telecomunicações.

BÁRBARA MATOS received the B.Sc. degree in
computer science engineering. She is currently
pursuing the M.Sc. degree with the Universi-
dade da Beira Interior. She is currently a Junior
Researcher with the Instituto de Telecomuni-
cações. She is also a Junior Researcher with the
Department of Artificial Intelligence and Systems
Engineering, Faculty of Computer Science and
Information Technology, Riga Technical Univer-
sity, Riga, Latvia. She is a member of the QAD-

Quality Assurance and Deployment at Readiness IT-Systems Integration,
Fundão, Portugal.

COULIBALY YAHAYA received the B.E. degree
(Hons.) in computer and information engineering
from International Islamic University Malaysia,
Malaysia, the M.Sc. degree in networks and
communication engineering from Universiti Putra
Malaysia, and the Ph.D. degree in computer sci-
ence from Universiti Teknologi Malaysia (UTM).
He was with AGETIC, a government agency in
charge of public ICT development (infrastructures
and applications), under the Ministry in Charge of

ICT, Bamako, Mali, from 2004 to 2008. During this period, he occupied the
post of the Director of Infrastructure andDevelopment, from 2006 to 2008. In
2012, he was with UTM, as a Visiting Lecturer. Furthermore, he was a Senior
Lecturer with UTM, from 2012 to 2015. He is currently the Head of the
Research and Development at AGETIC, and also an Assistant Professor with
the Université de Ségou, Ségou, Mali. His main research interests include
optical communication and networks, wireless and mobile networks, and
the Internet of Things. He has authored numerous journal and conference
papers. He is a member of the IEEE Communication Society and Optical
Society of America. He is also a referee for many high impact journals
and conferences, including the IEEE COMMUNICATION LETTERS, the IEEE
Communication Magazine, the International Journal of Communications
Systems (Wiley), and Sensors.

NUNO POMBO is currently an Assistant
Professor with the Universidade da Beira Interior
(UBI), Covilhã, Portugal. He is the Coordinator of
theAmbient LivingComputing and Telecommuni-
cation Laboratory, UBI. His current research inter-
ests include: information systems (with special
focus on clinical decision support systems), data
fusion, artificial intelligence, and software. He is
also a member of BSAFE Lab, the Instituto de
Telecomunicações, UBI, and the COST Actions:

CA15109 European cooperation for statistics of network data science.

ROSSITZA IVANOVA GOLEVA received the
M.Sc. degree in computer science and the Ph.D.
degree in communication networks. She has
experience in teaching for more than 15 dif-
ferent courses, had long and short scholarships
in Denmark, Greece, Portugal, The Netherlands,
Israel, and Germany. She has 36 years of expe-
rience as a Professor. She is currently an Assis-
tant Professor with the Department of Informatics,
New Bulgarian University, Sofia, Bulgaria. She

has authored over 100 research papers in various conferences and journals,
and has edited three books. She has participated in many EU funded and
regional projects, including EU ECHO Project ASpires (2017–2019) on
forest fire prevention and detection, IoT-based home automation, smart
environment systems, IC1303 COST Action algorithms, architectures and
platforms for enhanced living environments, and IC0703 COST action traffic
and monitoring analysis. She is dealing with the design and implementation
of hybrid environments, quality-of-service analysis, high-performance cloud
computing, and traffic engineering and simulations. She serves as a reviewer
of European commission research programs, many conferences, and jour-
nals. She has been the Vice Chair of the IEEE Bulgaria Section, since 1999,
where she is currently leading the Communication Chapter.

VOLUME 7, 2019 18963


	INTRODUCTION
	TCP AND UDP TRANSMISSIONS: A QUICK REVIEW
	KEYED USER DATAGRAM PROTOCOL
	THE PROBLEM
	A KEYED UDP PROTOCOL
	DESTINATION KEYED UDP
	SOURCE-DESTINATION-KEYED UDP AND TCP/IP PROTOCOL STACK
	NON-CONSECUTIVE PORT KEYS
	MUTUAL DEFINITION, AGREEMENT OR DISCOVERY OF THE TRANSMISSION PORT KEY
	RETRO-COMPATIBILITY WITH STANDARD UDP APPLICATIONS
	KEYED IPv6
	ADDITIONAL CONSIDERATIONS

	A PROPOSAL FOR THE STREAM RECONSTRUCTION ALGORITHM FOR KUDP
	CONCLUSIONS AND NEXT STEPS
	REFERENCES
	Biographies
	NUNO M. GARCIA
	FÁBIO GIL
	BÁRBARA MATOS
	COULIBALY YAHAYA
	NUNO POMBO
	ROSSITZA IVANOVA GOLEVA


