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ABSTRACT With the growing popularity of the fifth-generation (5G) wireless systems and cloud-enabled
Internet of Vehicles, vehicular cloud has been introduced as a novel mobile device computing mode, which
enables vehicles to offload their computation-intensive tasks to neighbors. In this paper, we first present
a 5G cloud-enabled scenario of vehicular cloud computing where a vehicular terminal works either as
a service provider with idle computation resources or a requestor who has a computation-intensive task
that can be executed either locally or offloaded to nearby providers via opportunistic vehicle-to-vehicle
communications. Then, we study the following issues: 1) how to determine the appropriate offloading rate
of requestors; 2) how to select the most appropriate computation service provider; 3) how to identify the
ideal pricing strategy for each service provider. We address the above-mentioned problems by developing a
two-player Stackelberg-game-based opportunistic computation offloading scheme under situations involving
complete and incomplete information that primarily considers task completion duration and service price.
We simplify the former case into a common resource assignment problem with mathematical solutions. For
the latter case, Stackelberg equilibriums of the offloading game are derived, and the corresponding existence
conditions are concretely discussed. Finally, a Monte-Carlo simulation-based performance evaluation shows
that the proposed methods can significantly reduce the task completion duration while ensuring the profit of
service providers, thus achieving mutually satisfactory computation offloading decisions.

INDEX TERMS Computation offloading, 5G cloud-enabled IoV, vehicle-to-vehicle communication,
Stackelberg equilibrium.

I. INTRODUCTION
With the rapid development and widespread popularity of
Internet of Things (IoT), smart mobile devices such as
smartphones and smart vehicles with network access have
been experiencing a boom in number and variety of indus-
try and manufacturing. Industrial IoT (IIoT) is known as
a type of industrial internet that incorporates many mod-
ern technologies including big data, machine-to-machine
(M2M) communication, automation, and machine learning.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Huang.

The evolution of the automobile industry is a core reason why
IIoT development has accelerated to an all-time high. In par-
ticular, Internet of Vehicles (IoV) can be regarded as a
branch of IIoT that has recently attracted great attention
and will gradually sweep the market as smart vehicles are
evolving into a mainstream commodity. By the year of 2020,
97 million vehicles will be manufactured across the automo-
bile industry worldwide, most of which will be wirelessly
connected [1]. Recently, the advent of the Fifth-Generation
(5G)-related technologies [2] has brought enticing prospects
to IoV concerning different communication modes such as
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
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communication [3], as well as the proliferation of
high-data-rate applications. Furthermore, many technological
advancements such as on-board cameras and embedded sen-
sors have inspired new types of applications with advanced
features, some of which are computation-insensitive such like
traditional IPTV [4] that mainly supports video entertain-
ments in IoV, but more of which are computation-intensive
which demand complex computing and analysis, such like
personalized navigation [5], Augmented Reality (AR) [6] and
some safety services.

IoV faces many challenges principally related to vehicular
mobility, limited computational resource and capability of
on-board equipment and inefficient management mecha-
nisms [7], [8]. Fortunately, the paradigm of cloud-enabled
IoV supported by Mobile Cloud Computing (MCC) tech-
nology, allows vehicular terminals to borrow computa-
tion and storage resources from cloud computing centers
or share excess resources with each other so that to aug-
ment the computational capabilities of mobile devices with
emerging resource-hungry applications and further effec-
tively surmount the aforementioned limitations. A promising
solution involves offloading computation-intensive tasks to
service providers, which efficiently alleviates the resource
constraints of vehicles by migrating part of the workloads
corresponding to an application to resource-rich surrogates,
such as location-fixed cloud computing centers and nearby
vehicles. The latter case is considered an innovative and
flexible ad-hoc offloading scheme that can further be entitled
as Vehicular Cloud (VC) [9], [10] by leveraging oppor-
tunistic V2V communication technology [11]. Compared
with location-fixed clouds, VCs possess the advantages of
infrastructure independency and economic efficiency. In a
VC computing scenario, a vehicular terminal can flexibly
play the part of either a service node providing computing
services while charging a certain commission or a task node
who has a computation request. A task vehicular terminal
can offload a certain proportion of the computation-
intensive tasks to one or multiple service vehicular
terminals1 when V2V connections become available. Com-
putation results can be transferred to the task vehicular termi-
nal either directly, or via a V2V routing path, or uploaded to
the Road Side Units (RSUs) for future delivery with V2V dis-
connection. One significant computation offloading strategy
is to implement reasonable deployment of cloud resources
to meet user requirements and improve Quality of Service
(QoS) while achieving mutually beneficial solutions for both
parties.

We address the following technical and economical chal-
lenges faced with the proposed computation offloading
framework in 5G cloud-enabled IoV as follows:

i) How to select the appropriate service provider?
ii) How to decide the proportion of data that should

be offloaded to meet the requirements of service

1In this paper, we mainly focus on choosing one appropriate service
provider.

requestors in terms of task completion duration and
monetary cost?

iii) What is the optimal pricing strategy for service
providers through fully considering service profit and
cost?

To address these issues while coping with the tremendous
demands for high data transmission rates and strong compu-
tational capabilities in IoV, as well as the instabilities intro-
duced by varying network topologies, in this paper, a novel
opportunistic V2V computation offloading scheme based
on game theory is established under two different circum-
stances. The main contributions of this paper are summarized
as follows:
• A 5G cloud-enabled IoV framework is presented
under which computation offloading can happen among
vehicular terminals with different identities of service
requestor and provider, to greatly support high user
mobility while relieving the limitations on signal cov-
erage of location-fixed cloud servers.

• Computation offloading can happen among mobile
nodes where task vehicular terminals and service vehic-
ular terminals can communicate with each other through
one-hop V2V channels. Although limitations brought
by opportunistic communication have impact on com-
putation offloading procedure, it also greatly improves
spectrum efficiency and support large-scale end-to-end
performance in short-distance communications.

• We formulate the computation offloading scheme and
pricing strategy as a Stackelberg game that can effec-
tively model interactions between vehicles and take full
consideration on vehicular mobility models, V2V con-
tact durations, computational capabilities, channel con-
ditions as well as service costs under both circumstances
of complete information and incomplete information,
where the former case is simplified into a common
resource assignment problem (RAP) with mathematical
solutions. For the latter case, we obtain the Stackelberg
equilibrium and corresponding existing conditions.

• We provide insights based on the performance
evaluation through Monte-Carlo simulation. Results
show that the proposed offloading scheme can
effectively reduce task completion duration and
improve QoS while preserving benefits for service
providers, achieving mutually satisfactory results. Fur-
thermore, potential competitions among different ser-
vice providers are also discussed according to sufficient
simulations.

The rest of this paper is organized as follows. We conduct
an intensive survey of related work in Section II. Then,
we present the problem overview and system models in
Section III. In Section IV, we propose the opportunistic com-
putation offloading game under circumstances of complete
information and incomplete information.We next analyze the
performance of the method and present the numerical results
in Section V. Finally, we summarize the study and discuss our
future work in Section VI.
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II. RELATED WORK
Computation offloading is one of the most challenging and
hot topics in mobile cloud computing environments [12],
especially when latency and cost are considered. In this
section, we conduct intensive and comprehensive investiga-
tion of computation offloading issues in cloud-enabled IoV.

The first paradigm widely used in cloud-enabled IoV was
the remote cloud [13] but resulted in significant transmis-
sion delays, serious degradation, and low reliability [14] due
to variability in network topologies, capacity limitations of
wireless networks as well as delay fluctuations in trans-
mission on backhaul and backbone networks. To overcome
the aforementioned problems, Multi-access Edge Computing
(MEC) technology was established, which aims at converg-
ing telecommunication and IT services [15], providing a
cloud computing platform at the edge of pervasive Radio
Access Networks (RAN) in close proximity to vehicles,
bringing business localization along with open wireless net-
work capabilities. In order to reduce latency and transmission
costs, literature [16] studies the effectiveness of the com-
putation transfer strategies with V2I and V2V communica-
tion modes where the tasks are adaptively offloaded to the
MEC servers through direct uploading or predictive relay
transmissions. Nonetheless, they didn’t consider available
on-board resources and remote areas without RSU coverage.
To reduce the latency of the computation offloading of
vehicles, a multiple vehicles computation offloading game
was studied in vehicular edge networks [17]. However,
MEC servers can still suffer from resource constraints as
well as the signal coverage limitations of RSUs [7], [11],
moreover, price can not be ignored as another cost due to that
cloud computing is a pay-as-you-go service.

In VC-based systems, each vehicular terminal can access
cloud servers and utilize the pay-as-you-go service for its
own purpose.2 Through applicable offloading, the resources
of vehicular users are dynamically scheduled on demand [11].
The task completion duration can be effectively reduced with
better QoS, meanwhile, service providers’ benefits can be
protected by establishing an appropriate pricing mechanism.

Although many studies have investigated device-to-device
(D2D) computation offloading for smartphones, few efforts
have been put forward into V2V computation offloading
scheme in cloud-enabled IoV. For the purpose of fully expe-
riencing high-rate broadband multimedia services and pro-
longing the battery life of smartphones, Feng et al. [18]
developed a computation offloading scheme based on
D2D communications where mobile devices can offloaded
tasks to nearby neighbors. Literature [7] proposed an oppor-
tunistic task scheduling mode assisted by mobile cloudlets
and performed a detailed analysis but did not consider
task execution duration. Chen et al. [19] proposed a D2D
Crowd framework for mobile edge computing, where a
crowd of devices leverage network-assisted D2D collabora-
tion15 for computation and communication resource sharing

2In this paper, solving computation-intensive tasks is our main purpose.

with key objective of achieving energy-efficient collabora-
tive task executions at the network edge for mobile users.
In cloud-enabled IoV, literature [20] investigated a cloud-
assisted vehicular network architecture in which each cloud
has its own features, and a corresponding optimal scheme
was obtained by solving a Semi-Markov Decision Process
aimed at maximizing the system’s expected average reward.
To improve network capacity and system computing capa-
bility, [21] extended the original cloud radio access network
(C-RAN) to integrate local cloud services to provide a low-
cost, scalable, self-organizing, and effective solution called
enhanced C-RAN with essential technologies of D2D and
heterogeneous networks based on a matrix game theoretical
approach. Although several studies have solved the problem
of high-efficiency computation offloading to some extent,
the limitation of the vehicular cloud can still remain given
strict requirements of inter-contact duration based on the
premise that a pair of service requestor and provider shall
have enough time to offload the computation-intensive tasks
and applicable pricing strategy, otherwise, achieving optimal
offloading results will prove difficult. To the best of our
knowledge, we are one of the few works that study computa-
tion offloading between moving vehicles.

III. PROBLEM OVERVIEW AND SYSTEM MODEL
In this section, we first provide an overview of the
mobile computation offloading problem. Then, the scenario
employed in this paper and basic assumptions are described.
Finally, the traffic model of vehicular terminals, communica-
tion model between two vehicles, and the task computation
model are respectively introduced.

A. PROBLEM OVERVIEW
Two roles are mainly existed in the mobile computa-
tion offloading problem, task vehicular terminals and ser-
vice vehicular terminals. For the simplicity of notation,
the ‘‘vehicular terminal’’ is written as VT for the rest
of this paper. A task VT is a service requestor who has
a computation-intensive task, which can be modeled as
a 7-tuple Tn = {P, f T , v, θ,D, λ,Tmax

}, where P describes
the location, f T is defined as the computational capability
expressed by CPU cycle/s, v and θ denote the velocity (km/h)
and angle between the moving direction and the horizontal
line of the road, respectively. The symbol D, λ, and Tmax

denote the data size (bit) of the computation-intensive task,
the proportion of computational data that a task VT decides
to offload, and the tolerant task duration. Task VTs may be
faced with problems of insufficient computation resources,
non-ideal computational capabilities and channel instabilities
brought by mobility.

A service VT can be described as a 5-tuple Sn =
{P, f S , v, θ, p}, similar to the task VT described above where
f S represents the computational capability on the service VT.
Let the price for processing one bit of data be p ∈ {c +
1p, c + 21p, . . . , pmax

}, where c indicates the fixed cost
including communication cost and facility cost (e.g., wear
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and tear of smart on-board equipment) and is mapped into
monetary cost with units such as US Dollars. The minimal
granularity of price is denoted as 1p (e.g., one dollar can
be seen as a minimal granularity where the price can only
be an integral multiple of a dollar) and pmax

= c + β1p,
which represents the maximum unit price of market regula-
tion where β is defined as a positive integer. Due to more
powerful computational capability and adequate computation
resources, a service provider is expected to offer computing
service and request a reasonable commission.

In the mobile computation offloading problem, each task
VT aims to choose an applicable service provider by commu-
nicating with service VTs in his communication range, and
determine the appropriate value of λ based on a given p to
ensure rapid completion of the task, that is, reducing the
task completion duration as much as possible. Moreover,
each service VT can also have opportunities adjusting service
price p to guarantee and increase his own benefits, while
achieving better QoS.

B. SCENARIO AND MODELS
We consider a dynamic traffic scenario of a two-way straight
road of finite length. It is worth noting that a VT can either be
a service requestor or a service provider based on the suffi-
cient degree of the computation resources and computational
capability. In a particular snapshot as we concern, the identity
of each vehicle is stable and absolute, to make subsequent
analysis more efficient. Consider N + M VTs where N are
task VTs owning computation-intensive tasks that can be
either executed locally or partially offloaded to an appropriate
service node. The remaining M are regarded as service VTs
with relatively sufficient resources and strong computational
capabilities to provide services. The resources of task VTs
and service VTs are virtualized as Resource Blocks (RBs),
such as CPU cycles, and aggregated into a resource pool.
Several RSUs exist alongside the road, each of which has
a coverage radius defined as R′ in which vehicles periodi-
cally report various information such as location and velocity
through V2I channels. Any two RSUs can communicate with
each other directly through wired links.

Several basic assumptions in this paper are listed as
follows:
• The velocity and direction of every VT remains
unchanged during a short offloading period (e.g., a few
seconds) [1].

• One service VT can provide services for several task
VTs within his communication range while ignoring the
interference and interactions among these services.

• Computation results can be delivered non-destructively
throughV2V or V2I channels, and the feedback duration
can be ignored [22], [23].

1) TRAFFIC MODEL
We denote the set of N task VTs and M service VTs as
T = {Tni|i ∈ {1, . . . ,N }} and S = {Snj|j ∈ {1, . . . ,M}}.
The velocity of every VT in the above two sets is defined

FIGURE 1. The 5G cloud-enabled IoV scenario.

as vk ∈ [vmin, vmax], k ∈ {1, . . . ,N + M}, in which vmin
and vmax are the minimum and maximum velocity of a VT.
For the angle θk ∈ {0, π}, both task VTs and service VTs
maintain uniform linear motion during computation offload-
ing [1]. Suppose that the initial location of VT k, k ∈
{Tn1, . . . ,TnN , Sn1, . . . SnM } at time t0 = 0 is Pk (t0) =
(xk , yk ); the location after duration 1t can be written as
Pk (t0 +1t) = (x1tk , y1tk ).{

x1tk = xk + vk1t cos θk
y1tk = yk + vk1t sin θk

(1)

2) COMMUNICATION MODEL
Each pair of task VTs and service VTs can opportunistically
communicate only when they are within the communication
range R, which can be defined as

∥∥PTni (t) − PSnj (t)
∥∥ ≤ R,

where PTni (t) and PSnj (t) are the locations of task VT i and
service VT j at time t . For simplicity, the data transmission
rate (bit/s) rj between Tni and Snj is considered a fixed
average value related to several factors including channel
condition, packet loss retransmission, transmission power,
and outage probability [24], [25].

Based on the traffic model discussed above, assuming
that Tni has a computation-intensive task at time t0 = 0,
the set of candidate service VTs within the communication
range of Tni can be denoted as Si = {Sna| a ∈ {1, . . . ,m}}.
Correspondingly, the Euclidean distance between Tni and Sna
at time 1t can be calculated as (2):

dSna (1t) =
√
(x1tTni − x

1t
Sna )

2 + (y1tTni − y
1t
Sna )

2 (2)

As for the straight road, due to that every vehicle maintains
uniform linear motion for a small period of time during
offloading [1], the contact duration 1ta of Tni and Sna can
be ascertained by solving the system of linear equations with
one unknown in (3):

R2 = (x1taTni − x
1ta
Sna )

2
+ (y1taTni − y

1ta
Sna )

2 (3)

3) COMPUTATION MODEL
The task completion duration consists of the time con-
sumed by three procedures: 1) the delivery of task contents;
2) task execution; and 3) task resulting feedback. Considering
a situation where a task is computation-intensive and the V2V
mode is unavailable, the duration of local processing for the
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TABLE 1. Variables and notations.

task in Tni is denoted by tLi = KDi/f Ti , where f Ti represents
the local processing speed and tLi is typically less than the
tolerant duration Tmax

i but results in an unsatisfactory task
completion duration, K is denoted as a constant describing
the mapping between data size and CPU cycles [22]–[24].

Let λa be the proportion of data that Tni chooses to offload
to service VT Sna ∈ Si, the task duration executed in parallel
by two VTs can be computed as (4), where ω expresses the
resulting feedback duration that is the same for all Tni, i ∈
{1, . . . ,N } due to that the size of the task result is much
smaller than the input data size and can be further neglected:

tCi = max(Kλa/f Sa + λa/ra,K (Di − λa)/f Ti )+ ω (4)

Obviously, the inequation tCi ≤ tLi will always be true.
The variables and notations used in this paper are summarized
in Table 1.

IV. THE OPPORTUNISTIC MOBILE COMPUTATION
OFFLOADING GAME
We design a computation offloading Stackelberg game,
which is a non-cooperative and leader-follower based
approach that can reasonably and efficiently describe the
sequential interactions among vehicles of different identities
under circumstances of complete information and incomplete
information. Furthermore, due to that the game and solution
are appropriate for every pair of task nodes as well as ser-
vice nodes, the subscript referring to one specific VT will
be ignored. Consider an offloading game composed of two
players: a task VT (T ) and one of the service VTs (S) within
the communication range of the task VT. We denote the
computation offloaded to the service VT as λ ∈ [0,D] (bit).
If λ = 0, the task VT processes the entire task locally,
whereas λ = D means that all data are processed by the
service VT. The offloading rate can be chosen as a tradeoff
between the task completion duration and the commission
that task VT has to pay for service VT.

FIGURE 2. Illustration of the mobile computation offloading game.

As mobile cloud computing is considered as a kind of
pay-as-you-go service, service VTs can provide computing
service on the premise of obtaining certain commissions from
the task VTs, as monetary benefits. An illustration of the
mobile computation offloading game is shown in Fig. 2.

A. UTILITY FUNCTIONS
We consider a mobile computation offloading Stackelberg
game denoted by G in which the service VT chooses its
quoted price per bit p ∈ {c+1p, c+ 21p, . . . , pmax

}. Then
the task VT decides whether to offload and how much data
will be offloaded based on the quoted price. The data trans-
mission rate (bit/s) and the inter-contact duration between a
task VT and a service VT are denoted as r and 1t , respec-
tively. What needs to be emphasized is that the actual amount
of data allowed to be offloaded depends on the smaller value
between D and r1t . For simplicity, we adjust the value
λ ∈ [0,min(D, r1t)].
For a task VT, the revenue function is denoted as the

duration saved from vehicular cloud computing mode:

α1(KD/f T −max(Kλ/f S + λ/r,K (D− λ)/f T ))

where f T and f S represent the respective computational capa-
bility of the two players. The first term and second term
represent tL and tC respectively asmentioned inComputation
Model. The cost function is mainly regarded as the total
payment for the computation service: α2(p · λ). Above all,
the utility function of a task VT can be shown as (5):

UT (p, λ) = α1(KD/f T −max(Kλ/f S + λ/r,

K (D− λ)/f T ))− α2(pλ) (5)

where α1 and α2 are the positive weight coefficients that
satisfy α1 = 1−α2 depending on the personal preferences of
task VTs.

Accordingly, the revenue function of a service VT is cal-
culated as p · λ; the cost function can be similarly defined as
c · λ. The utility function of a service VT can be written as:

US (p, λ) = pλ− cλ (6)

In summary, we consider the mobile computation offload-
ing Stackelberg game denoted by GSE = 〈{T ,S}, {λ, p},
{UT ,US}〉 in which the service VT first chooses its quoted
price p, and then the task VT chooses the offloading rate
λ based on the observed p. For simplicity, the follower
is assumed to accurately obtain the action of the leader.
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The Stackelberg equilibrium of the offloading game denoted
by (pSE , λSE ) is given as follows:

λSE (p) = argmax
λ∈[0,min(D,r1t)]

UT (p, λ) (7)

pSE = argmax
p∈(c,pmax]

US (p, λSE (p)) (8)

In the Stackelberg equilibrium of the offloading game,
a service VT acts as a leader and can first choose the quoted
price tomaximize its utility given by (8) while considering the
response of the task VT as the follower. Then, a proportion of
offloading data is determined to maximize the utility in (7)
by the task VT based on the observed quoted price.

Before discussing the analysis, we briefly examine func-
tion tC = max(Kλ/f S + λ/r,K (D− λ)/f T ) shown in (4).
For the physical significance of tC , the task completion dura-
tion depends on the larger processing latency between the
task VT and service VT. In the case of ignoring any other
constraints, tC can reach its minimum value when Kλ/f S +
λ/r = K (D− λ)/f T . Let the value that makes Kλ/f S +
λ/r = K (D− λ)/f T be λ0 = KrDfS/((f T + f S )Kr + f T f S ).

B. MOBILE OFFLOADING COMPLETE INFORMATION
GAME (MOCIG)
In this work, when both players have accurate information
about the features, strategies, and utility functions of each
other, the task VT can fully grasp the unit cost ca of each
service VT Sna ∈ Si, which causes the service VTs to
lose their bargaining capabilities. A service VT Sna can only
possibly be chosen if the quoted price pa = ca + 1p. Con-
sequently, the above-mentioned mobile offloading complete
information game can be simplified into a common RAPwith
mathematical solutions.

For a task VT Tni, the set of service VTs in its communi-
cation range is denoted by Si = {Sna|a ∈ {1, . . . ,m}}. The
utility functions of Tni can be represented as a set UTni =
{UTa(ca +1p, λ)|a ∈ {1, . . . ,m}} where

UTa (ca +1p, λa) = α1(KDi/f
T
i −max(Kλa/f Sa
+ λa/ra,K (Di−λa)/f Ti )) (9)

The most appropriate service VT and offloading data size
can be obtained by finding the largest value greater than zero
among the elements in set UTni. The relevant service VT and
offloading data size will be the appropriate solution for the
game, and the algorithm is shown in Table 2.
The calculation of USE

Ta = argmax
λa∈[0,min(Di,ra1ta)]

UTa(ca +

1p, λa) is described in Table 3.

C. MOBILE OFFLOADING INCOMPLETE INFORMATION
GAME (MOIIG)
In realistic applications, participants in a game are usually not
able to fully know the features, strategies, and utility func-
tions of each other. In the incomplete information scenario,
we consider the Stackelberg equilibrium of the game GSE =
〈{T ,S}, {λ, p}, {UT ,US}〉mentioned before as follows.

TABLE 2. Algorithm of mobile offloading complete information game.

TABLE 3. The calculation of USE
Ta .

Theorem 1: The mobile computation offloading game has
a SE(pmax, r1t) if{

r1t < λ0 (10a)

∂UT (pmax, λ)/∂λ > 0, λ ∈ [0, r1t] (10b)

Proof: When λ ≥ 0, we have

∂US/∂p = λ ≥ 0 (11)

According to (11), we have

argmax
p∈{c+1p,...,pmax}

US (p, λ)

= US (pmax, λ)

≥ US (pmax
−1p, λ) ≥ . . . ≥ US (c+1p, λ) (12)

When (10a) holds, we have

UT (pmax, λ)=
(
α1K/f T − α2pmax) λ, λ∈ [0, r1t] (13)

When (10b) holds, we have

argmax
λ∈[0,r1t]

UT (pmax, λ)

= UT (pmax, r1t) > UT (pmax, r1t − 1)

> UT (pmax, 2) > . . . > UT (pmax, 1) (14)

Thus, we have a SE(pmax, r1t) if (10a) and (10b)
holds. �
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Remark 1: In the Stackelberg game G, the task VT decides
the offloading proportion based on the observed quoted price
of the service VT. When the task VT is insensitive to payment
and the actual amount of data that can be offloaded is rather
small (smaller than λ0), the service VT decides to charge pmax

per bit, and the task VT chooses to offload the proportion of
the task that can be transmitted during contact.
Theorem 2: The mobile computation offloading game has

a SE(pmax, λ0) if{
r1t ≥ λ0 (15a)

∂UT (pmax, λ)/∂λ > 0, λ ∈ [0, λ0] (15b)

Proof: When λ ≥ 0, we have equation set (11)–(13).
When (15a) holds, we have

∂UT (pmax, λ)/∂λ = −α1(K/f S + 1/r)− α2pmax < 0,

λ ∈ [λ0,min(0, r1t)] (16)

If (15b) holds, we have

argmax
λ∈[0,min(D,r1t)]

UT (pmax, λ) = UT (pmax, λ0) (17)

where UT (pmax, λ0) > UT (pmax, 1) > . . . > UT (pmax,

λ0 − 1) and UT (pmax, λ0) > UT (pmax, λ0 + 1) > . . . >

UT (pmax,min(D, r1t)).
Thus, we have a SE(pmax, λ0) if (15a) and (15b) hold. �
Remark 2: In the Stackelberg game G, when a task VT is

insensitive to payment and the actual amount of data that
can be offloaded is rather large (larger than λ0), the service
VT decides to charge pmax per bit, and the task VT can reach
an ideal choice when it decides to offload data λ0.
Theorem 3: The mobile computation offloading game has

a SE(
⌊
Kα1/1pf Tα2

⌋
·1p, r1t) if

r1t < λ0 (10a)

∂UT (pmax, λ)/∂λ < 0, λ ∈ [0, r1t] (18a)⌊
Kα1/1pf Tα2

⌋
·1p > c (18b)

Proof: As mentioned above, under the cases of
Theorem 1 and Theorem 2, we have (11) and (12). �
If (10a) and (18a) each holds, we have

argmax
λ∈[0,r1t]

UT (pmax, λ) = UT (pmax, 0) = 0 (19)

When (10a), (18a), and (18b) hold, we have

argmax
p∈{c+1p,...,pmax}

US (p, λ) = US (
⌊
Kα1/1pf Tα2

⌋
·1p, λ)

(20)

and

argmax
λ∈[0,r1t]

UT (
⌊
Kα1/1pf Tα2

⌋
·1p, λ)

= UT (
⌊
Kα1/1pf Tα2

⌋
·1p, r1t)

> UT (
⌊
Kα1/1pf Tα2

⌋
·1p, r1t − 1)

> UT (
⌊
Kα1/1pf Tα2

⌋
·1p, r1t − 2)

> . . . > UT (
⌊
Kα1/1pf Tα2

⌋
·1p, 1) (21)

Under the condition of holding (10a), (18a) and (18b),
we have a SE(

⌊
Kα1/1pf Tα2

⌋
·1p, r1t).

Remark 3: When a service VT chooses to charge the maxi-
mum price, the task VT will not offload any data to the service
VT due to the decreasing monotonicity of its utility function
(the better choice for the task VT is to execute the computation
task locally). The above situation will lead to a poor result
for the service VT with no benefits. Consequently, the service
VT will need to change the pricing strategy to increase its
benefits to the greatest extent on the premise of a nonzero
benefit while ensuring positive income for the task VT.
Theorem 4: The mobile computation offloading game has

a SE(
⌊
Kα1/1pf Tα2

⌋
·1p, λ0) if

r1t ≥ λ0 (15a)

∂UT (pmax, λ)/∂λ < 0, λ ∈ [0, λ0] (22a)⌊
Kα1/1pf Tα2

⌋
·1p > c (18a)

Proof: Similar to that of Theorem 3. �
Remark 4: When the actual amount of data that can be

offloaded is rather large (15a), similar to Theorem 3, the ser-
vice VT has to modify its strategy and the task VT is in favor
of offloading λ0 bit data.
Theorem 5: The mobile computation offloading game has

a SE(c+1p, 0) if{
∂UT (pmax, λ)/∂λ < 0, λ ∈ [0, λ0] (22a)⌊
Kα1/1pf Tα2

⌋
·1p ≤ c (23a)

Proof: When (22a) and (23a) hold, we have

US
(⌊
Kα1/1pf Tα2

⌋
·1p, λ

)
≤ 0 (24)

and

argmax
λ∈[0,min(D,r1t)]

UT (c+1p, λ) = UT (c+1p, 0) = 0 (25)

Under the condition of holding (22a) and (23a), we have a
SE(c+1p, 0). �
Remark 5: The service VT will always choose the strategy

that benefits itself. When a minimum quoted price cannot
meet the requirements of the task VT, the service VT will not
provide any computing service and the task VT will decide to
execute the computation-intensive task locally.

V. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed
mobile offloading scheme through Monte Carlo simulation
on MATLAB platform. Notably, the offloading scheme of
computation-intensive tasks in application layer is not lim-
ited by and also put no restrictions on the underlying proto-
cols. Three baseline methods are introduced as follows, and
compared with the proposed methods in this simulation.
• Local Computing Scheme (LCS): where each task
VT processes the computation-intensive task locally
without offloading.
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TABLE 4. Simulation parameters.

FIGURE 3. Histogram describes the number of service VTs that can
communicate with one task VT.

• First Come First Serve (FCFS): where each task
VT chooses the first accessing service VT and considers
λ0 as the offloading rate with pmax as the quoted price.

• Fastest Processing Scheme (FPS): where each task
VT chooses the service VTwith the most powerful com-
putational capability, and considers λ0 as the offloading
rate with pmax as the quoted price.

We first introduce the simulation condition as well as param-
eters and then the performance evaluation and discussions are
presented.

A. PARAMETER SETTING
In a map of a finite-length straight road with four lanes,
a VT will return once it reaches the road boundary. Three
RSUs are uniformly spaced alongside the road with a cov-
erage radius of R′ = 300 m. We have compared the per-
formance of MOCIG, MOIIG, and aforementioned baseline
methods on the task completion duration, the knockdown unit
price, the value of utility functions, as well as the impact
on different value of α1 and α2. In order to prove the gen-
eralization of the proposed methods and cover as many as
possible traffic conditions, at least 1000 simulations have
been conducted to verify the statistical characteristics and
before each simulation, some of the parameters will be reset
as Table 4.

B. SIMULATION RESULTS
Fig. 3 shows the statistical histogram describes the frequency
of service VT numbers that can communicate with one task
VT through 1000 simulations. We clearly see that the Monte
Carlo Simulation can fully consider various traffic conditions
that may appear during vehicles’ moving and has favorable
generalization characteristics that approximate a Gaussian

FIGURE 4. Performance on task completion duration (N = 10,
α1 = α2 = 0.5).

distribution with a mean value of µ = 11, around which can
be seen as the most common situations.

We ran 1000 simulations for each value of M from
5 to 30 and analyzed the average task completion duration
of 10 task VTs and the average unit knockdown price of ser-
vice VTs, in the simulation environment. As shown in Fig. 4,
the data executed locally without computation offloading in
LCS takes much more time than vehicular cloud computing
mode. The average task completion duration decreases with
increasing density of service VTs in the proposed scenario
due to task VTs having more options and being inclined to
choose service providers that are more favorable to them-
selves in both MOCIG and MOIIG. In FCFS and FPS mode,
the task duration is less than the proposed two methods due
to offloading rate λ0 but results in non-ideal utilities as shown
in Fig. 6 without a bargain procedure. In MOCIG mode,
service providers have no bargaining capabilities and can
only be passively accepted; the task completion duration is
therefore slightly smaller than that in MOIIG mode due to
less service cost. Similarly, the average knockdown unit price
shown in Fig. 5 decreases following an increase in poten-
tial competition among service providers in both proposed
methods. As for MOIIG mode, service providers can earn
higher profits due to bargaining capabilities. In FCFS and
FPS, quoted prices are set as pmax and no bargain procedure
exists, which lead to the highest average unit knockdown
prices and US but lowest UT in Fig. 6, and can hardly bring
both players with win-win situations.

In Fig. 6 and Fig. 7, we analyze the variation tendency in
the average value of utility functions UT and US along with
the increasing number of service VTs. In Fig. 6, the curves
describe the average utility of the task VTs in MOIIG and
MOCIG which present rising tendency due to better options.
As for MOIIG mode, task VTs need to pay more to ser-
vice providers with bargaining capabilities, which accord-
ingly results in a lower value of UT compared with MOCIG
mode. The average value of UT in FCFS and FPS is far
less than ones in the proposed methods. As for the util-
ities of service VTs shown in Fig. 7, the average value
of US remains unchanged in MOCIG mode but clearly
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FIGURE 5. Performance on unit knockdown price (N = 10, α1 = α2 = 0.5).

FIGURE 6. Performance on the value of UT (N = 10, α1 = α2 = 0.5).

FIGURE 7. Performance on the value of US (N = 10, α1 = α2 = 0.5).

declines in MOIIG mode as the number of service providers
increases owing to more and more competitors who can
also provide computing services. Without a bargaining pro-
cedure, the US in FCFS and FPS could be much larger for
service VTs.

In Fig. 8 and Fig. 9, we mainly pay attention to the aver-
age task completion duration and unit knockdown price of
one specific task requestor with increasing service provider
density. In other words, we simulate various situations that
may occur as the vehicle moves forward. The task completion
duration without offloading in LCS is obviously much larger
than that in MOCIG, MOIIG as well as FCFS and FPS
modes which is similar in Fig. 4. With the availability of
options, the average task completion duration of the spe-

FIGURE 8. Performance on task completion duration (N = 1,
α1 = α2 = 0.5).

FIGURE 9. Performance on unit knockdown price (N = 1, α1 = α2 = 0.5).

FIGURE 10. Relationship between λ and α1 (N = 1).

cific task VT decreases by choosing an appropriate service
provider who is more beneficial. For FCFS and FPS mode,
the average task completion duration can be smaller due
to the optimal offloading rate λ0 without considering price
but becomes non-ideal compared to the proposed methods
given increasing service provider options. As can be seen
in Fig. 9, a requestor tends to choose a cheaper service
provider under the same conditions due to increasing com-
petition among service VTs. Because of limited bargaining
capabilities, the knockdown unit price in MOCIG can be far
below that in MOIIG mode. Owing to the quoted price pmax ,
service providers in FCFS and FPS mode can obtain the
highest benefits.
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Fig. 10 shows the correlativity of offloading rate λ and
weight coefficient α1 of one specific task VT through
1000 simulations for each value in set α1 ∈ {0, 0.1,
0.2, . . . , 1}. For the investigated task VT, the larger the value
of α1 , the more sensitive the task VT is to task completion
duration. In one of the bounding cases α1 = 0, the task
VTwill not offload any data because the unwillingness to pay
any commission (α2 = 1). With an increase in α1, a service
requestor becomes price insensitive and generally chooses
a more appropriate offloading rate to achieve higher utility.
When α1 = 1, the service requestor is willing to pay any
price if the task completion duration can be reduced.

VI. CONCLUSION
In this paper, we propose a Stackelberg game based V2V
computation offloading scheme in 5G cloud-enabled IoV
under circumstances of complete information and incom-
plete information, while fully considering significant factors
such as wireless channel conditions, vehicular mobilities,
limitations on computational resources as well as capabil-
ities and service prices, etc. Mathematical solutions show
that the offloading game can always offer appropriate
resource assignments and Stackelberg equilibriums, respec-
tively. Moreover, simulation results demonstrate that the
proposed scheme can efficiently reduce task completion dura-
tions while protecting service providers’ benefits, achieving
mutually satisfactory computation offloading decisions for
both players. In our future work, we plan to consider some
more challenging cases including multi-player cooperative
game where one task can be assigned to several service
providers, graph-based task offloading mechanism, as well
as scenarios with more complicated vehicular mobilities.
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