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ABSTRACT The increasingly serious haze problem in China has brought about a growing public awareness
of air quality. Precise air quality index (AQI) forecasts play an important role in both controlling air pollution
and promoting the sustainable development of human society. However, the randomness, non-stationarity,
and irregularity of the AQI series make its classifications very difficult. This paper introduces a time-varying
inertia weighting (TVIW) strategy based on a combination of gravitation search algorithm (GSA) and particle
swarm optimization (PSO) called the TVIW-PSO-GSA. The TVIW-PSO-GSA is utilized to optimize the
penalty parameter C and kernel function parameter γ of a support vector machine (SVM) to create a
hybrid TVIW-PSO-GSA-SVM algorithm. Twenty-three benchmark functions, five UCI datasets, and an
AQI hierarchical classification example are tested to find that the convergence speed and performance
of the TVI-PSO-GSA exceed those of other algorithms, and the TVIW-PSO-GSA-SVM algorithm also
achieves higher classification accuracy and efficiency than the PSO-GSA-SVM, GSA-SVM, GA-SVM, or
PSO-SVM, which indicates that the TVIW-PSO-GSA-SVM reliably and accurately classifies AQI and UCI
datasets.

INDEX TERMS Intelligent optimization algorithm, GSA, PSO, time-varying inertia weighting
strategy, SVM.

I. INTRODUCTION
Rapid advancements in society, economy, industrializa-
tion, urbanization, and modernization of transportation have
brought about the excessive consumption of fossil fuels (coal,
oil, and gas) thus deteriorating the quality of air, particularly
in urban areas [1]. Many studies have shown that long-term
exposure to high concentrations of atmospheric pollutants
can severely harm human health, such as by greatly aggra-
vating the risk of asthma and/or causing bronchial inflam-
mation, pulmonary dysfunction, cardiovascular diseases, and
cerebrovascular diseases [2]–[4]. Accurate air quality level
forecasts are beneficial in allowing relevant departments to
execute timely control measures, adjust pollutant emissions,
and reduce the occurrence of major disasters.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jinsong Wu.

The SVM was first proposed by Vapnik in 1995. It is a
machine learning algorithm based on the VC dimension the-
ory of statistical theory and the structural risk minimization
principle [5]. SVM serves to create a classification hyper-
plane as the decision surface; this hyper-plane separates
positive from negative samples and maximizes the isolation
edge between them [6]. SVM has not only enriched statisti-
cal theory itself, but also allowed for advancements in text
categorization [7]–[9], image analysis [10]–[12], handwrit-
ing recognition [13], [14], face recognition [15]–[17], fault
diagnosis [18], [19], biological sciences [20]–[22], and other
applications.

Parameter settings directly affect the SVM’s classifica-
tion accuracy [23], [24]. Parameters to be optimized include
the penalty parameter C and kernel function parameter γ
for the Radial Basis Function (RBF) [25]. Various heuristic
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optimization algorithms have been proposed in recent years
to optimize SVM parameters for improved classification and
prediction accuracy, including the Grid Search (GS) algo-
rithm [26], [27], Genetic Algorithm (GA) [28], [29], Particle
Swarm Optimization (PSO) algorithm [30], [31], Fruit Fly
Optimization Algorithm (FOA) [32], [33], Ant Colony Opti-
mization (ACO) algorithm [34], and Gravitational Search
Algorithm (GSA) [35], [36].

The GA is a search algorithm based on the natural, bio-
logical evolutionary process of ‘‘survival of the fittest’’ [37].
It works based on organic coordination between efficiency
and stability in solving optimization problems without sacri-
ficing robustness. GAs have been used to solve many chal-
lenging problems across various research fields [38]–[40].
To operate a GA, first, a population of a certain size is ran-
domly generated for the problem to be solved. The adaptive
value of each individual is calculated and a fitness assess-
ment is performed for all individuals in the group. Second,
by selecting, crossing, and mutating a group of individuals,
a set of individuals more adaptable to the environment is
produced. Finally, based on the new generation, the three
operations to select, cross, and mutate are carried out. After
several generations of evolution the optimal solution to the
problem is identified and the set termination conditions are
satisfied [41].

The GSA is an emerging swarm intelligence optimization
algorithm which is based on Newton’s law of gravitation
and the interaction between particles [42]. It has several
advantages over other evolutionary algorithms—it is straight-
forward, easily implemented, computationally efficient, has
few control parameters to adjust, and features high practi-
cability [43], [44]. It has been successfully applied to solve
complex problems in both the scientific research world and
industrial application fields such as data clustering [45], deci-
sion function estimation [46], fault diagnosis [47], virtual
enterprise [48] and others. Despite its powerful search ability,
GSA has notable shortcomings such as poor local optimiza-
tion ability [49], [50] and premature convergence [51] in the
optimization process. There has been a great deal of research
on improvements to the GSA in recent years. Liu et al. [52],
for example, proposed an improved GSA that integrates niche
technology and a GA crossover operator to solve vehicle rout-
ing problems. Xu andWang [53] enhanced GSA performance
from several different perspectives. Zhang and Ma [54] pro-
posed an unsupervised color image segmentation method
based on an improved GSA.

However, these improved GSA algorithm only uses the
influence of the current position and does not consider
the swarm information exchange between particles, which
results in weak development capability. In this study, we first
improved the memory of particles in GSA by used a memory
(gbest ) to save the best solution has found so far and tend
towards it, so that make it is accessible anytime. Secondly,
introduced the TVIW strategy into the GSA velocity update
formula for trade-off the exploration and exploitation abil-
ities of particles. We refer to the proposed algorithm from

here on as ‘‘TVIW-PSO-GSA’’. The 23 benchmark functions
were used to test the optimization performance of TVIW-
PSO-GSA by comparison against PSO-GSA, GSA, GA, and
PSO. Finally, this study used the TVIW-PSO-GSA algorithm
to optimize the penalty parameter C and kernel function
parameter γ of an SVM; this algorithm is referred to as
‘‘TVIW-PSO-GSA-SVM’’. It was applied to five UCI
datasets and an AQI hierarchical classification problems.

II. THE TVIW-PSO-GSA ALGORITHM
A. PARTICLE SWARM OPTIMIZATION ALGORITHM
The PSO algorithm is a global optimization algorithm first
proposed by Kenney and Eberhart in 1995. It works based
on the migration and clustering behavior of birds during
predation [55], [56]. Suppose that in a D-dimensional search
space, a population composed of m particles is X =

{x1, x2, · · · , xm}. The position of the i-th particle is xi =
(xi1, xi2, · · · , xiD) and the corresponding flying velocity is
Vi = (vi1, vi2, · · · , viD). The individual best of the particle
is Pi = (pi1, pi2, · · · , piD) and the global best is Pg =
(pg1, pg2, · · · , pgD). In each iteration, particles update their
velocity and position by the following formula [57]:

Vi(t + 1) = ωVi(t)+ c1r1(Pi − Xi(t))+ c2r2(Pg − Xi(t)).

(1)

Xi(t + 1) = Xi(t)+ Vi(t + 1). (2)

where ω is the inertia weight which controls the effect of the
front velocity on the current velocity; t is the current number
of iterations; c1 and c2 are non-negative acceleration factors;
r1 and r2 are random numbers between [0, 1]; Vi(t) is the
velocity of the i-th particle at the t-th iteration; and Xi(t) is
the position of the i-th particle at the t-th iteration.

B. GRAVITATIONAL SEARCH ALGORITHM
The GSA was proposed in 2009 by Rashedi et al. of
the Shahid Bahonar University of Kerman, Iran [42]–[44].
It is a meta-heuristic intelligent optimization algorithm
based on Newton’s law of gravitation and the interaction
between particles. Suppose that N particles are contained in
a D-dimensional search space. The position and velocity of
the i-th particle are expressed as:

Xi = (x1i , · · · , x
k
i , · · · , x

D
i ) i = 1, 2, · · · ,N . (3)

Vi = (v1i , · · · , v
k
i , · · · , v

D
i ) i = 1, 2, · · · ,N . (4)

where xki and vki represent the position and velocity compo-
nents of the i-th particle on the k-th dimension, respectively.
At t time, the gravitational force of particle j on particle i in
the k-th dimensional space is defined as follows:

Fkij (t) = G(t)
Mpi(t)×Maj(t)
Rij(t)+ ε

(
xkj (t)− x

k
i (t)

)
. (5)

where Maj(t) is the active gravitational mass related to par-
ticle j, Mpi(t) is the passive gravitational mass related to
particle i, Rij(t) is the Euclidean distance between the i-th
and j-th particles, that is Rij(t) = ‖Xi(t),Xj(t)‖2, ε is a small
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constant that ensures a non-zero denominator and G(t) is the
gravitational constant at iteration t , that is:

G(t) = G0e−α
t
T . (6)

where G0 is the value of G at time t0, α is the attenuation
rate of the gravitational constantG, t is the current number of
iterations, and T is the maximum number of iterations.
On the k-th dimension, the resultant force of particle i is

defined as follows:

Fki (t) =
N∑

j=1,j6=i

randj · Fkij (t). (7)

where randj is a random number between [0, 1].
According to Newton’s second law, the acceleration aki (t)

of particle i in the k-dimensional space at time t is defined as
follows:

aki (t) =
Fki (t)

Mii(t)
. (8)

whereMii is the inertia mass of the i-th particle.
In the GSA algorithm, each iteration of the particle updates

its velocity and position according to the following formulas:

V k
i (t + 1) = randi × V k

i (t)+ a
k
i (t). (9)

X ki (t + 1) = X ki (t)+ V
k
i (t + 1). (10)

where randi is a random variable that obeys uniform distri-
bution between [0, 1] and is used for the sake of randomness
in the search process, X ki (t) and V

k
i (t) represent the position

and velocity of the particle i in the k-dimensional space at the
current time.

The inertia mass of each particle is calculated according to
its fitness value. Its updated formula is as follows:

mi(t) =
fiti(t)− worst(t)
best(t)− worst(t)

Mi(t) =
mi(t)
N∑
j=1

mj(t)

(11)

where fiti(t) is the fitness function value of particle Xi at
t iteration, best(t) and worst(t) represent the optimal fitness
function value and worst fitness function value of all parti-
cles at t iteration, respectively, and Mi(t) is the mass of the
i-th particle at iteration t .

For the minimization problem, best(t) and worst(t) are
defined as follows:

best(t) = min
i∈{1,··· ,N }

fiti(t). (12)

worst(t) = max
i∈{1,··· ,N }

fiti(t). (13)

For the maximization problem, best(t) and worst(t) are
defined as follows:

best(t) = max
i∈{1,··· ,N }

fiti(t). (14)

worst(t) = min
i∈{1,··· ,N }

fiti(t). (15)

The position and velocity of each particle are continually
updated according to the GSA principle. The algorithm is
terminated when the global optimal solution best(t) reaches
the preset accuracy or the maximum number of iterations has
been reached.

C. TVIW-PSO-GSA
Although the GSA algorithm has strong optimization ability,
it has notable shortcomings such as premature convergence,
susceptibility to falling into local optimum, and slow con-
vergence speed [49]–[51]. The GSA algorithm only uses the
influence of the current position to update the position and
does not consider the swarm information exchange between
particles, which results in weak development capability.
PSO-GSA integrates the group information exchange func-
tion of the PSO algorithm with the local search capability
of GSA; the improved GSA algorithm thus not only complies
with the laws of motion, but also the group communication
function of PSO. The velocity update formula for PSO-GSA
is:

Vi(t + 1) = ω × Vi(t)+ c′1r
′

1aci(t)+ c
′

2r
′

2(gbest − Xi(t)).

(16)

where c′1 and c′2 are constants between [0, 1], r ′1 and r ′2 are
random numbers between [0, 1], gbest is the best solution so
far, which helps them to exploit the global best;ω is the inertia
weight, Vi(t) is the velocity of particle i at iteration t , and
aci(t) is the acceleration of particle i at iteration t .

The right-hand side of Eq. (16) has three parts: 1) the
velocity of particles, 2) the acceleration of particles, and 3) the
group-wide information-sharing among particles. The third
part alter the velocity of particles. Without the third part,
the particles will ‘‘fly’’ in the same direction until they reach
the boundary. The GSA will not find an acceptable solution
until there is an acceptable solution on the flight path.Without
the first and second parts, the ‘‘flight’’ speed of particles
only depend on their best position in history and there is
no memory for speed. By adding the first and second parts,
the particles have a tendency to expand the search space. They
have the ability to explore new areas.

The inertia weight ω is mainly used to balance the global
search capability and local development capability of par-
ticles in Eq. (16). A larger inertia weight results in overly
rapid particle velocity and deviation from the search area
of the optimal solution. A smaller inertia weight gives the
particle stronger local search ability, but necessitates a longer
search time for the global optimal solution. To trade-off
the exploration and exploitation abilities of particles in the
optimization process, the TVIW strategy is proposed here to
improve the iterative efficiency and search accuracy of the
algorithm:

ω(t) = ωmax ·
(
ωmin

ωmax

) t
T

. (17)

where ωmax is the maximum inertia weight, ωmin is the mini-
mum inertia weight, t is the current iteration number, and T is
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themaximum number of iterations-when t = 0,ω(t) = ωmax ,
and when t = T , ω(t) = ωmin.
The particle has strong global search ability at the begin-

ning of the iterative process and the approximate region of the
optimal solution can be determined relatively quickly. At the
final iteration, a small ω decelerates the searching velocity of
particles and reinforces their local development ability. The
particle swarm can find the global optimal solution in the
feasible solution region by fine-tuning the search. To distin-
guish it from the original PSO-GSA, the improved PSO-GSA
algorithm based on the TVIW strategy is referred to from here
on as ‘‘TVIW-PSO-GSA’’.

After the velocity update, the particle location is updated
as follows:

Xi(t + 1) = X (t)+ Vi(t + 1). (18)

III. THE TVIW-PSO-GSA-SVM ALGORITHM
A. SUPPORT VECTOR MACHINE
SVM essentially functions by finding an optimal hyper-plane
which separates positive from negative samples, then max-
imizing the sum (interval) of the minimum distances from
two types of samples to the optimal hyper-plane [58], [59].
Consider a given training set:

T = {(x1, y1), (x2, y2), · · · , (xn, yn)}. (19)

where xi ∈ Rn, yi ∈ {1,−1}(i = 1, 2, · · · , n), xi is the input,
yi is the label for xi, and n is the number of samples. All
training samples meet the following qualifications:

yi((ω, xi)+ b)− 1+ ξi ≥ 0. (20)

where ξi is a slack variable, ξi ≥ 0, i = 1, 2, · · · , n. Max-
imizing the boundary of SVM by Eq. (20) is equivalent to
solving the following optimization problem:

min
1
2
‖ω‖2 + C

n∑
i=1

ξi

s.t. yi((ω, xi)+ b)− 1+ ξi ≥ 0,
ξi ≥ 0, i = 1, 2, · · · , n. (21)

where ξi ≥ 0 is the relaxation term, the constant C > 0 is
used to control the penalty level for misclassified samples that
exceed the error ε.

The dual form of the above quadratic programm is:

min
α

n∑
i=1

αi −
1
2

i∑
j=1

n∑
i=1

yiyjαiαjK (xi, xj)

s.t.
n∑
i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, 2, · · · , n. (22)

where αi represents Lagrange multipliers and kernel function
K (xi, xj) = 8(xi)T · 8(xj). In this study, RBFs—which
are widely used and perform well—were chosen as kernel
functions.

K (x, xi) = exp(−γ ‖x − xi‖2), γ > 0. (23)

where γ is the kernel function parameter.

After solving the above problem, the optimal discriminant
function is as follows:

f (x) = sgn

(
n∑
i=1

yiαiK (x, xi)+ b

)
. (24)

B. TVIW-PSO-GSA-SVM
The selection of penalty parameter C and kernel function
parameter γ is very important when using the SVM for
classification prediction [23], [24]. In this study, we applied
the proposed TVIW-PSO-GSA algorithm to optimize the C
and γ of an SVM: the TVIW-PSO-GSA-SVM. The fitness
function discussed here is calculated as follows:

MSE =
1
n

n∑
k=1

m∑
i=1

(
yki − y

k
i

)2
. (25)

where n is the number of training samples; yki and y
k
i are the

actual output and desired output of the i-th input unit when
the k-th training sample is used, respectively.

The basic steps of TVIW-PSO-GSA-SVM algorithm are as
follows.
Step 1: Parameter initialization, where a particle is

constituted by C and γ ; initialize the particle swarm
{C, γ }. Determine the population size, initialize the posi-
tion, velocity, and the upper and lower limits of weight
for all particles, and set the number of iterations of the
algorithm.
Step 2: Train SVM and calculate fitness function Eq. (25).
Step 3: Update G(t), best(t), worst(t), and Mi(t).
Step 4: Calculate the resultant force on the particles.
Step 5: Calculate the particle’s acceleration and update the

velocity, position, and inertia weight of the particle according
to Eqs. (16), (18), and (17), respectively.
Step 6: Determine whether the optimal condition is met

(i.e., if the number of iterations is maximum or the pre-
set accuracy is achieved). If it is satisfied, the optimization
process is ended, the optimal parameters {Cbest , γ best } are
obtained, and Step 7 begins. If not, go to Step 2 and continue
the next optimization.
Step 7: Establish the SVM classification model with
{Cbest , γ best } via the training samples and verify with test
data.

A flowchart of the TVIW-PSO-GSA-SVM algorithm pro-
cess is shown in Figure 1.

IV. RESULTS AND DISCUSSION
Due to the stochastic nature of meta-heuristic and evo-
lutionary algorithms, several test cases must be used to
ensure that the superior results of any optimization are
not simple happenstance. We employed several test func-
tions with different characteristics to assess the opti-
mization performance of TVIW-PSO-GSA, then applied
TVIW-PSO-GSA-SVM to five UCI classification datasets
and a real air quality classification problem to further verify
said performance.
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FIGURE 1. TVIW-PSO-GSA-SVM algorithm.

A. PARAMETER SETTING
For TVIW-PSO-GSA, the parameters c′1 and c′2 in Eq. (16)
are positive constants that are used to adjust the step size
of particles. High c′1 and c′2 values indicate that particles
may cross the target region. Here, c′1 and c′2 were set to 1.5
according to Clerc’s constriction factor [60]. r ′1 and r ′2 are
uniformly distributed in the interval [0, 1], and were used to
give a randomized characteristic to the search. The inertia
weight ω is employed to control the impact of the previous
history of velocities on the current one. If ω � 1, then
previous motion states do not significantly influence current
behavior; if ω is larger, there will be a large search space, but
it is difficult for the particles to change motion directions and
converge to an optimal position. In other words, a larger ω
facilitates searching new areas and a smaller ω facilitates a
fine search. In this study, the inertia weight ω was decreased
according to TVIW strategy (form 0.9-0.2) and thereby grad-
ually changed from an exploration to exploitation. The value
of α in Eq. (6) was taken from the literature [42]. G0 is the
initial value of the gravitational constant, which is a constant
in theGSA algorithm; Rashedi et al. [42] sets the value to 100.
In this paper, after several experiments, we found that the
accuracy of algorithms are relatively high when G0 is 10.
For PSO-GSA and GSA, for purposes of comparison,

the value of c′1, c
′

2, r
′

1, r
′

2,G0 and α were taken the same values
as that of TVIW-PSO-GSA and ω was set to 1. For PSO,
the ability of each particle in a particle swarm to reach its
global optimum position was determined by the parameters
c1 and c2 in Eq. (1). According to Clerc’s [60] constriction

factor, c1 and c2 were set to 1.5. The parameters r1 and r2 are
used to maintain the diversity of the population and uniformly
distributed in the range [0, 1]. ω is the inertia weight which
reflects the influence of the particle’s inertia on the velocity;
it was used to control the balance between global and local
development capabilities. The value of ω was taken from the
literature [61].

The population sizes and maximum iteration of TVIW-
PSO-GSA, PSO-GSA, GSA, GA, and PSO for the function
optimization problem were set to 70 and 1000, respectively.
The population sizes and maximum iteration of TVIW-PSO-
GSA-SVM, PSO-GSA-SVM, GSA-SVM, GA-SVM, and
PSO-SVM for the data classification problem were equal to
20 and 100, respectively.

B. FUNCTION OPTIMIZATION PROBLEM
We applied TVIW-PSO-GSA to 23 standard benchmark
functions to evaluate its performance [62]–[64]. The cost
function, range, and minimum of these functions are listed
in the Appendix; n is the dimension of the function,
fmin is the minimum value of the function, and S is the
range of variation of optimization variables (S ⊆ Rn).
Functions F1 − F7 are single-modal (i.e., containing only
one extreme point). They are mainly used to investigate the
convergence characteristics and optimization accuracy of a
given algorithm. FunctionsF8−F23 are multimodal functions
(i.e., containing more than one extreme point), which are
mainly used to check whether an algorithm can avoid pre-
cocity and find global optimal solutions. Functions F8 −
F13 are multimodal functions wherein the number of local
minima increases exponentially with the problem dimension.
They are generally considered the most difficult class of
problems for optimization algorithms. Functions F14 − F23
are low-dimensional functions which have only a few local
minima.

The TVIW-PSO-GSA algorithm was, as discussed above,
compared to PSO-GSA, GSA, GA, and PSO for performance
verification. To avoid random interference, each test function
was run independently 30 times. The Average (ave) and
Standard Deviation (std) of each test function are shown
in Table 1. The best results are marked in bold type.

Table 1 shows that the TVIW-PSO-GSA algorithm out-
performs others on the majority of the test cases. The
minimum value of TVIW-PSO-GSA is better than the
other algorithms on all single-modal test functions, which
reflects a few notable advantages—most importantly, that
TVIW-PSO-GSA has the highest accuracy in searching
for optimal solutions based on the average in experiment.
TVIW-PSO-GSA is also the best in terms of stability corre-
sponding to the std and thus better explorative capability. The
TVIW-PSO-GSA algorithm also outperforms all of the other
algorithms on the majority of the multi-modal test functions
(F8, F10, F13, F15, F16, F18, F19 and F21 − F23), which sug-
gests that it effectively balances exploration and exploitation
phases. This performance is a result of the TVIW strategy uti-
lized to update the velocity. In fact, on most test problems, the
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TABLE 1. Comparison of optimization results obtained for the benchmark functions.

TVIW-PSO-GSA algorithm is most or second-most efficient
due to its comprehensive explorationmechanism,which leads
to effective global optimization in the algorithm.

Figure 2 shows the convergence curves of TVIW-PSO-
GSA, PSO-GSA, GSA, GA, and PSO algorithms in optimiz-
ing the test functions (F1 − F23). The ‘‘average best-so-far’’
indicates the average of the best solution obtained currently
in each iteration over 30 runs. These figures confirm that
the TVIW-PSO-GSA has superior convergence speed and
performance to the other algorithms. For functions F20−F22,
the ‘‘average best so far’’ of the proposed algorithm does not
represent the best performance during iterations 0-150. This
is because TVIW-PSO-GSA is a stochastic search algorithm,
so if the initial search points are closer to the global opti-
mum, the convergence speed is relatively quick; if the initial
search points are relatively far away from global optimum,
the convergence speed is relatively slow. The characteris-
tics of the function itself also have an impact on search
speed. In the TVIW strategy, the iterations T increase and
ω gradually decreases, which also affect the convergence
speed. For functions F20 − F22, although the convergence
speed of TVIW-PSO-GSA is not the fastest in the early
iterations, it produced the best or suboptimal results of the
iteration. In summary, the proposed TVIW strategy lends the
TVIW-PSO-GSA a good balance of exploration and exploita-
tion in gaining competitive superiority on the most of the test
functions.

C. DATA CLASSIFICATION PROBLEM
As discussed above, we also applied GA, PSO, GSA,
PSO-GSA, and TVIW-PSO-GSA to optimize the penalty
parameter C and kernel function parameters γ of SVM; these
mechanisms are called GA-SVM, PSO-SVM, GSA-SVM,
PSO-GSA-SVM, and TVIW-PSO-GSA-SVM, respectively.
Two benchmark problems were used to compare the abilities
of these algorithms in training SVM: the UCI data classifica-
tion problem and an air quality grade classification problem.

1) UCI DATA CLASSIFICATION PROBLEM
We selected five data sets from the UCI machine learning
database [65] for clustering to compare our series of algo-
rithms (Table 2). The ‘‘No. of data points’’ represents the
number of instances, the ‘‘No. of features’’ represents
the number of attributes, the ‘‘No. of classes’’ represents
the cluster number, the ‘‘No. of train sets’’ represents the
number of training samples corresponding to each data set,
and the ‘‘No. of test sets’’ represents the number of test
samples corresponding to each data set. In each generation,
all train set samples were used to train the SVM and the test
sample to test the SVM. The classification accuracy of all five
algorithms is shown in Table 3. The best results are indicated
in bold type.

As shown in Table 3, the classification accuracy of
TVIW-PSO-GSA-SVM exceeds that of PSO-GSA-SVM,
GSA-SVM, GA-SVM, or PSO-SVM on all UCI data.
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FIGURE 2. Convergence curves of five algorithms on benchmark functions F1 − F23.
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TABLE 2. UCI data set.

TABLE 3. Classification results on UCI test set data.

FIGURE 3. AQI main evaluation factors.

These results prove that TVIW-PSO-GSA-SVM is capa-
ble of solving the UCI data classification problem more
reliably and accurately than PSO-GSA-SVM, GSA-SVM,
GA-SVM, or PSO-SVM. TVIW-PSO-GSA-SVM achieves
this reliability because it is much less likely to be trapped in
local minima than the other algorithms.

2) AQI CLASSIFICATION PROBLEM
The emission of air pollutants in urban areas, and specifi-
cally whether their detrimental effects on air quality can be
improved, have become very popular research topics [66].
Air pollution forecasting is significant in regards to pub-
lic health and pollution control [67]. The AQI is widely
used in international quantitative evaluations of air quality.
The main pollutants involved in AQI evaluation are shown
in Figure 3. The air pollution index ranges from 0 to 500.
The pollutant concentration limits average daily values of
national air quality standards under grades I, II, III, IV, V,
and VI corresponding to 0-50, 51-100, 101-150, 151-200,
201-300, and >300 ranges [68]. The distribution of
AQI grades is shown in Table 4.

The test samples we used in this study are real-time air
quality data for Taiyuan as-collected from the data center
of the Ministry of Environmental Protection of the People’s

TABLE 4. AQI range and rank distribution.

Republic of China (http://datacenter.mep.gov.cn/). Pollutants
fine particulate matter (PM2.5), particulate matter (PM10),
sulfur dioxide (SO2 ), nitrogen dioxide (NO2), ozone (O3),
and carbon monoxide (CO) were used as evaluation indexes.
The sampling period was fromDecember 2, 2013, to May 24,
2018, at a sampling frequency of once daily. The data total
was 1,632 groups. There are 101 data sets in grade I, 830 data
sets in grade II, 474 data sets in grade III, 133 data sets
in grade IV, 76 data sets in grade V, and 18 data sets in
grade VI. A distribution histogram of the data is shown
in Figure 4. We selected 1,400 data at random to train the
SVM model and the remaining 232 to test the model.

We used TVIW-PSO-GSA, PSO-GSA, GSA, GA, and
PSO to optimize SVM model parameters and build an air
quality classification model. The results of the five models
were compared in terms of air quality classification as shown
in Table 5. A chart of the air quality classifications of the five
model test sets is shown in Figure 5.

Table 5 and Figure 5 together indicate that TVIW-PSO-
GSA-SVM has the highest classification accuracy at up
to 99.14% while the classification accuracy of PSO-GSA-
SVM, GSA-SVM, GA-SVM, and PSO-SVM is 96.12%,
90.52%, 56.03%, and 58.19%, respectively. The TVIW-PSO-
GSA-SVM has the highest classification accuracy with the
introduction of TVIW, but also improves the capability of
the SVM to avoid local minima in this AQI classification
problem.

27796 VOLUME 7, 2019



H. Xue et al.: Novel Hybrid Model Based on TVIW-PSO-GSA Algorithm and SVM

FIGURE 4. Classification distribution graph of AQI data.

TABLE 5. Classification results on test sets for AQI grades.

FIGURE 5. Five model classification results on test sets for AQI grades. (a) TVIW-PSO-GSA-SVM model. (b) PSO-GSA-SVM model. (c) GSA-SVM
model. (d) GA-SVM model. (e) PSO-SVM model.

Tables 3 and 5 show that in the wine problem, the GA
method provides the same results as TVIW-PSO-GSA-SVM,
but its poor performance in the AQI problem. This is because

the characteristics and distribution of wine data are not sus-
ceptible to the influence of human factors. AQI is affected
by the factors both anthropogenic and meteorological; it is a
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TABLE 6. Benchmark function

complex multidimensional nonlinear classification problem.
Therefore, the classification results are not ideal.

From the above analysis, it can be concluded that TVIW-
PSO-GSA-SVM also improves the capability of the SVM
to avoid local minima in this data classification problem.
Introducing the TVIW strategy allows the TVIW-PSO-GSA

algorithm to search the approximate range of SVM param-
eters C and γ which made the classification accuracy was
enhanced by a larger ω at the beginning of the iteration (i.e.,
by the high inertia weight for coarse global exploration).
As the iterations progressed, the value of ω decreased and
the fine search of SVM parameters was enhanced. In short,
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the inertia weight decreased for finer local explorations in
later iterations. The search was terminated once finding
the C and γ with the highest classification accuracy (or the
maximum number of iterations).

V. CONCLUSIONS
GSA has a strong exploration ability, but its slow search pro-
cess is problematic. PSO has a fairly fast speed of approach
to the optimal solution and can effectively optimize system
parameters, but is prone to premature convergence-especially
when dealing with multimodal search problems. By combin-
ing the advantages of PSO and GSA, we built an improved
PSO-GSA algorithm based on a TVIW strategy in this
study.

We selected 23 benchmark functions to test the optimiza-
tion capability of TVIW-PSO-GSA and compared its opti-
mization results against those of PSO-GSA, GSA, GA, and
PSO to find that it has superior accuracy and stability for both
single-modal andmultimodal functions. In effect, introducing
the TVIW strategy into the GSA velocity update formula
significantly improves the explorative ability and develop-
mental ability of particles in the system while providing
stronger global optimization ability and local optimization
ability to the algorithm. We also used the proposed TVIW-
PSO-GSA algorithm to optimize SVM parameters, which
were tested on five UCI datasets and AQI data. Compared to
PSO-GSA-SVM, GSA-SVM, GA-SVM, and PSO-SVM, the
TVIW-PSO-GSA-SVM approach has better classification
accuracy, efficiency, and overall effectiveness.

APPENDIX
BENCHMARK FUNCTION
See Table 6.
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