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ABSTRACT Wi-Fi channel state information (CSI) has emerged as a plausible modality for sensing different
human activities as a function of modulations in the wireless signal that travels between wireless devices.
Until now, most research has taken a statistical approach and/or purpose-built inference pipeline. Although
interesting, these approaches struggle to sustain sensing performances beyond experimental conditions.
As such, the full potential of CSI as a general-purpose sensing modality is yet to be realized. We argue
that a universal approach with the well-grounded formalization is necessary to characterize the relationship
between the wireless channel modulations (spatial and temporal) and human movement. To this end,
we present a formalism for quantifying the changing part of the wireless signal modulated by human motion.
Grounded in this formalization, we then present a new subspace tracking technique to describe the channel
statistics in an interpretable way, which succinctly contains the human modulated part of the channel. We
characterize the signal and noise subspaces for the case of uncontrolled human movement and show that
these subspaces are dynamic. Our results demonstrate that the proposed channel statistics alone can robustly
reproduce the state-of-the-art application-specific feature engineering baseline, however, across multiple
usage scenarios. We expect that our universal channel statistics will yield an effective general-purpose
featurization of wireless channel measurements and will uncover opportunities for applying CSI for a variety
of human sensing applications in a robust way.

INDEX TERMS Channel sensing, interpretable dimensionality reduction, machine learning, multiple-input
multiple-output (MIMO).

I. INTRODUCTION
Due to the ubiquity and penetration of Wi-Fi in our homes,
workplaces and cities, Wi-Fi traffic can be repurposed as
a sensing modality for many potential applications beyond
the original intended data-carrier functionality. Indeed, recent
compelling research has reimagined a commodity Wi-Fi
device as a multi-purpose sensor capable of turning Wi-Fi
traffic—that is, packets transmitted over a wireless commu-
nication channel for either data transfer and/or the judicious
probing of the channel—into a rich source of computa-
tional information explaining space dynamics, assessing the
social environment and even tracking people’s posture, and
gestures [1]–[5].

However, human-perturbed Wi-Fi channels remain
ill-understood. Despite prior art showcasing compelling use
cases, ad hoc inference pipeline and careful parameter tuning

The associate editor coordinating the review of this manuscript and
approving it for publication was Chunlong He.

are commonplace for arriving at sensing recipes that yield
good performance. Essentially, conventional approaches seek
to associate patterns in Wi-Fi channel state information (CSI)
with human activity through training classifiers on top
of often bespoke featurization e.g. statistical distributions
in [3] and Doppler variations in [5]. Although these sensing
approaches demonstrated the potential of CSI sensing in a
brand new class of applications, often, they are sensitive to
environmental conditions and thus require controlled setup
and development of pre-processing and inference pipelines
which do not generalize across tasks (i.e. applications) and
deployment environments. As such, CSI as a general-purpose
sensing modality has not been adopted widely.

We argue for unleashing the true potential of CSI as a
general-purpose human sensing modality; we need to turn
our attention to developing sound theories explaining the
relationship between spatiotemporal wireless channel mod-
ulations and human movement. Such characterization will
assist in designing the future Wi-Fi network with stack
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layers augmented with annotations derived from the wireless
propagation medium. These annotations would describe the
physicality induced by the dynamic human movement which
accompanied the delivery of data, thereby providing added
context.
To this end, in this paper we present a first formalization

for quantification of the changing part of the wireless signal
modulated by human motion. Based on established chan-
nel models we devise new channel statistics that succinctly
characterize the signal modulated by dynamic human move-
ment. We then demonstrate that these channel statistics carry
enough information to describe spatiotemporal human move-
ment when observed continuously. This leads us to develop
a novel subspace tracking algorithm that continuously anal-
yses signal subspace as a function of dynamic human move-
ment. The application of such metric enables us to precisely
describe a set of human movement primitives including pres-
ence, motion activities, etc. As a step towards realizing CSI
as a general-purpose sensing modality, we showcase how
features extracted from the evolution of these subspaces can
robustly reproduce state-of-the-art application-specific fea-
ture engineering baseline, however, across multiple usage
scenarios and environmental conditions. Our research contri-
butions are three-fold:

1) Statistical analysis of the signals to formally devise
new statistics characterizing human-perturbed Wi-Fi
channels.

2) Formalization of CSI sensing as a subspace tracking
problem, demonstrating that the analysis of the dynam-
ics of a signal subspace is the equivalent of sensing
human movements.

3) Quantification of the benefits of using features derived
from the proposed statistics and corresponding track-
ing technique concerning bleeding-edge CSI sensing
applications.

We start by reviewing the required mathematical back-
ground of channel modeling in Section II-C. How the channel
model can be used for sensing is explained in Section II-D.
We use subspace based statistics to analyze human mod-
ulation of wireless channels in Section III. We show that
the analysis of the dynamics of a signal subspace is equiv-
alent to sensing human movements. We show by way of
example how features extracted from subspace evolution can
be used to solve sensing tasks in Section IV. We evaluate
our subspace tracking featurization for two applications in
Section V, provide a discussion in Section VI, and conclude
with Section VII.

II. MEASUREMENT MODEL
A. NOTATION
Vectors and matrices are denoted in bold lowercase a and
bold uppercase A, respectively. We use ||a|| to denote the
Euclidean norm of a vector and 6 (a,b) to denote the angle
between two vectors. The operator E{·} represents the expec-
tation. The operator Tr{·} represents the trace. The super-
script H denotes the Hermitian transpose. The ith row and

jth column entry of a matrix A is aij. The all-ones matrix
is denoted by 1. Higher-order tensors are denoted by upper-
case calligraphic lettersA. The symbol ∼ means statistically
distributed as. The complex normal distribution is referred
to as CN .

B. PROBLEM STATEMENT
Our goal is to take steps towards a systematic study of the
human-modulated subspace of CSI measurements. To this
end, suppose we have a collection of CSI measurements H.
We postulate the existence of a universal decomposition

H = S +N , (1)

where S contains all information of human modulation.
Moreover, we assume that at each k = 1, 2, 3, . . ., the sig-
nal subspace S[k] ⊂ H[k] at time step k can at least in
principle be computed from measurements D[l], with l ‘‘not
too far’’ from k . What this means in practice, is that it is
possible to filter out the noise subspace N and to track
the human modulated subspace S[k] as time, represented
by k , evolves. We make two further hypotheses about the
decomposition (1):

Sufficiency of covariance statistics.
It is sufficient to consider the covariance statistics
ofH along different measurement dimensions inde-
pendently.

Dominance of the signal subspace.
The human modulation is characterised by magni-
tudes of variation of the covariance statistics at the
appropriate time scales.

Considering the measurement axes independently leads to
an interpretable and effective dimensionality reduction on
H. Our approach is to use the eigendecomposition of the
covariance matrices derived from the tensor H.
We introduce the structured channel model and the obser-

vation model used in the rest of the paper in Sections II-C
and II-D, respectively. The channel model provides a mathe-
matical description of the measurement data. The observation
model will be used to derive pre-processing techniques that
have a sound physical justification for sensing tasks in Sec-
tions III and IV.

C. WIDEBAND MIMO CHANNEL MODEL
The Structured channel model we use belongs to a class of
correlative wideband MIMO channel models [6]. Our start-
ing point is the eigendecompositions of the channel model.
This approach was first developed by Weichselberger [7],
although it had also been developed independently by other
works e.g., [8].

In the general case, we assume that CSI data forms a four
dimensional dataset, with the four axes being the choice of
receive antenna, transmit antenna, delayspread tap during
one transmission step in time. We denote these measurement
dimensions by the subscripts Rx, Tx, and Dy, respectively.
We arrange CSI measurements into a tensor H, and for each
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time step k , we write H[k] for the three dimensional tensor
of measurements at that timestep. The mth unfolding H(m)
is defined to be a matrix, whose columns are formed of
the mth index of H, and rows are formed by ordering the
rest of the dimensions lexicographically. The three tensor
unfoldingsH(1)[k],H(2)[k], andH(3)[k] describe the channel
behavior in single-input multiple-output (SIMO), multiple-
input single-output (MISO), and delayspread, respectively.
Basically, the dimensions in the chosen axis are considered
to be variables, and the other dimensions are collapsed in a
lexicographical order.

We treat the measurement of the tensor H[k] as an
unknown, random, and non-stationary complex Gaussian
process. Concretely, in the absence of prior formalism on
human-modulated wireless channels, we assume a generally
evolving random process at two different time instances of
the form [9]

H(m)(t + τ ) =WH(m)(t)+ W̄4 (2)

where m ∈ [1, 2, 3], W (and its complement W̄ =
√
1−W)

is a correlation matrix whose elements wi,j are the correlation
coefficients between the ith and jth RV-modeled entries of
H(m), and the auxiliary matrix 4 is independent ofH(m) with
i.i.d. entries ∼ CN (0, σ 2

ξ ).
We now suppress the time step k for simplicity, and

assume that all calculations are done at a fixed time. The
one-sided correlation matrices at the receive-, transmit-, and
delayspread-side are then computed as

RRx = E
{
H(1)HH

(1)

}
,

RTx = E
{
H(2)HH

(2)

}
,

RDy = E
{
H(3)HH

(3)

}
, (3)

where the expectation is in practice computed by aver-
aging samples across a short time interval, during which
human modulation is assumed to be static i.e. wide-sense
stationary (WSS).

Eigendecomposition is then applied to Equation (3) in
order to extract the channel eigenbases in space (receive and
transmit dimensions) and in delay spread according to

RRx = URx1RxUH
Rx,

RTx = UTx1TxUH
Tx,

RDy = UDy1DyUH
Dy. (4)

D. OBSERVATION MODEL
We observe a sequence of channel tensors H[k] ∈ CN , k =
1, 2, 3, . . . ,T . We define a decomposition

H[k] = S[k]+N [k] (5)

where S[k] and N [k] are the latent human-modulated chan-
nel component, and additive noise tensor uncorrelated with
human activity, respectively. The noise tensor need not be
additive Gaussian and could account for many effects ranging

from wireless SNR variations,1 suboptimal channel estima-
tion, and/or quantization.

We write the observation model in terms of unfolding
matrices as

H(i)[k] = S(i)[k]+N(i)[k] (6)

for i = 1, 2, 3.
In what follows, we look at the third unfolding, which in

our setup corresponds to the Dy dimension. Similar treatment
applies to the Rx and Tx dimensions. Since the human-
induced modulation and noise are uncorrelated, we can
rewrite the one-sided correlations of equation (3) as

RDy[k] := E
{
H(3)[k]HH

(3)[k]
}

(7)

= CDy[k]+ σ 2
Dy[k]IMh (8)

where CDy is the rank deficient covariance arising from the
human-modulating effect, σ 2

Dy is AWGN noise power, and
IMh is an identity matrix [10].

Dropping k for brevity, the eigendecomposition in equa-
tion (4) can now be rewritten for the observed covariance
RDy[k] as

RDy = UDy1DyUH
Dy

RDy =

[
Us
Dy U

n
Dy

] [
1̂
s
Dy 0
0 1n

Dy

] [
Us
Dy

H

Un
Dy

H

]
(9)

where Us
Dy ∈ CMh×Ms is an orthonormal signal subspace

basis, Un
Dy ∈ CMh×Mn is an orthonormal noise subspace

basis, Ms and Mn are respectively the signal and noise sub-
dimensions of the Mh-dimensional channel (i.e. Mn = Mh −

Ms), 1̂
s
Dy = 1s

Dy + σ
2
s,DyIMs ∈ RMs×Ms is a noisy estimate

diagonal eigenvalue matrix for CDy the covariance matrix
arising from the true human-modulating effect, and 1n

Dy =

σ 2
n,DyIMn is a diagonal noise eigenvalue matrix.

Each of the eigendecompositions in Equation (4) define a
natural filtration, that is, a succession of growing subspaces
V0 ⊂ V1 ⊂ · · · ⊂ V = CN spanned by the first i
eigenvectors uDy,j[k], where j ≤ i and i = 1, . . . ,N . Here N
is the dimensionality of the chosen measurement dimension,
i.e. the number of delayspread taps (or by duality, frequency
bins). By our assumptions in II-B, we may use the subspace
Vi as a sufficient statistic for the signal subspace of H for
some i < N . For each measurement dimension, we call the
subspace defined here the Tx/Rx/Dy-projected instantaneous
signal subspace, and we denote it by VTx, VRx, and VDy,
respectively.

III. SUBSPACE CHARACTERISATION
In this section we hope to justify the claim that the projected
signal subspaces introduced in the previous section are useful
statistics which preserve human channel-modulating effects,
while simultaneously being minimally diluted by noise. This
claim is clearly non-trivial: human movements in the signal

1A ‘‘watery’’ human body in motion gives rise to complex and unconven-
tional wireless propagation properties.
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locale exert unconventional effects on the wireless chan-
nel which have not seen similar formal treatment in litera-
ture compared to more established channel models adopted
widely by industry, say typical urban cellular fading chan-
nels [11]. The closest kin to human-modulated Wi-Fi chan-
nels in prior literature are perhaps body area network (BAN)
channel models; consult [12]–[14] and literature therein for
further detail. Specific characteristics of the wireless standard
802.11g/n/ac such as bandwidth, carrier frequencies, and air
interface, impart modulating effects well beyond those stud-
ied for BANs.

FIGURE 1. Human channel modulation.

FIGURE 2. Good wireless SNR does not necessarily translate into good
sensing sensitivity. for sensing, there is more to designating signal and
noise subspaces than meets the eye. (a) Strong reflection. (b) Weak
reflection.

A. CSI SENSING MODEL
As illustrated in figure 1, theWi-Fi-based sensing model con-
sists of placing a pair of transmitter and receiver devices in the
environment. There aremany paths bywhich electromagnetic
energy travels between the transmitter and receiver. When
people move, they disturb the multipath profile in the envi-
ronment. The multipath profile is the linear superposition
of a number of paths. For instance, figure 2 shows two
static paths: a direct line-of-sight (LOS) and a reflected

non-line-of-sight (NLOS) paths. When a human subject
walks from left to right in the figure, a dynamic path is
modulated by this movement. By analyzing the temporal
pattern of these dynamic paths at the receiver, we are able
to build sensing applications.

For each transmitter-receiver pair, the superposition
of multipaths in the time domain is described by a
Nsc-dimensional frequency-domain CSI H corresponding to
a sampling of OFDM subcarriers across the bandwidth.2

As such, the transmitted signal X can be related to the
received signal Y through this input-output channel response
relationship according to Y = HX . A MIMO system
generalizes this input-output relationship for Ntx transmit-
ters and Nrx receivers. For instance, if we have 3 trans-
mitters and 3 receivers, the channel is described as a
3× 3× 30 tensor.

We ask some basic questions:
• How can we characterize the human modulated sub-
space of the channel?

• How do the dimensionality and direction of the subspace
vary in time as a result of human movement?

We take a first step towards providing a formal treatment of
these key questions, and present a semi-analytical analysis of
the projected signal subspace.

We discuss the theoretical underpinnings of our approach
in Section III-B, particularly with a view towards contrasting
to seminal prior work in Wi-Fi sensing. We then study data
on uncontrolled human movement in Section III-D

B. BACKGROUND ON SUBSPACE TRACKING
FOR WIRELESS SIGNALS
In classic signal processing, estimating the relevant subspace
of variation in data is a basic building block of a data process-
ing pipeline [15], [16]. In the context of an indoor wireless
channel, the human modulated portion of the correlation
data (cf. Equation (3)) is unknown with complex temporal
dynamics.

Wang et al. [5] obtain good sensing results using an ad hoc
pipeline starting with the full wideband covariance matrix
(see [6]). We believe that this choice necessitates the use
of excessive time-averaging of the CSI data. Furthermore,
the resulting signal subspace is not easy to interpret. In con-
trast, the Rx, Tx and Dy correlations defined in Equation (3)
are interpretable low dimensional representations. Despite
the pioneering sensing approach, two drawbacks come to
mind:
• the spatial and temporal behavior of the channel are not
easily exposed, and

• the temporally highly averaged subspaces are less reac-
tive to human activities.

The good sensing results aside, the approach of [5] does
not conform to wireless theory, according to which human
modulation should be quantifiable using subspace tracking.

2e.g. Nsc = 30 for the widely used Intel 5300 chip https://dhalperi.
github.io/linux-80211n-csitool/.
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Correlative MIMO subspace-based channel models have
been shown to estimate capacity [6]–[8], and therefore the
physicality of the medium. Intuitively, a model able to con-
form with a universal information-theoretic measure such as
capacity is bound to convey fundamental information about
the state of the channel irrespective of what modulates the
channel. Further, recent theoretical results suggest that the
rate of change of a MIMO OFDM channel can be inferred
from the statistical analysis of its first and last eigenvec-
tors [9], which can be viewed as canonical representatives of
the signal and noise subspaces, respectively.

To elaborate on the dynamic nature of the signal sub-
space, consider a multipath component whose phase adds
destructively to a main cluster of multipath, as depicted
in Figure 2a. If the single multipath were to be shadowed
as a result of a transient movement as in Figure 2b, it is
clear that SNR would increase momentarily commensurate
with the gain in total multipath arrivals energy. However,
the sensing scene could have further nuances that are not
captured by this simple SNR enhancement. As a further
thought experiment, let the single multipath component be
probing of a spatial sector in the environment in which a phys-
ical activity is unfolding—denoted by a spiral in Figure 2.
That is, the single multipath component disproportionately
delivers added movement sensitivity over that delivered by
themain cluster ofmultipath. Despite the transient shadowing
effect resulting in a boost in SNR, the instantaneous com-
bined channel response is rendered less sensitive to activities
occurring in the aforementioned spatial sector. The reduced
motionmodulation ismanifested in reduced correlation struc-
ture in the regions of covariance matrix. Consequently—and
perhaps counter-intuitively given the SNR gain—the signal
subspace would necessarily ‘‘shrink’’ and noise subspace
would ‘‘expand’’ momentarily. Therefore, robust sensing
requires that the signal and noise subspaces be tracked explic-
itly in order to account for nuanced instantaneous channel
effects.

The above contrived discussion suggests that a sensing sys-
tem is required to adapt to dynamic channel effects in order to
sustain optimal performance. Until provision for such adap-
tation is made in CSI-based sensing systems, we argue that
models will fall short at being generalizable with guaranteed
performance bounds irrespective of the nuances encountered
in real-world deployment environments.

STATIONARITY PERIOD
The evolution of the signal subspace can be monitored at
different granularities depending on the end-user applica-
tion. An example of this scenario may be seen in activity
recognition applications. Activity recognition requires deriv-
ing channel signatures of sufficient discriminatory power
as to allow for the unambiguous separation of activities
potentially similar in their broad nature e.g. walking ver-
sus running. The stationarity period is affected by, besides
the application, the sensor configurations such as sampling
rate.

For example, while 25ms may be necessary for respon-
sive activity recognition applications, a 100ms or more may
suffice for the much coarser presence detection. Note that
sensing models may also be possible to realize even with
‘‘aliased’’ channel statistics akin to compressive sensing.
However, we will not discuss this further here.

C. SENSING COMPLEXITY
The trade-off between sensing sensitivity and generality is a
key question when it comes to designing any data process-
ing pipeline. Generality implies flexibility for applying tech-
niques from one sensing application to another. Sensitivity
refers to optimality for a fixed sensing task. These are affected
mainly by

• sensing pipeline configuration alongside its parameters,
and

• the dimensionality of the signal subspace of the data,
as it travels through the pipeline.

The latter is of particular importance because the size of the
signal subspace allows for a controlled grading of sensing
sophistication from the simplest (i.e. a one-dimensional sub-
space) to the most general (i.e. the entire signal subspace).
The simplest extreme is particularly useful when out-of-the-
box flexibility and ease of realization are desirable. When
optimal performance and sensitivity are required, more elab-
orate and intricate sensing models can be used on a larger
portion of the signal subspace.

We next shed light on the complexity of the human-
modulated Wi-Fi signal subspace by way of an empirical
study. The aim is to establish that there is more to designat-
ing signal and noise subspaces than meets the eye. Future
research ought to take this complexity into consideration if
Wi-Fi sensing were to be transitioned from controlled setups
and into the wild.

D. EMPIRICAL STUDY OF UNCONTROLLED
HUMAN MOVEMENT
We proceed to study the statistical effects of human activities
on the channel covariances. Specifically, we study the pro-
jected signal subspaces, our putative proxies for the signal
subspace for humanmodulation. To this end, we first quantify
the information about the physical environment contained in
the covariance matrix. This information is dynamic in nature
and needs to be quantified instantaneously. One approach to
gauging the information content in a series of covariances
is to monitor the distortion contributed by the constituent
eigenvectors. That is, by successively nulling the respective
eigenvectors and measuring the fidelity of the covariance
matrix reconstruction, we can quantify in the mean squared
error-sense (MSE) the signal and noise boundaries at a given
target distortion level (e.g. −12dB).

Concretely, let R = U1UH be the eigendecomposition of
one of the channel correlationmatrices in equation (4). Define
R′i = U1′iU

H as a reconstructed channel correlation matrix
whose modified diagonal eigenvalue matrix 1′i nullifies all
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FIGURE 3. Characterizing signal and noise subspaces through an MSE search procedure for 5 uncontrolled human movement scenarios. The numbers in
legend 0, 2, 4, 6, and 8 denote how many moving people are present. (a) Fractional energy Es evaluated across the signal dimensionality. (b) MSE-based
subspace boundary at −6 dB reconstruction objective. (c) MSE-based subspace boundary at −12 dB reconstruction objective. (d) Fractional energy at
subspace boundary.

diagonal entries beyond index i i.e.

1′i =



. . . 0 0 . . . . . . 0
0 δi−1 0 0 . . . 0

0 0 δi
. . .

...
...

. . . 0
. . .

...
...

. . .
. . .

...

0 0 . . . . . . . . . 0


(10)

The reconstruction error matrix is Rε = R−R′i = [rεkl]. The
reconstruction MSE error can then be described as

MSE =
1
N 2

∑
k,l

(rεkl)
2 (11)

The above MSE search allows us to build a time-series
picture of the dynamic partitioning of the covariance into
signal and noise subspaces. This evolution of signal and
noise subspaces is indicative of the evolution in the corre-
sponding propagation conditions and also necessarily human
movement. Intuitively, the harsher the dynamics of wireless
propagation conditions, the more fluctuating the boundary
between signal and noise subspaces is.

Having arrived at a statistical picture of subspaces bound-
ary, we can utilize this knowledge to examine how the frac-
tional signal subspace energy changes throughout human
movement. We define the fractional signal subspace energy
as the ratio between energy in the signal subspace to total
energy contained in the channel. Thus, the fractional energy
can be written as Es = Tr(1s

x)/Tr(1x), where Tr is
the trace operator, and 1 is the unitary eigenvalue matrix
(cf. Equation (9)), and x ∈ [Rx,Tx,Dy]. As such, Es conveys
information about optimum sensing SNR dynamics. A par-
simonious suboptimal sensing system that utilizes instanta-
neously less of the availableEs[k] at the kth time is effectively
throwing away information.

The following discourse considers uncontrolled indoor
human movement. This is perhaps the most generic form
of activities likely to occur indoors. Naturally, uncoordi-
natedmotion components superimpose tomodulate the signal

subspace in random ways. Stronger motion components
could also mask much weaker ones.

We begin by examining what effect increased human
movements has on the signal and noise subspaces. We con-
duct an experiment in which participants were asked to walk
randomly in a room. The number of moving people present
was varied from 0 (i.e. empty) to 8. The duration ofmovement
per session was 5 to 10 minutes. An 802.11n 3×3 MIMO
transmitter node was placed outside the room and a receiver
node was placed inside. The CSI was sampled at a nominal
sampling rate of 500Hz using a 5GHz carrier and 40MHz
channel bandwidth. The reported CSI is 30 dimensional for
each transmitter-receiver pair sampling the available 40MHz
bandwidth coarsely but equidistantly. That is, 1-in-4 OFDM
subcarriers are reported, resulting in a measured MIMO CSI
3× 3× 30 tensor.

We investigate the effect of increased human movement
on signal and noise subspaces by way of searching for the
subspaces boundary yielding an objective MSE distortion as
outlined earlier. Eigenvectors contributing less to the fidelity
of covariance reconstruction will fall within the noise sub-
space. Conversely, eigenvectors impacting the fidelity of
reconstruction more pronouncedly belongs to the signal sub-
space. The MSE-guided search finds the subspaces boundary
that satisfies a desired distortion level in the MSE sense.
Owing to the finite subspace resolution of a practical sys-
tem, we interpolate between two MSE distortion levels pro-
duced at adjacent eigenvectors in order to simulate the effect
of a smoothly varying MSE distortion and its respective
‘‘fractional’’ subspace index.

Figure 3a illustrates the variability in the fractional sub-
space energy Es within the signal subspace extent and across
movement scenarios—as denoted by the vertical scatter
points. It is evident that the variability increases towards the
lower-end of the subspace extent, reflecting the poor SNR
contributed. Further, the variability increases markedly with
the number of moving people i.e. fractional energy is more
diffused in higher occupancy classes. Figure 3c shows the
result of the MSE search procedure on the demarcation of
the boundary between the signal and noise subspaces. Note,
however, the statistical variability corroborating the earlier
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hypothesis; namely, that dynamic stresses on the wireless
channel would result in equivalent shrinkage or expansion
of the signal subspace as needed to satisfy the target recon-
struction distortion level. Similar subspace dynamic behavior
can be seen when doubling the objective MSE distortion
in figure 3b the subspaces boundary demarcation is insen-
sitive to the chosen MSE level. It is further interesting to
observe the accompanied effects in figure 3d on the fractional
energy at the very same instantaneous demarcations of the
signal and noise boundary established by the MSE search.
The fractional energy at the true3 instantaneous subspaces
boundary is unable to provide a faithful statistical account
on the expansion/shrinkage of the signal subspace at least for
scenarios 2, 4, and 6 as evident by their density overlap. That
is, the fractional energy cannot be called upon to optimally
partition the covariance matrix.

FIGURE 4. Normalized mutual information between covariances and their
imperfect reconstructions over time and across 5 uncontrolled human
presence scenarios, highlighting that the signal subspace is dynamic in
nature. Legend denotes how many moving people are present.
(a) Instantaneous subspace boundary. (b) Normalized MI versus MSE
reconstruction objective. (c) Normalized MI versus subspace extent.

We conclude this section by qualifying our MSE-search
methodology using mutual information (MI). The instan-
taneous subspaces boundary is used to agglomerate series
of reconstructions of the covariance matrix as to compare
against the groundtruth covariance distribution. We sweep
the objective MSE distortion between −24 dB and −3 dB
in 3 dB increments. We then measure the normalized mutual
information between VDy[k] and RDy[k] for different occu-
pancy cases as illustrated in figure 4a. Figure 4b shows
that, for all human presence scenarios, the normalized MI
at the instantaneous subspaces boundary steadily approaches
unity as MSE reconstruction fidelity increases towards
−24 dB. We observe that in terms of mutual information, our
MSE-reconstruction based methodology is consistent under
different channel conditions. In order to corroborate this
observation, we compute the same normalized mutual infor-
mation metric for the static (i.e. truncated) subspace extent

3we will return to address this claim in due course

across occupancy cases. Figure 4c depicts such MI between
RDy[k] on the one hand, and V0 ⊂ V1 ⊂ · · · ⊂ V = CN on
the other hand.4 A ‘‘waterfall’’ effect can be seen whereby
more truncated static subspace is needed at higher occupancy
classes in order for MI to approach unity. Such MI waterfall
effect is equivalent to the MSE-based subspace boundary
shown earlier in figures 3b & 3c, reaffirming the notion of
instantaneous subspace expansion and shrinkage as a function
of the intensity of human movements.

IV. SUBSPACE TRACKING
In Section III, we established and characterised the notions
of signal and noise subspaces within the context of human-
induced channel perturbations. We now turn to examples
of how to derive features for sensing tasks. Our approach
is to track the evolution of the projected signal subspaces
(cf. Section II-D).

The subspace-based human sensing we advocate for is
in line with foundational work in wireless channels [6]–[9],
which is in contrast to prior work on wireless Wi-Fi sensing
(see [5]). We show that with a good enough instantaneous
estimate of the covariances described in Section II this track-
ing can be used to capture the effects of human modulation.
We present our analysis of the Dy-projected signal subspace,
but the same can be easily repeated for the Rx dimension.

A. A GEOMETRIC VIEW OF SUBSPACE EVOLUTION
As an example of subspace tracking, we present the tra-
jectories of the eigenvectors of the covariance matrices
(cf. Equation (3)).

FIGURE 5. Geometric interpretation of subspace evolution. (a) Subspace
component 0. (b) Subspace component 1.

Consider the time evolution of subspaces spanned by
the first two (unnormalized) eigenvectors δ0[k] and δ1[k]
of RDy[k]. Let S0 and S1 be subspaces spanned by δ0[k]
and δ1[k] for k = 1, 2, 3, . . .—depicted in local coordi-
nate systems—respectively. See figure 5 for a geometric
interpretation.

4see Section II-D for a reminder on the definition of the succession of
growing subspaces.
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FIGURE 6. Differential unitarity cumulative distribution functions across 9 occupancy scenarios for Rx and Dy. legend denotes how many moving people
are present. (a) and (c) correspond to the successive pairwise correlations, while (b) and (d) measure the rate of range. The rate of change is referred to
by the ′ operator.

That is, recalling equation (9), each of these subspace com-
ponents at the kth discrete time would correspond to (1) an ith
eigenvector uDy,i[k] ∈ Us

Dy[k] (i.e. belonging to the signal

subspace), and (2) a scaling eigenvalue δi[k] ∈ 1̂
s
Dy[k]. The

empirical signal and noise characterization study reported in
Section III has concluded that the fractional energy Es evalu-
ated at the subspaces boundary is less able to reveal increased
multi-user channel variations. That is, when considering the
movement of the signal subspace as a result of human-
induced channel stresses, less stock should be put in the
eigenvalues δ’s. This is also intuitive to communications prac-
titioners because phase-modulation, when combined with
amplitude-modulation, is what really allows for packingmore
information efficiently within a finite stretch of bandwidth.
The equivalence to the unreliability of power (i.e. eigenval-
ues) has also been echoed in prior art; namely, that ‘‘wireless
internal state transitions result in high amplitude impulse and
burst noises in CSI streams’’ [5]. As an example of this noisy
state transition, note the bimodal nature of the 0 occupancy
density of the fractional energy Es in figure 3d—as indicated
by the transparent underlaying behind the 8 occupancy case
density. Another example is recent work on channel charting
in the context of urban CSI measurements from basestations
wherein Studer et al. [17] propose CSI scaling part of their
feature mapping procedure.

Therefore, referring to figure 5 again, a critical insight
emerges: human effects on the wireless channel can be
‘‘demodulated’’ by observing the corresponding angular
movements of the signal subspace.

B. DIFFERENTIAL SUBSPACE EVOLUTION
The time dependency of the angular movements of the
subspace is visualized in figure 5. The (complex) angles,
which can be computed as the real part of Hermitian inner
product, ψ[1] = 6 (uDy,i[0],uDy,i[1]), . . . , and ψ[3] =
6 (uDy,i[2],uDy,i[3]) are depicted for both subspace compo-
nent 0 and 1.

These angles signify the differential movement of a cer-
tain signal subspace component between the k − 1 and k
discrete times. Incidentally, these angles have also another
interpretation. Note that the diagonalization of the covariance
matrix of equation (9) will produce eigenvectors which are by

construction unitary i.e. uHDy,i uDy,i = 1 = cos(0). However,
a human movement will cause the channel’s signal subspace
to evolve out of its ‘‘rest’’ condition. The resultant deviation in
the subspace will be manifested in equivalent deviation in the
unitarity of its constituent, evolved eigenvectors w.r.t. their
original ‘‘rest’’ conditions. Thus, the successive change in
unitarity for the ith subspace component between time k − 1
and k is quantified by uHDy,i[k] uDy,i[k − 1] = cos(ψ[k])
which coincides with the angular movement of the subspace.
Hence we term this angular metric the differential unitarity.

In general, our proposed differential unitarity feature
for tracking human-modulated signal subspaces is applica-
ble to any channel eigendecomposition formulation com-
monly encountered in literature. Denote by uDy,i[k] the ith
delayspread eigenvector at time k . Then the differential uni-
tarity ûDy,i[k] = cos(ψDy,i[k]) between time k and k − 1 is
formulated as

ûDy,i[k] = uHDy,i[k] uDy,i[k − 1] (12)

Similarly, for the receive-side eigenbasis

ûRx,i[k] = uHRx,i[k] uRx,i[k − 1] (13)

Equations (12) & (13) represent two degrees of freedom
through which we can measure the volatility in the wire-
less channel as a result of human stressors: (1) spatial from
multiple antennae and (2) temporal across the delayspread
(or equivalently bandwidth). We next build intuition for these
complementary differential unitarity metrics by presenting a
series of concrete numerical examples.

We return to the uncontrolled movement dataset reported
in Section III. Further, let us examine the behavior of the
differential unitarity for the 1st subspace component of both
the receive-side and delayspread subspaces i.e. ûRx,1 and
ûDy,1, respectively. Figure 6 plots the cumulative distribution
functions (CDFs) for ûRx,1 and ûDy,1 for all 9 occupancy
cases. Specifically, note the dispersive nature of the metric in
figures 6a & 6c as a function of increased human-
induced channel perturbations. It is clear that the dis-
persion in the statistics of the magnitude of differential
unitarity—corresponding to the 1st subspace components—
monotonically increases, generally, with increased human
movement.
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FIGURE 7. Interrogating rate of change of differential unitarity by
correlating farther apart eigenvectors with successively decreasing
distance. (a) Pairwise. (b) Slope.

The diagram in figure 7b shows that the subspace bases
relating to N time periods are buffered so that comparison
can be made across a wider time window. Thus, for example,
the eigenbases at t = 0 can be compared with those at
t = N − 1, the eigenbases at t = 1 can be compared
with the eigenbases at t = N − 2 and the eigenbases at
t = 2 can be compared with the eigenbases at t = N − 3.
Such an arrangement may enable the changes in channel
statistics to be viewed across a wider time period and may
enable the rate of change of eigenvector unitarity to be
determined.

Deriving a measure of the rate of change of differential
unitarity has the advantage of increasing the separation of
the CDFs of figures 6a & 6c. To this end, we apply the
scheme depicted in the lower diagram of figure 7 (termed
‘‘slope’’) to the same experiment and obtain the CDFs shown
in figures 6b & 6d. It is readily evident that the CDFs cor-
responding to the rate of change in the differential unitarity
extracted over a window of time experience increased dis-
persion as a result of human occupancy. This may allow for
learning and/or calibrating better discrimination boundaries
in the inference logic.

1) SUBSPACE SAMPLING
Recalling equation (8), we note that the expectation operator
implies an averaging effect. Earlier we have elaborated on the
notion of stationarity period and its connection to CSI sam-
pling and application granularity requirements. Yet another
pertinent aspect for consideration lies in how to realize the
expectation. Broadly, there are two methods often employed
in classic signal processing literature for updating the signal
subspace: (i) stochastic approximation, and (ii) batch averag-
ing. These two variants have implications on signal subspace
tracking, which we discuss next.

An unbiased stochastic expectation estimator is
given by

Rx[k] = (1− λ)
k∑

n=0

λk−nH(m)[n]HH
(m)[n] (14)

where x ∈ [Rx,Tx,Dy] and m ∈ [1, 2, 3], respectively. This
estimator reduces to the recursive expression

Rx[k] = λRx[k − 1]+ (1− λ)H(m)[k]HH
(m)[k] (15)

where λ ∈ [0, 1) is a forgetting factor often chosen close
to 1. This stochastic estimator accounts for a long channel
history, albeit while de-emphasizing far away events. Such
subspace update tends to ‘‘dampen’’ the effect of abrupt
channel changes on the signal subspace. Alternatively, these
abrupt changes can also be preserved and admitted into the
subspace using the sliding window (a.k.a batch) approach
given by

Rx[k] =
1
L

k∑
n=k−L+1

H(m)[n]HH
(m)[n] (16)

where L is the window size determined by the assumed
stationarity period.

We now compare and contrast between these two subspace
update variants. An activity recognition dataset available pub-
licly is used [1]. The dataset is comprised of 6 single-user
activities; namely, standing up, sitting down, lying down,
falling, walking, and running. SIMO CSI data from three
receivers is sampled at 1 ksps rate. For added tracking respon-
siveness and resolution, we choose a stationarity period of
25ms and proceed to update the covariance matrix with 95%
CSI overlap from previous stationarity period. This results in
around 800 Hz subspace update rate.

In Figure 8, we perform time-frequency localization on the
pairwise differential unitarity subspace tracking metric. The
localization uses a window of 1.28 seconds with 95% content
overlap between two windows for finer time-frequency reso-
lution. In the interest of space, only four single-user activities
are shown corresponding to falling, lying down, walking,
and running. The spectrograms of the upper row of Figure 8
were generated using the batch subspace update variant;
while those in the lower row utilized the stochastic variant
with a forgetting factor λ = 0.99. The color coding of the
spectrograms in each row was group-harmonized in order to
convey correct information about the differential intensity of
the time-frequency bins across activities. We therefore safely
omit the color maps from the spectrograms. As touched upon
previously, the batch subspace update is more responsive to
background disturbances in the channel and would admit
these into signal subspace.We can readily observemore back-
ground variations across all activities in the upper series of
spectrograms. Despite this, we can still see distinctly individ-
ual behavior across these activities—falling being the most
concentrated in time-frequency and running being the most
dispersed. However, it is interesting to see how the stochastic
update was able to filter out much of the background chan-
nel disturbances while preserving the discriminative features
of the four activities; namely, the increased time-frequency
dispersion from falling, lying down, through to walking and
running—again the latter being the most dispersed.
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FIGURE 8. Spectrograms for 4 activities (falling, lying down, walking, and running) using two subspace update variants: batch and stochastic. It is readily
that stochastic has a filtering effect on the time-frequency localization of pairwise differential unitarity subspace tracking metric. (a) Falling – batch.
(b) Lying down – batch. (c) Walking – batch. (d) Running – batch. (e) Falling – stochastic. (f) Lying down – stochastic. (g) Walking – stochastic.
(h) Running – stochastic.

FIGURE 9. Waveforms for 6 activities (standing up, sitting down, lying down, falling, walking, and running) using two subspace update variants: batch and
stochastic. it is readily noticeable that stochastic has a filtering effect on the slope differential unitarity subspace tracking metric. (a) Lying down.
(b) Sitting down. (c) Standing up. (d) Walking.

We have opted to conduct time-frequency localization on
the pairwise subspace tracker owing to its more intuitive
association with speed i.e. 1st-order derivative of subspace
evolution. A justification for the correspondence between
the rate of change in CSI and speed can be found in [5].
Our 1st-order differentiation of the subspace can be viewed
as a generalized fusion method for extracting information

embedded in all subcarriers simultaneously. This fusion is a
data-level fusion, rather than feature-level approaches involv-
ing ad hoc subcarrier selection strategies [4]. Some reported
Wi-Fi sensing systems resort to selecting subcarriers of better
SNR since frequency selectivity of wideband Wi-Fi channels
causes some subcarriers to fall within the channel nulls—
with obvious consequences for their reliability. Our subspace
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FIGURE 10. Waveforms for slope tracker corresponding to the running activity. differential metric is identical in magnitude, but subspace phase
stabilities exhibit interesting variations that are different depending on whether subspace decomposition is performed in the
time-domain or frequency-domain. (a) Magnitude. (b) Error power. (c) Scatter.

approach systematically fuses information contained in all
subcarriers without the need to perform preconditioning.
However, unlike the PCA-based approach [5], this fusion is
principled, interpretable, and has its roots in formal wireless
channel concepts [6]–[9].

As illustrated in Figure 7b, we use a robust sampling
technique to obtain clean statistics from the differential uni-
tarity measurements. In Figure 9, we illustrate the effect of
this choice. Six single-user activities—standing up, sitting
down, lying down, falling, walking, and running—for the
slope tracker are depicted. Quick inspection of these plots
corroborate the earlier findings of the spectrograms analysis;
namely, that stochastic filters high-frequency channel per-
turbations compared to batch. That is, stochastic tracks the
envelope of the activity rather than its and/or the channel’s
background high-frequency fluctuations. We have alluded
to this tunable channel detail in the signal subspace, be it
channel background- or activity-related, by the hat accent in
Equation (9). The abrupt activity of falling has an impulse-
like acceleration content, while running is the richest in such
2nd-order rate of change moments.

2) DUALITY
For completeness, we provide commentary on the perti-
nent issue of choosing a channel representation: time- ver-
sus frequency-domain. The structured model we introduced
in Section II-C has been validated with empirical chan-
nel impulse response (CIR) measurements i.e. in the time-
domain. Identical eigenspace formulation has been applied in
the frequency-domain for CSI instead [18], and also validated
with empirical capacity measurements. Since our subspace
trackers are differential in nature, tracking is insensitive to the
representation of the channel be it time- or frequency-domain.
That said, a salient point in relation to the phase behavior
of the trackers is worth making for completeness of treat-
ment. The numerical perturbations experienced in the time-
domain—as a function of human motion—differ to those
experienced in the frequency-domain. Classic work on the
stability of subspaces provides bounds on their trigonometric
(i.e. angular) behavior as a function of technical mathematical
issues ranging from eigenvalue spectral gap to numerical
residuals [19].

To highlight this point, we revisit the waveform of the slope
subspace tracker for the running activity depicted in Figure 9f.

We perform channel decomposition through to differential
unitarity calculations both for the CIR and the CSI versions
of measurements (i.e. time& frequency domains). The results
are shown in Figure 10. As illustrated in Figures 10a & 10b,
it is intuitive to note that the differential tracker performs
identically in time and frequency domains. After all, a lin-
ear operator (i.e. [I]DFT) translates between one domain to
another. The occasional polarity switch in the phase of the
differential tracker (Figures 10c & 10d) can be explained by
the effects studied in [19]. However, it is interesting to note
the increased phase instabilities when running the differential
metric on top of CIR measurements over those obtained from
CSI measurements. This phenomenon can be readily seen
in Figures 10c & 10d. We conjecture that the sparsity in the
CIR measurements (i.e. impulse-like nature) compared to the
smoother CSI measurements causes numerical instabilities
which give rise to added phase instabilities in the subspace.
The scatter plot of Figure 10d supports this hypothesis as can
be seen by the tighter clustering in the CSI case. However,
further investigations are needed to fully illuminate this issue
before solid conclusions can be drawn.

V. EVALUATION
In what follows, we showcase how specialized occupancy and
activity sensing can be built atop our featurization.

A. OCCUPANCY DETECTION
1) EXPERIMENTAL SETUP
We evaluate the performance of subspace tracking in terms
of the robustness of occupancy detection. To evaluate the
robustness, we investigate the accuracy of the classification
model in new environments. More specifically, we trained the
classification model using CSI data obtained from a certain
placement and tested its accuracy on different placements.

a: DATA
We collected the CSI data in 8 places and on 41 placements in
total. As depicted in figure 11, the places include six rooms,
one lobby, and one lounge and have different characteristics
such as room layout and furniture position. We collected
the CSI data while varying the number of moving people
from zero to 2 (P4, P5, P6) and to 3 (the rest). Each session
lasted five minutes and participants were asked to freely
move during the session. Figure 11 shows room layouts and
device placements. The purpose of multiple placements are to
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FIGURE 11. Device placements.

investigate what is a realistic upper-bound on the classifica-
tion performance of a single device under different training
and testing conditions. MIMO CSI data were sampled at a
nominal 500Hz rate. A stationarity period of 50ms was used
and the subspace update was performed in a sliding window
fashion with no overlap as in Equation (16).

b: PIPELINE
For the occupancy detection, we developed an inference
pipeline using a long short-term memory (LSTM) classifier.
We chose LSTM as a classifier to leverage spatio-temporal
variation of our differential unitarity features from subspace
tracking. In the current implementation, we adopted two
hidden LSTM layers, each of which has 50 nodes. Some
prior presence detection work dwells on the signal much
longer with distribution-based approach while using a diver-
sity of frequency channels [20]. In contrast, we define a short
5 seconds inference window and with no channel frequency
diversity. In this paper, our objective is to showcase how
to specialize various subspace tracking-based applications
rather than demonstrate best-in-class performance.

c: COMPARISON
For comparison, we implemented the baseline pipeline
from [21]. It takes temporal variations of CSI data as feature
values and uses linear discriminant analysis as a classifier.

d: TRAINING AND TEST
For training, we selected a receiver located at a diagonal posi-
tion of the transmitter, thereby maximizing the RF coverage.
Accordingly, we have 11 different models. For the evaluation,
we considered three environment variations, same, minor,
andmajor. Same refers where the data from the same receiver,
i.e., same placement, is used both for training and test.
Minor and major use the CSI data from different receivers
placed in the same room and different room, respectively.
Same represents the upper bound of the performance that the
inference logic can achieve in a specific environment.Minor
andmajor show how robust the inference pipeline is in unseen
environments.

2) EXPERIMENTAL RESULTS
We investigate how the subspace tracking effectively mit-
igates the environmental effect of CSI on the occupancy

FIGURE 12. Occupancy performance. (a) Environment variations.
(b) Number of classes.

detection. Figure 12a shows the box plots of the accuracy
of 11 models for different variations. Although the accuracy
of both pipelines is similar in same variation, the subspace
tracking retains more competitive accuracy as we intro-
duce minor and major environmental changes compared to
the baseline. The accuracy in same variation is 89% and
88% for the subspace tracking and baseline, respectively.
However, in minor and major variations, the subspace track-
ing decreases to 82% and 78%, whereas the baseline does to
73% and 62%.

We further investigate the effect of the number of classes
on the occupancy detection on major variation. Figure 12b
shows the box plots of the accuracy while varying the
number of classes. 2 classes represent presence detection,
i.e., empty or occupied. 3 and 4 classes are for the number of
people as [0, 1, 2+] and [0, 1, 2, 3], respectively.5 The results
show that the subspace tracking achieves reasonable per-
formance even with higher number of classes. Our pipeline
shows 85%, 70% and 65% for 2, 3, and 4 classes, respectively,
whereas the baseline does 62%, 49%, and 43%.

B. PHYSICAL ACTIVITY
We use the activity recognition dataset available publicly by
Yousefi et al. [1] to demonstrate the applicability of our sub-
space tracking technique on the problem domain of activity
classification. The dataset is comprised of 6 single-user activ-
ities; namely, standing up, sitting down, lying down, falling,
walking, and running. SIMO CSI data from three receiving
multiple antennae is sampled at 1 ksps rate. We choose a
stationarity period of 25ms and proceed to update the covari-
ance matrix with 95% CSI overlap from previous stationarity
period with λ = 0.99 for recursive subspace update as in
Equation (15). This gives around 800 Hz subspace update
rate. As illustrated previously in figure 9, recursive subspace
tracking filters background channel activity and/or subspace
noise. This unwanted channel activity has been alluded to in
Equations (8) & (9).

In a preliminary evaluation, we build a simple classifier
based around dynamic time warping (DTW) and K-nearest
neighbors. This is applied to a single-dimensional Dy slope
differential unitarity (see figure 7b). We evaluate our clas-
sifier against the author’s mid-range hidden Markov model
(HMM) which uses a combination of PCA and the short-time

5By 2+ we mean 2 or greater than.
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FIGURE 13. Activity recognition performance. (a) Ours: ûDy,1 + DTW + K-nearest neighbours. (b) Yousef et al: PCA +
STFT + HMM.

Fourier transform (STFT) time-frequency localization pre-
processing. The results are shown in figure 13. Capability-
wise, there is an asymmetry in that featurization based around
2D STFT + HMM is in principle far stronger than our 1D
DTW + K-nearest. Nonetheless, on the whole, the perfor-
mance of our simple classifier is not far from that reported by
Yousef et al, albeit with different characteristics. For instance,
while 2D STFT + HMM outperforms our 1D DTW +
K-nearest in nearly all activities, our fall activity perfor-
mance is substantially better. We attribute this to the high
acceleration content of fall which our slope metric is able to
capture easily as shown in figure 9a due to native acceleration
sensing. Perhaps our pairwise metric with 2D time-frequency
localization would perform much better. Since our focus in
this paper is to only showcase a generic formal featurization
suited for many applications, we leave improved classifica-
tion for future work.

VI. DISCUSSION
In this section, we provide commentary on the limitations
of our work and discuss relevance to other wireless systems,
thereby exposing items of future research.

A. APPLICABILITY TO OTHER 802.11 STANDARDS
Physical propagation behavior will differ depending on
the frequency band. Such behavior will be mirrored when
viewed through the lens of the signal and noise sub-
spaces. Our proposed featurization provides sensing prim-
itives to track the variations in propagation dynamics that
are induced by human motion. However, it is the role of the
machine learning (ML) component to capture such behav-
ior in a robust sensing model. Thus, when operating within
different frequency bands, it is important to ensure that
the back-end ML component is trained for the respective
human-modulated propagation behavior corresponding to
that specific band. Our experimental results in this paper
are for the 5GHz Wi-Fi band with 40MHz bandwidth.

Nonetheless, other wireless standards—such as 802.11ah
operating in the sub-1GHz band and 802.11ad/ay operating in
the 60GHz band—could benefit from identical featurization,
albeit after specializing the back-end ML component to cap-
ture their individual propagation characteristics as a function
of human motion. Moreover, we have shown in Section IV
that the magnitude of our differential subspace tracking
behaves identically irrespective of the representation of the
channel response, be it in time or frequency. This means that
both the single-carrier and OFDM variants of WiGig would
benefit from our subspace-based featurization. It is also worth
pointing out that in relation to WiGig, 60GHz frequencies
are quasi-optical and are less able to diffract around objects.
The subspace will mirror this behavior; however, increased
coverage of the environment may be possible by considering
the beam training procedure that 802.11ad/ay implements.
Specifically, recent work has shown that such beam training
procedure from infrastructure access points can be used to
localize a mobile user [22]. It would be interesting in this
particular example to see if tracking the subspacewould allow
for inferring finer-grained details on the nature of the mobile
node’s movement. OFDMA systems such as 802.11ax can
also benefit from the proposed subspace tracking; however,
care should be taken to handle instances of transition in user-
assigned subcarriers and their implications on the subspace.

B. ML MODEL COVERAGE AND VECTORS OF VARIATION
There are many variables that impact the robustness of the
back-end ML model. We call these the vectors of vari-
ation of the ML model. Exhaustive training across these
vectors of variation is needed for sufficient coverage of the
sampling space in order to ensure the ML model general-
izes in the real-world. One such vector of variation is that
arising from the individualized way in which different users
perform activities. Broadly, there are two methods in prior art
for dealing with such variations: design-based and learning-
based. In design-based methods, hand-crafted features by an
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expert designer—such as careful frequency binning in [23]
and coarser wavelet spectral bins in [5]—are engineered to
absorb the expected variations in the real-world. In con-
trast, learning-based approaches rely on automatic cover-
age of these natural variations by the inference component
through the sheer amount of empirical data used for training.
In this paper, we focused on a formal and interpretable low-
dimensional featurization of the wireless channel, with our
evaluation (cf. figure 12) falling under the latter learning-
based approach.

C. AXES OF RESOLUTION
The performance of sensing applications built atop channel
tracking is fundamentally limited by the spatio-temporal res-
olutions of channel measurements. Specifically, the utilized
bandwidth and number of antennae have a large bearing on
what can be perceived unambiguously in the environment i.e.
without over-fitting inference. To see this, consider the envi-
ronmental imaging capability of the covariance Rx through
its beamspace representation FRxFH , where F is the Fourier
transform matrix [6], [7], [24]. Clearly, for meaningful imag-
ing, the number of antennae needs to be high in order to
resolve environmental spatial scatterers. Similarly, bandwidth
delivers the temporal resolution necessary for measuring the
channel’s delayspread (or frequency selectivity) more accu-
rately. It is customary to see in related literature prolonged
signal dwell times in order to compensate for the lack of
spatio-temporal resolution as supplied by current research
testbeds e.g. of the order of minutes dwell time to estimate
occupancy in [3] and [20]. To put it in wireless terms, clearly
the ‘‘coherence’’ time of crowd movement indoors is much
shorter than 5 minutes. We, therefore, would argue that prac-
tical indoor channel sensing systems are likely to appear
once we begin to see the roll-out of wireless infrastructure of
enhanced spatio-temporal resolutions such as indoor massive
MIMO in the millimeter-wave band.

VII. CONCLUSION
In this paper, we formalize the problem of Wi-Fi-based
human sensing and cast it as a channel signal subspace
tracking task. We demonstrate the equivalence of the two
problems. We posit the optimality of such formulation
citing prior establishedwork fromwireless literature.We con-
clude by providing evidence for the applicability of our sub-
space tracking across two usage scenarios: presence detection
and activity recognition with promising early results. Future
work will focus on machine learning classification using our
subspace-based featurization.
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