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ABSTRACT Due to the ubiquitous utilization of GPS devices, traffic cameras, and sensing devices, data are
collected more readily in a smart city. If all the cabs of this city are used as data carriers, data generated by
sensing devices will be collected to data centers efficiently and economically. Therefore, vehicular networks
joint sensing devices provide more perspectives for a variety of vehicle-based applications. In this paper,
three data centers deployment optimization schemes are proposed to optimize data centers’ deployment,
which can considerably enhance the performance of data collection and code dissemination tasks. Each
proposed scheme uses different criteria to optimize the deployment of data centers: 1) locations of sensing
devices; 2) locations that have high traffic flow; and 3) locations that have high valid flow, and these schemes
are called Scheme 1, Scheme 2, and Scheme 3, respectively. In addition, another scheme that produces
the deployment of data centers randomly is called Scheme 4, and it is used as a contrast in experiments.
After performing extensive experiments and simulations based on two real-world datasets of cabs’ GPS
coordinates, the experiment results demonstrate that Scheme 3 noticeably outperformed remaining schemes
under various circumstances. The results of February 3 were taken (Dataset 1) for instance. In comparison
with Scheme 4, Scheme 3 enhances the total number of collected data packets by 57.71%when the number of
the data center is ten, the speed of code dissemination and the coverage of cabs are ameliorated by 23.92%
and 12.93%, respectively. Compared with Scheme 1, the total number of Scheme 3’s collected packets is
65.00% higher than that of Scheme 1 when there are ten data centers deployed. The figures for Scheme 3’s
code dissemination and the coverage of sensing devices exceed that of Scheme 1 by 18.98% and 10.21%,
respectively.

INDEX TERMS Vehicular networks, data collection, data centers, code dissemination, smart city.

I. INTRODUCTION
Along with the dramatic development of electronic technolo-
gies, various kinds of sensing devices have been invented,
and they have become increasingly powerful and cheaper.
Sensing devices are widely used in a variety of applica-
tions to build a smart city [1]–[4], from which the status
of infrastructures can be collected and used to subsidize the
decision making regarding infrastructures. According to [5],
the number of devices (themajority of them are sensing-based
devices) connected to the Internet of Things on the earth has
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reached 9 billion since 2011. It is estimated that by the year
2020, the number of devices connected to the Internet will
reach 24 billion [6], [7]. Such a trend has brought many
far-reaching impacts. In the initial place, regulators are able
to obtain all kinds of data through sensing devices more
easily. Both the coverage and the number of collected data
have witnessed a huge leap, which enables the regulators
of infrastructures to react to sensed data more swiftly. As a
result, a city becomes smarter [8]–[11]. On the other hand,
by analyzing the underlying patterns of these data, consider-
able improvements can be made associated with transporta-
tion management [3], [7], [12], urban planning, epidemic
control, and mobile platform applications [13]–[16].
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The task of sensing devices is to obtain ubiquitous data [3],
[7], [17]–[19]. However, how to deliver the collected data
from sensing devices to data centers effectively remains a
challenging issue [12], [17]. Some efforts of collecting data
from sensing devices using Vehicular Networks (VN) have
been made by some researchers [3], [4], [20], [21]. Vehicular
Networks and their applications have recently attracted much
attention from both industry and academia [3], [4], [20], [21].
With the pervasive applications of intelligent equipment such
as GPS devices, traffic cameras, smart cards, smartphones,
and road deceleration devices, multisource big data can be
collected more easily than ever before [22]–[24]. On the
other hand, the number of vehicles in urban areas is also
immense.Many cosmopolitans containmore than onemillion
cars, which move around all day long restlessly. For example,
Beijing has more than 544 million vehicles. Vehicles are also
capable of collecting data, and they have strong communi-
cation capacity [3], [4], [20], [21]. Thus, the way of collect-
ing data could be revolutionized by using moving vehicles
to obtain data from infrastructures embedded with sensing
devices [3], [4], [20], [25], [26], and a new perspective of col-
lecting data in a swift, economical way is provided. Following
that, those obtained data are integrated into an online platform
where data can be further processed and analyzed [27]–[30].

A few previous research had tried to implement the sce-
narios mentioned above. To collect and sense a variety
of useful data, the number of deployed sensing devices is
ever-increasing [3], [4], [20], [21], [25], [26], [31]. For
instance, sensing devices are embedded into street lamps;
they are deployed inside garbage bins to obtain their filling
level [31]; they are also installed in important constructions
like bridges, theaters, and roads to record their physical defor-
mations [25], [26]. In other applications such as monitoring
status of trees and green belts, sensing devices can report
the temperature and humidity information to the relevant
regulators so that they can decide how often to irrigate vege-
tation [25], [26]. A common attribute of these applications
is that sensing devices spread broadly across the entire city,
which makes them hard to collect. Moreover, their distribu-
tion is sparse and dynamic, which means that deploying a
static network connected to the Internet would be expensive
and inefficient. Also, it takes a lot of time to deploy such a
static network. For example, to monitor physical status of a
road that is being constructed, sensing devices needed to be
added to the road as the construction goes on, the locations
and the number of garbage bins may also change under
different circumstances [25], [26]. Therefore, deploying a
static network is not feasible [25], [26].

Bonola et al. [31] proposed a scheme that uses cabs as data
mules. Nowadays, a large number of cabs are equipped with
onboard communication equipment due to the dispatching
purpose. The equipment can be used to collect data from
sensing devices and transmit collected data to data centers.
Thus, when a cab passes an infrastructure embedded with
sensing devices, the status data about the infrastructure are
transmitted to this cab through short-distance communication

technologies such as Bluetooth and 802.15.4. Later, when the
cab passes a data center, all the data stored in its buffer are
transmitted to the data center. In this way, data produced by
ubiquitous sensing devices are collected efficiently. In com-
parison with traditional methods, such a scheme has the fol-
lowing advantages: (1) Oblivious. Cabs work on a 24/7 basis,
and the paths that they travel cover the vast majority of roads
and streets in a city. Therefore, the behavior of cabs does not
have to be intervened. (2) Economical. It would be expensive
to hire a fleet of vehicles to perform data collection and code
dissemination tasks. However, using cabs to perform these
tasks is economical since their behavior does not need to
be intervened. Also, unlike wireless sensor networks, there
is no need to deploy a network connected to the Internet.
(3) Adaptive. The movement of cabs is highly adaptive to
the changes of circumstance quickly. For instance, if a new
residential area is constructed, then cabs will visit that place
more often and interact with newly deployed sensing devices.
If many residences left one area for holidays, the number of
times cabs visit that area will decline. Vice versa, if many
tourists come to a city, infrastructures around tourist spots
and hotels will produce more data. Since tourists are likely
to take cabs to these places, cabs will pass sensing devices
located there more frequently.

The ways of data collection are further investigated
in [25] and [26]. To increase the quality of collected data,
these researchers tried to reduce redundancy rate by assigning
priorities to sensing devices. Since sensing devices that are
located in city centers are visited more frequently, the data
collected from city centers tend to be redundant. Thus these
devices are assigned with low priority. In contrast, data gen-
erated by sensors located in suburban areas are difficult to
collect because those devices are less visited by vehicles.
To collect data from suburbs more easily, sensing devices
located there are assigned with high priority. When new data
are received, and the buffer of a cab is full, data with low
priority are replaced by high-priority data.

Meanwhile, with the emerging of a technology called
software-defined networking [20], [21], code can be loaded
to hardware and enable it to modify the settings or gain new
functions after running the received code. This technology
can reduce the cost and time it takes to replace old hardware.
It can provide more flexibility for sensing devices since it
is possible for them to upgrade or modify their functions
such as collecting different types of data, or adding sim-
ple data-processing functions to themselves. Facilitated by
the software-defined networking technology, normal sensing
devices are upgraded into smart sensing devices [32]. This
technology can significantly reduce the cost and time of
deploying new devices, and it can also extend the life-span of
existing sensing devices. Ren et al. [20] and Liu et al. [21]
proposed a scheme to conduct code dissemination using vehi-
cles. They focused on the scarcity of cabs’ storage size and
made optimization for it.

According to the analyses above, the colossal amount of
sensing devices and vehicles can be combined into a powerful
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network to address many existing problems. Specifically,
those applications that can benefit from vehicular networks
are consisted of following procedures: (1) sensing devices
sense and perceive useful data; (2) sensing devices transmit
the collected data to passing cabs; (3) cabs upload the col-
lected data to data centers through opportunistic communica-
tions; (4) the collected data are analyzed by regulators and can
be later provided to public for academic research. Besides,
data centers are able to publish and disseminate new code to
sensing devices: (1) a piece of code is written to modify the
settings or upgrade the functions of sensing devices, and the
new code is published to data centers; (2) the code is trans-
mitted to cabs when they enter the communication range of
data centers; (3) cabs disseminate the code to sensing devices
that they pass; (4) sensing devices upgrade their functions by
running the received code. Hence, vehicular networks joint
sensing devices have a promising perspective.

Previous research mainly focuses on the processes of data
collection or code dissemination solely, and most of the pre-
vious work is based on the assumption that data centers are
already deployed. In contrast, however, this work focus on the
deployment of data centers. Moreover, our work considers
both data collection and code dissemination tasks and opti-
mize both of them. On the one hand, the optimization of data
centers’ deployment can noticeably enhance the speed and
efficiency of data collection at a low cost. On the other hand,
it can also reduce the delay of code dissemination, which
makes sensing devices more intelligent. While inefficient
deployment of data centers can render a prolonged process
of code dissemination, which causes the incongruity among
upgraded sensing devices and devices that have not received
the code. The incongruities are illustrated in the preciseness,
sampling frequency, and the number of data that needed to
be collected. Therefore, there would be a period of time
when new code and outdated code both exist. Our goal is to
reduce the length of such a period of incongruity. Although
previous research tried to promote the performance of code
dissemination, they did not address this issue by adjusting the
deployment of data centers. The deployment of data centers is
not only of considerable significance for the efficiency of data
collection but also for the speed of code dissemination. In this
paper, three novel Data Centers Deployment Optimization
(DCDO) schemes are proposed to address the challenges
mentioned above. The principal innovations of this paper are:

1. Three DCDO schemes are proposed. The optimization
of data centers’ deployment consists of two aspects: (1) Loca-
tion of data centers. The proposed schemes can optimize
the location of data centers by using a clustering algorithm,
and each of them use three different criteria: (a) Locations
of smart devices; (b) Locations that have high traffic flow;
(c) Locations with high valid flow (valid flow is explained in
detail in Section IV.A). Clustering algorithms are particularly
suitable to determine the location of data centers due to some
attributes of the distribution of smart devices. For instance,
sensing devices embedded in garbage bins are located more
intensely in residential and central business area. To obtain

the optimal locations of data centers, the clustering algorithm
use locations obtained using various criteria as input, and
these locations are clustered into different clusters, the cen-
troids of which are the locations of data centers. Since the
traffic speed is limited in a city, it is not feasible to reduce
the delay of collecting data by increasing the speed of cabs.
Besides, cabs move obliviously, so their ordinary behavior is
not intervened. Therefore, enhance the performance of data
collection by adjusting the deployment of data centers is a
more feasible strategy. If a data center are deployed into better
locations, data will be collected and uploaded more swiftly.
Additionally, the speed of code dissemination will also see
a rise. (2) Total number of data centers. It is indisputable
that the sum of collected data packets is positively correlated
to the quantity of data centers. Nevertheless, according to
the experiment results, we found that when the number of
data centers increases to 10 to 30, the growth rate of total
data packets becomes noticeably slower. In other words, once
the number of deployed data center reach a certain level,
deploying more data centers becomes uneconomical. Thus,
one of the goals of this paper is to obtain the appropriate
number of data centers that can guarantee high performance
at low cost.

2. The proposed DCDO schemes are able to ameliorate the
performance of both data collection and code dissemination
tasks by optimizing the deployment of data centers. None of
previous works address these two issues jointly. For instance,
Fang et al. [32], Tang et al. [25], and Xu et al. [26] did
research to collect data more swiftly and cover more broadly.
Ren et al. [20] and Liu et al. [21] only considered how to
disseminate code to a network. The DCDO schemes are able
to facilitate the data collection and code dissemination tasks
simultaneously. Therefore it is of high practical values.

3. The evaluations and simulations of the proposed
schemes are based on two real-life trajectories datasets. They
have 7,871,498 and 17,478,202 GPS points within approxi-
mately 400 square kilometers of areas that are chosen to per-
form simulations. After conducting extensive experiments,
the optimal deployment of data centers is obtained.Moreover,
comparisons are made among three proposed schemes and
a random scheme, which produces locations of data centers
randomly. Experiment results reveal that Scheme 3 noticeably
outperformed remaining schemes. Taking results on Febru-
ary 3 (Dataset 1) for instance, in comparison with Scheme 4,
Scheme 3 enhances the total number of collected data packets
by 57.71%when the number of data center is ten, the speed of
code dissemination and the coverage of cabs are ameliorated
by 23.92% and 12.93% respectively. Regarding Scheme 1,
Scheme 3’s total collected packets are 65.00% higher than
that of Scheme 1 when there are ten data centers deployed.
The figure for Scheme 3’s code dissemination and coverage
exceed that of Scheme 1 by 18.98% and 10.21% respectively.

The rest of this paper is organized as follows. In Section II,
related work is reviewed. Following that, the system
model and problem statements are described in Section III.
The detailed design of the DCDO schemes is discussed
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in Section IV. The performance analyses and experiment
results are presented in Section V. Finally, the conclusion is
made in Section VI.

II. RELATED WORK
A. DATA COLLECTION IN WIRELESS SENSOR NETWORKS
Wireless sensor networks are one of the areas that have been
researched for the longest time by far, and they are also the
oldest networks used for collecting data [32]–[36]. In such a
network, sensor nodes are deployed into the area that needs
to be monitored, and the network is composed of these sensor
nodes. Then, data are collected and forwarded by multi-hop
routing among nodes [37]–[39]. For instance, to obtain the
status (temperature, humidity, etc.) of crops, sensor nodes
need to be installed in farmland which needs to be monitored.
A special node called sink also need to be deployed, and it is
connected to the Internet and has endless energy while nor-
mal sensor nodes are energy-restricted. Other sensor nodes
forward data to sink as soon as data are collected, the data
are then be transmitted to a control center to facilitate the
regulation and decision-making of crops [40]–[42].

Perceiving and collecting data is the primary function of a
wireless sensor network, and many research work is based on
this topic [43], [44]. However, sensor nodes are extremely
energy-constrained because they are powered by batteries.
Therefore, a significant concern in wireless sensor networks
is how to save energy while ensuring the quality of the col-
lected data. For sensor nodes, both receiving and forwarding
data consume energy. Since the nodes that are closer to the
sink havemore data traffic, these nodes consume energymore
quickly. The death of these nodes could negatively influence
the lifetime of the entire network, and this phenomenon is
known as the energy hole. Many research has been proposed
to avoid such a phenomenon [41], [45]. A feasible method is
data aggregation. In this method, collected data are integrated
with data packets collected from nearby nodes because they
are usually relevant and have similar content. Consequently,
the total amount of data packets are reduced, and the life
span of the entire network is extended [22], [44]. Data
merging process can be divided into two categories. The first
one is infinite data merging mode, in which the number of
data packets that can be merged together is infinite [44].
This mode is usually applied to applications that sense only
the maximum and minimum data. For instance, regulation
centers of crops are more concern about the maximum and
minimum daily temperature. Hence, energy consumption of
networks could be noticeably reduced, and regulation centers
receive less redundant data. In another mode of data aggre-
gation, which is widely used. In this mode, data packets are
aggregated together into packets that have sizes in proportion
(∅|0 < ∅ ≤ 1) to their original size, ∅ is also referred to as
the ratio of data merging.

In wireless sensor networks, another major concern is the
quality of collected data. The quality of data can be measured
in terms of delay [2], [10], [22], the amount of energy

consumption per bit, and the reliability of collected data.
There is plenty of research has been conducted to ameliorate
the quality of data. Due to the low efficiency of wireless sen-
sor nodes, their communication range is constrained. Also,
it is found that long-range communications consume more
energy than short-range communications using multi-hop
routing [33]. Therefore, multi-hop routing is widely used
in wireless sensor networks. However, it often causes more
latency. Besides, the reliability of wireless sensor networks is
significantly lower than that of wired networks due to the path
loss caused by wireless transmission. Moreover, data need
to be retransmitted if failures occurs, which further increase
the delay. The reliability of data transmission also depends
on the transmission power of sensors nodes. In other words,
higher efficiency yields higher reliability of networks since
the number of transmission failure is reduced. Although the
amount of consumed energy is positively correlated to the
transmission power, relevant research can be found in [33].
Furthermore, the quality of collected data is influenced by
routing strategies. Thus, many research aims to ameliorate the
quality of collected data by devising more effective routing
protocols. In a simple point-to-point routing process, one
sender chooses a receiver and send data packets to it. How-
ever, this method is not reliable due to the inherent insta-
bility of wireless transmission. To address this issue, some
researchers proposed the opportunistic routing scheme [46],
in which a sender can choose multiple receivers to perform
data transmission. As a result, latency can be reduced while
the reliability of transmission is guaranteed.

To reduce total energy consumption, wireless sensor net-
works often use the duty cycle [10], [32]. In a duty cycle,
sensor nodes shift between two states of the duty cycle: awake
and sleep. Using duty cycle can considerably expand the
lifespan of entire networks because when sensor nodes are
idle, they shift into the asleep mode, which consumes less
energy than the awake state [10], [32]. Nevertheless, using
duty cycle may render more delay because when a sender
sends a data packet to a receiver which is under the sleep
mode, it takes some time for the receiver to shifts back into
the awake mode to receive the data.

B. DATA COLLECTION IN PARTICIPATORY
SENSING NETWORKS
Participatory Sensing Network (PSN) [12], [17], [47], [48]
is a network that is similar to the vehicular network used
in this paper. In a typical PSN, sensing devices are usually
smartphones or other portable sensors [12], [17]. On the one
hand, there is a considerable number of mobile phones that
have sensing abilities, and it is estimated that there are more
than 20 billion mobile phones in the world [12], [17]. On the
other hand, mobile phones have potent capacities. The CPU
processing speed, storage size, and communication capability
of mobile phones are even faster than personal computers
that were manufactured ten years ago. As a large number of
mobile phones move along with people, a variety of data are
collected.
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Moreover, the types of collected data cover tempera-
ture, humidity, and other forms of data such as sounds
and videos [12], [17]. Therefore, data sources of PSN are
comprehensive, and those data to be collected are usually
real-time or semi-real-time. Therefore, it is inexpensive and
convenient to obtain data in PSN. Such an attribute make it
possible to observe some objects across a broad geographical
scale continuously [12], [17]. For instance, it used to be a
hard and costly task to trace the migration of migratory birds
because the time and the area that they start to migrate varies
a lot. Traditional methods such as deploying observation
stations are very time-consuming and ineffective. To facilitate
applications like this, industry and academia havemademany
efforts. It is found that the utilization of participatory sensing
is an effective way to obtain data at a low cost. To conduct par-
ticipatory sensing, data consumers firstly send demands and
requirements of data, and reporters who obtain the requested
datawill upload them and get paid. By reporting captured data
(in forms of pictures and videos), big tasks such as tracking
the migration of animals can be achieved [12], [17].

In comparison with wireless sensor networks, participa-
tory sensing networks usually use 4G or even 5G cellular
networks. In other words, networking infrastructures such as
sensor nodes and sinks do not have to be deployed [49]–[51].

One of the primary goals in the data collection perspective
of participatory sensing networks is to motivate participants
to collect comprehensive and high-quality sensing data. Since
many research and applications (e.g. tracking the migration
of birds) are based on sufficient data, the volume of collected
data has to be large enough. In the bird-migration example,
patterns of the migration can only be revealed when the
amount of data about their migrating routes is big enough.
Also, the collected data are expected to have high quality
since redundant data is useless and increase the burden of
networks. For instance, when an emergency event occurs,
a few high-quality data can cover all the critical information
about this event while data of low quality usually contains
much irrelevant information, which could distract readers and
cost more resources to collect them.

Many research about the data collection in participatory
sensing network has been conducted. One of the most preva-
lent methods is the money incentives scheme. The core idea
of this scheme is to pay back participants who collect useful
data [12], [17], while the amount of award is determined
by the quantity and quality of collected data. Generally
speaking, more reward will be provided to stimulate more
people to get involved if the number of reported data is
low. Conversely, there will be fewer rewards if the reported
data are already sufficient. Later research does not pay back
participants based on the number of provided data, the quality
of data is used as criteria instead. Thus the performance
of applications is guaranteed due to high-quality data and
low cost. For instance, when the required data is about
weather conditions. If rewards for reported data are same,
population-dense regions are likely to produce more redun-
dant data and cost more money. While population-sparse

areas may have insufficient data samples. Therefore, some
researchers proposed schemes that can adjust the number of
rewards according to regions and time to ameliorate system
performance [12], [17]. Tham and Luo [52] proposed a
data-collecting scheme based on ‘‘Quality of Contributed’’
to collect data that can evenly cover an entire region. Refer-
ence [53] introduced a scheme based on ‘‘Quality of Infor-
mation’’ to collect data. Similar research can also be found
in [12] and [17].

C. DATA COLLECTION IN VEHICULAR NETWORKS
In wireless sensor networks, the data collection can be per-
formed only after the network required by an application
is deployed in advance [54]. However, the cost of network
deployment is high, and it is inconvenient to share the col-
lected data with other applications. There is no need for par-
ticipatory sensing networks to deploy any network in advance
since the data collection can be facilitate by cellular net-
works. However, since most of participants may not process
professional skills (e.g. measuring the physical deformations
of bridges or detecting geographical disasters such as land-
slide and earthquake), participatory sensing networks are not
suitable for performing data-collecting tasks that need these
skills [12], [17].

The vehicular networks studied in this paper combine
the benefits of wireless sensor networks and participatory
sensing networks. Similar to participatory sensing networks,
it is not necessary for vehicular networks to set up a spe-
cific network in advance since the task of transmitting data
is performed by vehicles. Therefore, the cost of deploy-
ing and maintaining networks is saved. On the other hand,
vehicular networks can collect data from sensing devices,
which are able to record and monitor the physical conditions
of the environment. The locations of sensing devices can
be adjusted according to the requirements of applications.
Unlike participatory sensing networks and wireless sensor
networks, vehicular networks are connected by moving vehi-
cles. Thus, vehicular networks are more flexible and adap-
tive [3], [4], [20], [21], [25], [26], [31].

Bonola et al. [31] proposed a scheme concerning the
feasibility of utilizing cabs as data mules to collect data.
In later research, some QoS-based schemes are proposed
to perform data collections. Xu et al. [26] found that in
the data-collecting scheme proposed by Bonola et al. [31],
data collections are completed only when data are sent from
vehicles to Data centers. For those vehicles that never pass
a data center, the data collected by them are wasted. Even
those data can finally reach Data centers, they are likely to
be outdated. Such a scheme is not efficient enough for many
applications. To make the data-collecting processes more
efficient, Xu et al. [26] proposed the Latency and Coverage
OptimizedData Collection (LCODC) scheme. In the LCODC
scheme, data can be uploaded to Data centers not only when
vehicles pass a data center, but they can also be forwarded
among vehicles before they reach Data centers after a few
relays. In other words, a better performance of data collection
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can be yielded if data can be transmitted among vehicles.
Tang et al. [25] proposed the Simulated Annealing for Pri-
ority Assignment Algorithm (SA-PA algorithm) scheme to
improve social welfare by maximizing the rate of data collec-
tion and minimizing the number of redundant data. The core
idea of the SA-PA algorithm is to set priorities for sensors
because the buffer capacities of data mules (vehicles) are lim-
ited. When the remaining buffer size of vehicles is sufficient,
all the data sent by sensors are stored. Once a vehicle runs
out of buffer capacity, data collection is conducted according
to the priorities of sensors. When a vehicle passes a sensor
which has high priority, new data are stored, and the data
collected from sensors with lower priority are dropped.More-
over, the priorities of sensors can be adjusted dynamically.
For those sensors that generate data about similar content,
their priorities should be low. Conversely, those sensors that
generate more crucial data usually have high priorities. For
example, data collected from sensors located in city centers
usually are likely to be redundant because they are collected
by a large number of vehicles that pass them. However, data
generated by sensors located in suburban areas are difficult
to collect because those devices are less visited by vehicles.
Therefore, sensors located in suburbs should have higher
priorities compared with those located in downtown areas
in order to collect comprehensive data, which cover most
sensors of a city [55].

D. CODE DISSEMINATION IN WIRELESS
SENSOR NETWORKS
Code dissemination is another area that is closely relevant
to this paper. There is already a few research about code
dissemination in wireless sensor networks [20], [21]. The
goal of investigating code dissemination is to disseminate
code effectively while keeping the number hops and delay as
low as possible. Code dissemination is particularly effective
using wireless sensor networks due to its broadcast ability.
When a piece of code is broadcasted, all the devices within in
the communication radius can receive the code and update
their settings. Nevertheless, it is arduous to minimize the
times of broadcast it takes to broadcast a piece of code to
all the nodes in a wireless sensor network. Some researchers
found that it is an NP-hard problem [56], and they proposed
a connected dominating set based optimization algorithm for
code dissemination [56]. The main idea of this algorithm is
to find a connected dominating set, which contains nodes that
can dominate all of the other nodes in the entire network.
As long as a piece of code is received by nodes belong to
the connected dominating set, the code is guaranteed to be
received by remaining nodes.

All the aforementioned schemes that aim to address code
dissemination are based on the assumption that all the nodes
are working all the time. However, receivers may be unable
to receive the code in a duty-cycle-based wireless sensor
network during their sleep mode. Therefore, a sender may
have to broadcast multiple times in order to make sure all
the nodes from a duty-cycle-based wireless sensor network

can receive the code. As a result, a longer delay is caused.
Fang et al. [32] proposed an Adaption Broadcast Radius-
based Code Dissemination (ABRCD) scheme to reduce
delay and improve energy efficiency in duty cycle-based
wireless sensor networks. After performing data collection,
the ABRCD scheme utilizes the energy left in nodes which
are far from the sink to enlarge the range of code broad-
casting. With a larger communication radius, more nodes are
able to receive the code in each broadcast. Consequently,
the latency decreases considerably, and the lifespan of the
network is not influenced.

E. CODE DISSEMINATION IN VEHICULAR NETWORKS
Code dissemination in vehicular networks is a newly pro-
posed research area [20], [21]. Its goal is to disseminate
code to a large number of sensing devices embedded in
infrastructures to update their settings.

Liu et al. [21] proposed a Complete Software Update
based on Trust and Priority (CSUTP) scheme to update the
code of software for edge devices in a city. The CSUTP
scheme mainly contains two procedures. The first procedure
is to check whether edge devices need to update their code
by collecting the status information of them. The second
procedure is to disseminate code to edge devices. During the
first procedure, each device is assigned with a priority. Code
dissemination gives priority to devices with higher priority.
As a result, CSUTP scheme not only reduces dissemination
delay and data redundancy but also improves the coverage
ratio of collecting status information of edge devices and
success arrival ratio of the code.

Besides collecting data from sensing devices to vehicles,
uploading data from vehicles to data centers is also a crucial
procedure. Although, none of the research mentioned above
addresses the deployment optimization of data centers, which
is also of great significance for both data collection and code
dissemination tasks. The locations and number of data centers
have a considerable influence on the overall network perfor-
mance. Moreover, ameliorating deployment of data centers
can reduce the cost and improve the efficiency of collecting
data and disseminating code. Hence, the research on their
deployment is critical and useful.

III. SYSTEM MODELS AND PROBLEM STATEMENTS
A. NETWORK MODEL
The vehicular network used in this paper is similar
to [3], [4], [25], [26], and [31]. As demonstrated in Fig-
ure 1, smart devices are embedded in a variety of infras-
tructures to collect their status data. Such as filling levels of
garbage bins, the deformations of physical structures about
roads and bridges, and humidity and temperature information
around vegetation along either side of roads. When cabs
pass by smart devices, the collected data are transmitted
to cabs through wireless communications. After receiving
the collected data, cabs temporarily stored the data in their
buffers, and all the stored data are sent to data centers once
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FIGURE 1. Network model.

cabs enter the communication range of data centers. For those
delay-tolerant applications, using vehicular networks to col-
lect data is efficient and economical [3], [4], [25], [26], [31].
Moreover, DCDO schemes can also guarantee the perfor-
mance of applications that require less delay. Since some
smart devices are software-defined devices. Code can be dis-
seminated to these smart devices by cabs. The network model
used in this paper consists of the following components:

(1) Data centers. They are storage and processing centers
of collected status data. As demonstrated in right-upper part
of Figure 1, a data center sends a piece of code to a cab in
order to adjust the working period of street lamps. Other data
centers in Figure 1 illustrate the processes of data collection.
Firstly, cabs collect status data from smart devices. Following
that, cabs transmit collected data to data centers when they
enter the communication range.

(2) Data carriers. As discussed in Section I, due to the
advantages such as long working periods and wide geo-
graphical coverage, this paper use cabs as data carriers. Cabs
collect and disseminate data using wireless communication
technologies. As for emergent applications that need low
latency, onboard Internet connection could be used. As shown
in Figure 1, they are able to collect data from smart devices
installed in green belts and garbage bins. They can also
disseminate code to smart devices to modify their settings or
upgrade their functions.

(3) Smart devices. Sensors and actuators embedded in
infrastructures of a smart city are referred to as smart devices
in this paper. Facilitated by the software-defined networking
technology, smart devices become more intelligent because
they can be upgraded after receiving the new code. As can
be seen from Figure 1, smart devices generate status data
such as the humidity and temperature data around trees while
they are working, and they sense the filling level of garbage
bins. Then, smart devices communicate with passing cabs
using low powerwireless technologies such as Bluetooth Low
Energy. After receiving the code sent by cabs, smart devices
are capable ofmodifying their settings. To illustrate, the smart

devices that originally collect temperature data can be reset to
collect humidity data around vegetation. The working period
of street lamps can be reset in foggy weathers.

As it is discussed in Section I, the majority of data collec-
tion tasks is delay-tolerant, the reason is that the status data
produced by infrastructures are usually not urgent. Taking
garbage bins for example, when one of them is full, it is
not necessary for the regulators of garbage collection to be
informed immediately. Regulators can only plan a better col-
lection path after receiving enough status data. However, code
dissemination tasks usually expect lower latency because the
period of incongruity should be reduced as we discussed in
Section I.

Cabs can also make use of their LTE connection and stay
online while they are working. The DCDO schemes can
be achieved by both online and offline approaches. For the
online approach, cabs can immediately upload the collected
data. This approach is particularly suitable for application
that requires a low delay. However, this may be unnecessary
since the majority of application are delay-tolerant and cab
drivers may be unwilling to share their LTE connection due
to the concerns of cost. Hence, the offline approach is used in
the evaluations of DCDO schemes. In the offline approach,
data are firstly stored in buffers of cabs before they are
finally transmitted to data centers. As for code dissemination
process, the online and offline approaches are similar to
that of data collection. Under the online approach, cabs can
receive the new published code immediately before sending
them to smart devices. Although, for the applications which
are delay-tolerant (e.g. updating the content in billboards),
the offline approach is sufficient. Cabs obtain the code when
they get into the communication range of data centers. Then
they forward the received code to smart devices. As opposed
to collecting data, only a piece of code need to be spread,
so the code usually does not occupy much space of cab’
buffer. Next, the standardized definitions of the network
model are given.

In this smart city, it is assumed that there are m cabs
involved in the data collection and code dissemination pro-
cesses. The quantity of data centers is k , and m cabs are
represented as C = {C1,C2, . . . ,Cm. There are n smart
devices, and they consist a set S = {S1, S2, . . . , Sn}, among
which Si represents the i-th smart devices. Besides the set
of locations that are made up of smart devices, two other
schemes proposed in this paper use other criteria. The number
of locations that are used as input in all of three schemes
is n. To obtain n locations for Scheme 2 and Scheme 3,
thresholds are used to limit the number of locations to n
(top n locations with higher traffic or valid flow is obtained).
A set of locations with high traffic flow are represented as
F = {F1,F2, . . . ,Fn}, and Fi refers to the i-th location in
this set. Similarly, V = {V1,V2, . . . ,Vn} is a set of locations
that have high valid flow, among which the i-th location
is referred to Fi. The detailed explanations of valid flow
are discussed in Section IV.A. The aims of smart devices
embedded into infrastructures are to collect status data and
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send them to data centers. Data centers are represented as
D = {D1,D2, . . . ,Dk}. The role of data carriers is played
by cabs, they collect and temporarily store data packets while
they are moving around the city restlessly. The data stored in
their buffers are sent to data centers when they get close to
data centers. To obtain the locations of data centers, a clus-
tering algorithm is used (discussed in detail in Section IV).
Since the number of data centers is k , k clusters consist a set of
clusters U = {U1,U2, . . . ,Uk}. The j-th cluster that contains
elements is Uj = {Uj1,U

j
2, . . . ,U

j }.
From the moment data are produced until they are

received by data centers, latency inevitably occurs. P =
{P1,P2, . . . ,P } is a set of data packets sent to data centers,
the total number of data packets stored in data centers is .
i denotes the time it takes from a data packet is sent to a cab

(τstart ) until it is received by a data center (τend ).

i = τend − τstart

For the convenience of readers, the notations used in this
paper are summarized in Table 1.

TABLE 1. Notations.

B. PROBLEM STATEMENTS
The principal goals of the DCDO schemes are to maximize
the number of collected packets and reduce the delay of

FIGURE 2. The smart scenario used in experiments.

code dissemination. The optimization objectives in this paper
can be categorized into the following aspects:

(1) Locations of data centers
While the deployment of smart devices depends on the

plans and requirements of a smart city. They are embedded in
infrastructures like garbage bins, street lamps, and billboards.
They usually located on either side of roads. Similar to data
centers, the locations of smart devices usually do not fre-
quently change once they are installed. Therefore, the deploy-
ment of data centers is significant because it can reduce the
total distance between smart devices and data centers. The
total distance among each location and its closest data centers
to them for three schemes are:

L =
k∑
i=1

i∑
j=1

dist(Di − Uij)

In the formulas above, Di denotes the centroid of the
i-th cluster thatUij belongs to.U

i
j is Sj,Fj, andVj in Scheme 1,

Scheme 2, and Scheme 3 respectively. dist(Di−U
i
j) represents

the Euclidean distance between Uij and Di. The optimization
problem is converted to:

min (L) = min

 k∑
i=1

i∑
j=1

dist(Di − Uij)

 (1)

(2) Latency
The delay of data packet Pi is i, this needed to be

minimized:

min( i) = min(τ end − τstart )

In this paper, Delay Satisfaction Degree (DSD) is used to
measure the delay:

Tdsd =
∑
i=1

i
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Thus the objective is to minimize the overall average
latency:

min (Tdsd ) = min

(∑
i=1

i

)
(2)

(3) Number of collected data packets
There are k data centers deployed in this city, and the

number of data packets collected by the data center Di is i.

max ( ) =

k∑
i=1

i (3)

In summary, the optimization targets of this paper are:

min (L) = min

 k∑
i=1

i∑
j=1

dist(Di − Uij)

 (1)

min (Tdsd ) = min

(∑
i=1

i

)
(2)

max ( ) =

k∑
i=1

i (3)

IV. MAIN DESIGN OF DCDO SCHEMES
A. OVERVIEW
In this section, the overall design of the proposed schemes is
discussed. In Subsection B, the clustering algorithm we used
in DCDO schemes are discussed.

The distributions of smart devices in residential areas
and central business district tend to be denser, and such an
attribute makes them ideal to be clustered. Deploying data
centers to the centroids of clusters can facilitate cabs to collect
data from smart devices to a data center within a same cluster
more efficiently. To optimize objective (1), the distances
between each locations and its closest centroid should be
minimized. In other words, if each cluster has lower total
distance among its centroid and the locations that belong to
the cluster, the overall distance among locations and their
closest data centers will decline.

In order to comprehensively investigate the possible ways
to plan the deployment of data centers, three schemes use
different criteria. The first scheme directly use the locations
of smart devices as input of a clustering algorithm. Besides,
we combine traffic data analysis into our schemes and it
is found that using locations with high traffic flow or high
valid flow as input can yield better performance. Another two
schemes firstly have to calculate which locations have high
traffic flow and valid flow. Then, these locations are used to
conclude the locations of data centers, which are centroids of
each cluster. In order to measure the traffic flow and valid
flow, a city is divided into 25,000 grids, each of which is
40 meters ∗ 40 meters. Considering the communication range
of technologies such as Bluetooth Low Energy and 802.15.4,
which is 10-30 meters in free space, such a design is feasible.
To simplify the discussion, GPS points within each grids is

considered as a same location. Using the grid system, the
traffic flow and valid flow of each grid can be measured.
Three schemes are described as follows:

1. Scheme 1. The locations of smart devices are used as
input of a clustering algorithm in Scheme 1. The locations
of smart devices are determined by external factors such as
the layout of a city, it is assumed that smart devices are
all installed in either sides of roads which are reachable for
cabs in experiments. The detailed algorithm of Scheme 1 is
illustrated in Subsection B.

2. Scheme 2. It uses locations with high traffic flow as
input. The traffic flow is measured by counting the frequency
that cabs have passed each grid during an entire day. If some
of grids have higher traffic flow, the probability that a cab
passes that grid again is high. The grids with high traffic
flow are usually located in hectic areas like city centers
and intersections. Since cabs appear in these grids more
frequently, the data exchange among cabs and data centers is
also more frequent. After calculating the traffic flow of every
grid, a threshold is set to limit the number of high-traffic-flow
grids into a pre-defined amount so that three schemes can use
same amount of locations as input. After that, the clustering
algorithm is run to obtain the locations of data centers of
Scheme 2.

3. Scheme 3. This scheme uses locations with high valid
flow as input. The valid flow of a grid is the cumulative
total number data packets carried by cabs when they reach
the grid over a day. For instance, when a cab carrying two
data packets pass a grid at 13:01, the valid flow of this grid
adds two to its original value. It is introduced because it
is found that although some grids have high traffic flow,
cabs do not carry many data packets when they pass these
grids. Therefore, valid flow can not only reflect the traffic
flow of each locations, but also indicate which locations have
high demand of data exchanges. Similar to Scheme 2, after
obtaining a set of locations with high valid flow using a
threshold, they are clustered into various clusters and data
centers’ locations are obtained.

A scheme called Scheme 4 is designed to be used as a con-
trast. In this scheme, locations of data centers are generated
randomly in the given area.

B. CLUSTERING ALGORITHM
This sub-section describes the detailed procedures of obtain-
ing locations of data centers by applying a clustering
algorithm.

Clustering is sometimes referred to as unsupervised classi-
fication. Popular clustering algorithms include the K-means
algorithm and the hierarchical clustering algorithm. In addi-
tion, the bisecting K-means algorithm is an advanced version
of the K-means algorithm. One of the advantages of the
bisecting K-means algorithm is that it is less susceptible
to initialization problems (randomly selected initial cen-
troids may be poor). There are three major reasons why
the bisecting K-means algorithm is used in this paper:
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(1) The distribution of smart devices in areas like residential
blocks and central business districts usually has higher den-
sity since infrastructures such as garbage bins are usually put
together closely in these areas. (2) This algorithm has high
speed and extendibility.

Each location is clustered into its closest cluster Ui,
of which the centroid (data center) is Di. The sum of the
squared error (SSE) is used to measure the quality of a
clustering. SSE represents the total Euclidean distance among
Dj and all the smart devices that belong to this cluster:

SSE =
k∑
i=1

i∑
j=1

dist(Di − Uij)
2

After calculating the traffic flow and valid flow as dis-
cussed in Subsection A, the goal of clustering is to minimize
SSE. The following algorithms depict the detailed algorithm
for each of three schemes.

Algorithm 1 Clustering Algorithm for Scheme 1
1: Input the number of data centers: K
2: Input a set of smart devices: S
3: Initialize a cluster Ui that is made up of smart devices,{

Ui1,U
i
2, . . . ,U

i
i

}
= {S1, S2, . . . , S }

4:While the number of clusters is less than K do
5: Remove the cluster Uj that has the largest SSE from U
6: Select two elements from Uj as initial centroids
7: While centroids change their locations do
8: Form two clusters by assigning each locations to its

closest centroid
9: Compute the mean of each cluster separately as their

centroid
10: End While
11: Add these two clusters to U
12: End While

Algorithm 1 is the pseudo-code of the clustering process
of Scheme 1.

Algorithm 2 and Algorithm 3 are the pseudo-code of the
clustering process of Scheme 2 and Scheme 3 respectively.
Their difference is that their input is based on three different
criteria.

V. EXPERIMENT RESULTS AND
PERFORMANCE ANALYSIS
To evaluate the performance of the DCDO schemes, exten-
sive experiments were conducted using two large datasets
obtained from real life [57]–[59]. Comparisons were made
among three proposed schemes and a contrast scheme. After
analyzing the experiment results, it is proved that for the
optimization target (2) and (3), the DCDO schemes can
improve the efficiency of data collection and code dissem-
ination tasks considerably by optimizing the deployment of
data centers. As a result, the management of infrastructures in
smart cities is considerably facilitated. A scenario that applies
Scheme 1 to a smart city is demonstrated in Figure 2. It is

Algorithm 2 Clustering Algorithm for Scheme 2
1: Input the number of data centers: K
2: Input a set of locations that have high traffic flow: F
3: Initialize a cluster Ui that is made up of locations with
high traffic flow,

{
Ui1,U

i
2, . . . ,U

i
i

}
=

{F1,F2, . . . ,Fn}
4:While the number of clusters is less than K do
5: Remove the cluster Uj that has the largest SSE from U
6: Select two elements from Uj as initial centroids
7: While centroids change their locations do
8: Form two clusters by assigning each locations to its

closest centroid
9: Compute the mean of each cluster separately as their

centroid
10: End While
11: Add these two clusters to U
12: End While

Algorithm 3 Clustering Algorithm for Scheme 3
1: Input the number of data centers: K
2: Input a set of locations with high valid flow: V
3: Initialize a cluster Ui that is made up of locations with
high valid flow,

{
Ui1,U

i
2, . . . ,U

i
i

}
= V1,V2, . . . ,Vn

4:While the number of clusters is less than K do
5: Remove the cluster Uj that has the largest SSE from U
6: Select two elements from Uj as initial centroids
7: While centroids change their locations do
8: Form two clusters by assigning each locations to its

closest centroid
9: Compute the mean of each cluster separately as their

centroid
10: End While
11: Add these two clusters to U
12: End While

noticeable that smart devices in the city are mostly located
in residential areas, and they are installed into infrastructures
located along roads. After these smart devices are clustered
into clusters (clusters are represented in different colors),
the locations of data centers are centroids of these clusters.
It is evident that a cab can collect data from smart devices and
communicate with the data center (centroid) which is located
near the cluster of smart devices swiftly.

In Subsection A, the processes of clustering 4,900 loca-
tions into 25 and 150 data centers using three schemes are
visualized. The number of the total collected data packets and
its correlation with the figure for data centers are illustrated
in Subsection B. Finally, the visualization of trajectories and
the coverage of smart devices are presented Subsection C.
Moreover, through the trajectories of cabs, it is evident that
the DCDO schemes are adaptive under various circumstances
including weekdays, weekends, and holidays.

To comprehensively evaluate the proposed schemes in
real world settings, we found two trajectory datasets that
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FIGURE 3. Smart devices are clustered into 25 clusters using Scheme 1.

FIGURE 4. Locations of 25 data centers generated by Scheme 1.

were created by Microsoft Research Asia [57], [58] and
Wireless and Sensor networks Lab, Shanghai Jiao Tong
University [59], and they are referred as Dataset 1 and
Dataset 2 respectively. Dataset 1 contains the GPS trajec-
tories of Beijing. Approximately 400 square kilometers of
area that located in the city center of Beijing is chosen,
and its longitude and latitude lies within 116.266-116.500
and 39.810-39.990 respectively. Similarly, an area of some
400 square kilometers is chosen for Dataset 2, and the
range of longitude and latitude of the chosen area is
121.390-121.600 and 31.110-31.290 respectively. Within the
chosen areas, Dataset 1 and Dataset 2 have 7,871,498 and
17,478,202 GPS points respectively. In order to facilitate the
experiments and visualization processes, two chosen areas
are divided into 250,000 girds. Considering the communica-
tion range between smart devices and cabs, such a design is

FIGURE 5. Locations with high traffic flow are clustered into 25 clusters
using Scheme 2.

FIGURE 6. Locations of 25 data centers generated by Scheme 2.

reasonable since each grid represent an area of approximately
40meters ∗ 40meters. Therefore, as soon as a cab enter a gird,
data exchanges between smart devices and cabs can occur.
In addition, the effective communication range between data
centers and cabs is approximately 250 meters according to
802.11p and 802.11a/b. Thus, cabs can transmit data to data
centers when they enter the communication range of data
centers.

The dates we used in experiments are also very represen-
tative. February 3 to February 7 are chosen from Dataset 1
while February 13 to February 17 are chosen from Dataset 2.
Because these periods of time contain workdays, weekends,
and the most significant festival in China—Spring Festi-
val. Taking Dataset 1 for example, February 3 is Sunday,
February 4 and February 5 are weekdays, February 6 and
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FIGURE 7. Locations with high valid flow are clustered into 25 clusters
using Scheme 3.

FIGURE 8. Locations of 25 data centers generated by Scheme 3.

February 7 are Spring Festival holidays. Regarding Dataset 2,
February 13 and February 16 are weekdayswhile February 16
is the beginning of the Spring Festival holidays in that year.

As for the deployment of smart devices, they usu-
ally depend on city planning and budget. In this paper,
it is assumed that there are 4,900 smart devices installed
in this smart city. If an area of 20 Km2 is equally
divided into grids with an interval of 289.6 meters, and
smart devices are installed in intersections of grids, then
4,900 smart devices are needed. In the other two schemes,
4,900 is also used to obtain locations with high traffic flow
and valid flow. The parameters are summarized as tables
below:

FIGURE 9. Locations of smart devices are clustered into 25 clusters using
Scheme 1.

FIGURE 10. Locations of 150 data centers generated by Scheme 1.

TABLE 2. Parameters for dataset 1.

A. CLUSTERING PROCESSES ANALYSIS
Three schemes are implemented following the processes
below:
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FIGURE 11. Locations with high traffic flow are clustered into 150 clusters
using Scheme 2.

FIGURE 12. Locations of 150 data centers generated by Scheme 2.

TABLE 3. Parameters for dataset 2.

As discussed in Section I, the distribution of smart devices
in a smart city has some patterns. Thus, they are mainly
installed into infrastructures along the either sides of roads

FIGURE 13. Locations with high valid flow are clustered into 150 clusters
using Scheme 3.

FIGURE 14. Locations of 150 data centers generated by Scheme 3.

in simulations. Then, the locations of smart devices are
directly used as input in Scheme 1. Regarding Scheme 2,
locations with high traffic flow are generated by calculating
the number of times that cabs pass each grid during an entire
day as described in Section IV. Following that, a threshold is
set to choose top 4,900 locations with high traffic flow, and
the locations of data centers are generated by clustering the
obtained locations. Similar to Scheme 2, Scheme 3 considers
the frequency that cabs visit each grid. It also considers
the number of data packets carried by cabs. Subsequently, a
threshold is used to get top 4,900 locations that have high
valid flow.

Four assumptions are made throughout the experiments in
order to focus on optimizing the deployment of data centers:
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FIGURE 15. Sum of collected packets using Dataset 1 on February 3.

FIGURE 16. Sum of collected packets using Dataset 1 on February 4.

1. Smart devices have sufficient energy, which could be
achieved by energy harvesting. Technologies such as Blue-
tooth Low Energy can be used to reduce energy consumption
during communications.

2. Cabs only collect one data packet each time they pass a
smart device.

3. There is no pairing and transferring delay between cabs
and smart devices, cabs and data centers.

4. It is assumed that the capacity of cabs’ buffer is infinite.
However, no redundant data is stored.

In order to find the appropriate quantity of data centers that
needed to be deployed, the performance was tested under a
range of parameters and the number of data centers varies
from 1 to 150.

Figure 3 to Figure 8 visualize the distributions of smart
devices, locations with high traffic flow, and locations with
high valid flow. Using these locations as input, 25 data centers
are generated (illustrated in Figure 4, Figure 6, and Figure 8)
under three schemes. It is evident that for Scheme 2 and
Scheme 3, locations with high traffic flow and valid flow
are mainly distributed in main roads and intersections.

FIGURE 17. Sum of collected packets using Dataset 1 on February 5.

FIGURE 18. Sum of collected packets using Dataset 1 on February 6.

FIGURE 19. Sum of collected packets using Dataset 1 on February 7.

The experiment results which are discussed in Subsection B
proved that the deployment generated by Scheme 3 outper-
forms other schemes.
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FIGURE 20. Sum of collected packets using Dataset 2 on February 13.

FIGURE 21. Sum of collected packets using Dataset 2 on February 14.

FIGURE 22. Sum of collected packets using Dataset 2 on February 15.

In comparison with obtaining 25 data centers, Figure 9 to
Figure 14 visualize the clustering results when the number of
data centers is 150. The input generated by three schemes is
clustered into 150 clusters as shown in Figure 9, Figure 11,
and Figure 13. The locations of 150 data centers obtained
from three scheme are demonstrated in Figure 10, Figure 12,
and Figure 14 respectively.

FIGURE 23. Sum of collected packets using Dataset 2 on February 16.

FIGURE 24. Sum of collected packets using Dataset 2 on February 17.

FIGURE 25. The trajectories of cabs from Dataset 1 on February 3.

B. DATA COLLECTION ANALYSIS
The number of working cabs is different due to various
factors, and the status of infrastructures does not remain
unchanged. Thus, the number of collected data packets also
varies a lot on different dates. Figure 15 to Figure 19
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FIGURE 26. The trajectories of cabs from Dataset 1 on February 4.

FIGURE 27. The trajectories of cabs from Dataset 1 on February 5.

illustrate the sum of collected data packets using Dataset 1,
while Figure 20 to Figure 24 demonstrate that of Dataset 2.
Scheme 2 and Scheme 3 are based on traffic data analysis.
However, the deployment of data centers is not able to be
changed frequently once it is confirmed. Therefore, we aim
to find a deployment plan based on the traffic situation of a
representative date so that it can be applied to other dates.
The following experiments use data centers obtained from
February 3 for Dataset 1 and data centers obtained from
February 13 for Dataset 2. The experiment results suggest that
the performance in other dates are guaranteed based on the
deployment obtained from these dates. Thus the optimization
target (3) is ameliorated. According to the given line charts,
it is noticeable that for all of the proposed schemes, the trend
of correlation between the number of data centers and the sum
of collected data packets is similar: the sum of collected pack-
ets in each scheme climbs exponentially when the number of
data center is between 0 to approximately 30, then it only
increases slightly in the remaining range.

Among four schemes, is can be seen that Scheme 3 out-
performed the remaining schemes under various dates in

FIGURE 28. The trajectories of cabs from Dataset 1 on February 6.

FIGURE 29. The trajectories of cabs from Dataset 1 on February 7.

both datasets. Also, the sum of collected data packets in
Scheme 1 is generally the second highest. In addition,
the total of collected packets in all of the proposed schemes
generally outnumbers Scheme 4 because locations of data
centers in Scheme 4 are randomly generated.

C. CODE DISSEMINATION AND ADAPTATION ANALYSIS
In order to evaluate the speed of data collection and code
dissemination. Figure 25 to Figure 29 display trajectories of
Dataset 1, and Figure 30 to Figure 34 demonstrate that of
Dataset 1 (the density of GPS points can be referred to the
color bar on the right side of each diagram). February 7 in
Dataset 1 is chosen to visualize the spreading of cabs every
4 hours as shown in Figure 35. Moreover, the correlation
between time and the coverage of smart devices is evaluated.

According to Figure 28 and Figure 29, it is noticeable that
trajectories on February 6 and February 7 is darker than that
on February 3, February 4, and February 5. This is because
February 6 in 2008 was the beginning of Spring Festival
holidays, which last for seven days. During this period of
holidays, a vast amount people who temporarily worked in
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FIGURE 30. The trajectories of cabs from Dataset 2 on February 13.

FIGURE 31. The trajectories of cabs from Dataset 2 on February 14.

FIGURE 32. The trajectories of cabs from Dataset 2 on February 15.

Beijing went back to their hometowns for family reunions.
The behavior of cabs can adjust to such changes because the
number of data generated by smart devices declined as some
residences left their homes in Beijing. While cabs also visited

FIGURE 33. The trajectories of cabs from Dataset 2 on February 16.

FIGURE 34. The trajectories of cabs from Dataset 2 on February 17.

residential areas less frequently since they visited the residen-
tial areas that have fewer people living there during holidays
less frequently. Also, the proposed schemes are adaptive
under workdays and weekends. Similar patterns can be found
in Dataset 2 as shown in Figure 30 to Figure 34. Cabs moved
less actively in the city center of Shanghai on February 17
(Figure 34) compared with February 13 (Figure 31) because
February 17 is also the beginning of the Spring Festival
holidays in the year this dataset was obtained.

Using the data of February 17 from Dataset 2 as example,
Figure 35 manifests the spreading of cabs every 4 hours. It is
evident that the GPS points gradually spread around the entire
area every 4 hours. This figure also indicates that cabs that are
moving obliviously in a city is able to cover the majority of
roads. Consequently, they can perform the data collection and
code dissemination tasks efficiently.

Following line charts (Figure 36 and Figure 37) illus-
trates the speed of code dissemination during a specific day.
February 3 and February 16 are chosen to illustrate the cor-
relation between the coverage of smart devices and time for
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FIGURE 35. The density of GPS points every 4 hours on February 7.

FIGURE 36. Coverage of smart devices on February 3 (Dataset 1).

Dataset 1 and Dataset 2 respectively. The coverage of smart
devices denotes howmany of them receive the new codewhen
a piece of new code is published to update the configuration
of smart devices. Since it is assumed that cabs do not share
their LTE connection, they can only get the published code
when they enter the communication range of data centers.

FIGURE 37. Coverage of smart devices on February 16 (Dataset 2).

As shown in Figure 36 and Figure 37, it is noticeable that
for both datasets, all of the proposed schemes are able to
cover more than 80% of smart devices within 24 hours.
Scheme 3 outperforms remaining schemes, which denotes
that the deployment of data center not only enhances the
performance of data collection but also ameliorate that of
code dissemination. As a result, for those applications that
require less delay such as alter the working cycle of street
lamps in foggy weather, the code can be disseminated quicker
using Scheme 3.

VI. CONCLUSION
As sensing devices are becoming increasingly powerful and
cheaper, Vehicular Networks joint sensing devices provide
more perspectives for a variety of applications. Vehicular
Networks can greatly facilitate the regulation and mainte-
nance of infrastructures when they are used to collect status
data of infrastructures. In a smart city, the regulation and
maintenance of its infrastructures aremainly achieved by data
collection and code dissemination tasks. From being gener-
ated by sensing devices to being used to subsidize decision
making about the regulation of infrastructures, data collection
mainly contains two procedures. Firstly, data are produced
by sensing devices embedded in infrastructures, and they are
collected by cabs. Following that, cabs uploaded collected
to data centers. In contrast, code dissemination is achieved
by firstly publishing data to data centers, which is achieved
by transmitting the code to cabs within their communication
range. Then cabs disseminate the received code to smart
devices that need to be updated. Aiming to ameliorate the
efficiency of data collection and code dissemination tasks
by optimizing the deployment of data centers, three DCDO
schemes are proposed in this paper. Each scheme is eval-
uated using two real-world datasets of cabs’ GPS coordi-
nates. Compared with Scheme 4 (February 3 of Dataset 1),
Scheme 3 can enhance the total number of collected data
packets by 57.71%when the number of data center is ten, and
the speed of code dissemination and the coverage of cabs are
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ameliorated by 23.92% and 12.93% respectively. Compared
with another proposed scheme—Scheme 1, the total number
of Scheme 3’s collected packets is 65.00% higher than that
of Scheme 1 when there are ten data centers deployed. And
the figures for Scheme 3’s code dissemination and coverage
of sensing devices exceed that of Scheme 1 by 18.98% and
10.21% respectively.
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