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ABSTRACT An assembly line is an industrial arrangement of machines, equipment, and operators for
continuous flow of workpieces in mass-production operations. In an assembly line balancing problem, tasks
are allocated to workstations according to their processing times and precedence relationships amongst tasks.
Nowadays, some research investigated the reliability of assembly production by taking account of task time
uncertainties. Our research utilizes uncertainty theory to model task time uncertainties and introduces the
belief reliability measure to the assembly line production for the first time. We proposed a multi-objective
optimization model that aimed at maximizing the belief reliability and minimizing the cycle time. The
problem is solved using a newly developed restart neighborhood search method. The numerical experiments
are conducted to verify its efficiency. The methodology proposed in this paper is applicable to any industry
(including the automotive industry) when the historical data on task processing times are very scarce.

INDEX TERMS Assembly line balancing, belief reliability, neighborhood search, uncertain task times.

I. INTRODUCTION
An assembly line (AL) is an important manufacturing tool
that utilizes machines to move material or parts from one
place to another. Assembly lines are widely employed to
produce various types of products, including automobiles,
electronic products, and jewelry. The main components of a
standard assembly line are a conveyor belt, workers, work-
stations, interchangeable parts and tasks. The layout for a
standard assembly line is shown in Figure 1. Theworkstations
are located on one side of the line. Workers perform the tasks
at workstations simultaneously. Task time is the time that a
task takes to execute by a worker. Cycle time is the interval
of a product being finished or offered to a customer. The sum
of task times of a station cannot be greater than the cycle time,
otherwise the assembly line is not paced.

The assembly line balancing problem (ALBP) is a clas-
sical combinatorial optimization problem that falls into the
NP-hard category. ALBP is to optimally allocate tasks to
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workstations to achieve certain objectives with respect to
some constraints. Bryton [5] first proposed the ALBP and the
first scientific researchwas done by Salveson [26]. For a com-
prehensive review for ALBP, readers can refer to [1] and [14].

A. ASSEMBLY LINE BALANCING WITH
UNCERTAIN TASK TIMES
Nowadays, ALBP with uncertain task times (ALBP-UT)
receives a lot of attention in academia. Task time uncer-
tainty may result from instability of the operator’s work rates,
the varied skills and motivations of workers, and the fail-
ure sensitivity of complex processes’ uncertainty [3]. Suresh
and Sahu [29] first introduced the task time uncertainty
into ALBP and proposed a simulated annealing algorithm.
Baykasoğlu and Özbakir [2] optimized a U-shaped ALBP-
UT by genetic algorithm. Cakir et al. [6] proposed a hybrid
simulated annealing algorithm to solve the multi-objective
ALBP-UT. More recently, Delice et al. [7] developed a
genetic algorithm to solve the two-sidedU-shapedALBP-UT.
Li [12] solved the type-II ALBP-UT by a branch-and-bound
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FIGURE 1. The basic structure of a standard assembly line.

method. Tang et al. [30] balanced the two-sided ALBP-UT
by a teaching-learning-based algorithm. Zhang et al. [36]
minimized the cycle time and processing cost for ALBP-UT
by a hybrid evolutionary algorithm.

Most research focuses on optimizing the line efficiency,
such as minimizing cycle time or the number of workstations
for ALBP-UT. There are a few research investigating the
production delay due to task time uncertainty. Actually, task
time uncertainty may cause the line unbalanced (i.e.,some
workstations may get overloaded because the increase of the
task times), which is sometimes a more important issue than
line efficiency optimization in practice. As such, maximizing
the reliability of the assembly line becomes another objec-
tive for ALBP-UT. Reliability of the line is defined as the
completion probability that the product can be successfully
assembled within the predetermined cycle time. However,
the line efficiency and reliability are conflicting goals. For the
same task assignment scheme, the line efficiency decreases in
cycle time whereas the reliability increases in cycle time (as
the cycle time is larger, the ability to handle the task time vari-
ation is stronger). Saif et al. [24] minimized cycle time and
maximized the system reliability for ALBP-UT by develop-
ing an artificial bee colony algorithm. Later, Saif et al. [25]
further investigated the average reliability of the workstations
and system reliability.

In the literature, the task times were modeled as random
variables, and reliability was characterized as a probability.
As is well known,in order to obtain the probability distribu-
tions for task times, enough historical data and information
are required, i.e.,we need sufficient data to derive the proba-
bility distribution. However, sufficient data may be unavail-
able under low-volume production for mass-customized
items and one-off production for large-scale projects [4].
For instance, one may not have any prior data before the
production process when manufacturing a novel aircraft for a
special purpose (as there is no time to run the pilot production
and the cost to do that would be extremely high). To this end,
we should invite some domain experts to obtain the belief
degrees for these task times. Li et al. [13] utilized a new
mathematical framework: ‘‘uncertainty theory’’ to handle the
uncertain task times as there is a lack of past data. They pro-
posed a branch and bound remember algorithm to minimize
the number of stations for ALBP-UT. In this paper, we uti-
lized the uncertainty theory to model uncertain task time
attribute.

B. UNCERTAINTY THEORY
Uncertainty theory and probability theory can both be uti-
lized to model indeterminate event. However, the scopes of
applications of the two theories are totally different. The
probability theory is useful when the distribution of past
data or information is very close to the objective frequency.
For example, we flip a coin 100 times, the percentages that the
head will occur is approximately 50%. In this case, we can
estimate the likelihood of the next head by probability the-
ory as the coin is flipped again. However, past information
may not be available in some situations. In those situations,
we cannot use the probability theory since the frequencies
cannot be obtained. For example, when assembling a new car,
we cannot estimate the total operation times by analyzing the
past samples. Instead, we can only predict it from our subjec-
tive mind (belief ). For each possible operation times, there is
a belief degree in our mind which describes the likelihood the
specific times will be the real one. The belief degree depends
heavily on the personal knowledge concerning the event.
Therefore, different people have different belief degrees for
the same event. Uncertainty theory is a branch of axiomatic
mathematics that explores human uncertainty, which can be
used to model the belief degree.

Uncertainty theory was invented by Liu [16] to model
the belief degrees of experts. It has become a new branch
in mathematics for gauging the indeterminate phenomena.
Later, Liu [18] developed an uncertain programming model
pertaining to the uncertain variables. Since then, uncertainty
theory has been widely employed to model the uncertain
inputs of various optimization problems, such as facility loca-
tion allocation [31], project scheduling [10], decentralized
planning [21], optimal control [32], vehicle routing [23],
machine scheduling [11] and minimum spanning trees [28].
The basic properties and theorems of the uncertainty theory
are introduced in the Appendix.

C. DISCREPANCIES
Our work distinguishes from the related work in the follow-
ing aspects. The proposed problem is novel and has some
merits in practice. The problem occurs when a new product
is going to be assembled or a new production process is
going to be launched, but there is very little information
regarding the task times. The concept of the belief reliabil-
ity is first introduced into the ALBP. Unlike the traditional
reliability measure which is based on the probability theory,
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the belief reliability is derived from uncertainty theory. There-
fore, the mathematical formulation is different from other
research. Further, a new algorithm is devised by utilizing the
specific characteristics of the problem.

The rest of the paper is organized as follows: Section 2
introduces the belief reliability of ALBP-UT, and Section 3
provides the mathematical model for the proposed problem.
In Section 4, a restart neighborhood search method is devel-
oped to solve the problem. Numerical test for the algorithm is
conducted, and the results are reported in Section 5. Finally,
the paper is concluded in Section 6. The notations used
throughout the paper are presented in Table 1. We put a ‘‘~’’
above the task-time-related parameters, which are uncertain
variables.

TABLE 1. Notations.

II. BELIEF RELIABILITY OF THE ASSEMBLY LINE
Reliability measure is an important characteristic of prod-
ucts or processes, defined as the ability that a compo-
nent or system can function normally for a given period of
time [8]. It is always used to evaluate the product’s life cycle.
Traditional reliability metrics are defined on the basis of
probability theory, which relies on historical data [22]. The
reliability of the assembly line can be considered as the proba-
bility a product can be finished within the cycle time.Without
task time variation, the reliability is always equal to 1. When
task times are uncertain, the reliability is less than 1 because
it is possible that the sum of task times of a station is greater
than the cycle time, which is a predetermined value. In this
case, the station is overloaded and the production process is
delayed.

To evaluate the reliability of the production process,
it always requires past data and information to obtain the
probability distribution. However, in some situation, data is
unavailable (c.f. section I-A) and probability theory is not
applicable to obtain the reliability. To address that, Zeng
et al. [34] provided the belief reliability metrics based on the
uncertainty theory. The definition is as follows.
Definition 1 (Belief Reliability): Assume a system con-

tains uncertain variables ξ1, ξ2, · · · , ξn, and there is a

function R such that the system is working if and only if
R(ξ1, ξ2, · · · , ξn) ≥ 0. Then the belief reliability index is

RB =M{R(ξ1, ξ2, · · · , ξn) ≥ 0}, (1)

where M is the uncertain measure (c.f.Appendix). Then,
belief reliability is often utilized as a non-probabilistic relia-
bility metrics in manufacturing [9]. Zeng et al. [33] integrated
the belief reliability into the existing model-based reliability
framework. Zhang et al. [35] utilized the belief reliability to
describe the states in the uncertain random system.

In this paper, we adopt the concept of the belief reliability
and apply it inALBP-UT. Based onDefinition 1, we proposed
the belief reliability metrics for ALBP-UT.
Definition 2 (Belief Reliability of a Station): The belief

reliability of a station Brj is defined as the uncertain measure
for a situation that station jth’s load is not greater than the
cycle time. Mathematically,

Brj =M{c− S̃l j ≥ 0}, (2)

where S̃l j =
∑

i∈Qj t̃i.
Definition 3 (Belief Reliability of an Assembly Line): The

belief reliability of an assembly line Br is defined as the
uncertain measure for a situation that every station load is
not greater than the cycle time. Mathematically,

Br =M{c− S̃l1 ≥ 0, · · · , c− S̃lm ≥ 0}, (3)

According to the Theorem 3 (c.f.Appendix), the station
load S̃l j follows a normal uncertainty distribution 9j(c) :
N (

∑
i∈Qj ei,

∑
i∈Qj σi) since tasks are independent of each

other. Therefore,

Brj =M{S̃l j ≤ c} = 9j(c)

Because the station loads are independent of each other,
Axiom 4 (c.f.Appendix) can be used to calculate the belief
reliability of the line as

Br = Min{Br1,Br2, · · · ,Brm} (4)

In the next section, we incorporate the belief reliability in the
model of ALBP-UT.

III. PROBLEM FORMULATION
First, we present the following necessary assumptions and
conditions for the problem formulation.
• The travel times and set-up times are ignored.
• A task can be assigned to only one workstation.
• The task assignment must conform to the precedence
relationships, which are known and deterministic.

• The belief reliability must lie in the range [LB,UB].
• The task times are uncertain variables, and their uncer-
tainty distributions are known and given.

• The goal is to obtain the Pareto-optimal set which
includes the cycle time and belief reliability of the
assembly line.

We delineate the mathematical model of the proposed prob-
lem. The task time distributions, precedence relationships,
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the number of workstations and tasks are given as input
into our model. The objective function of our problem is to
minimize cycle time c and maximize the belief reliability of
the assembly line Br (or equivalently, minimize 1− Br),

Min c

Min 1− Br

The decision variables are xij. xij determines the task assign-
ment at workstation j. Now,we establish the constraints. The
first constraint is task indivisible constraint, as a task can only
be assigned to one station.

m∑
j=1

xij = 1, ∀i = 1, 2, · · · , n. (5)

The second constraint ensures the precedence relationship
when the two tasks are assigned to different mated stations:

m∑
j=1

jxvj ≤
m∑
j=1

jxbj, if

P(v, b) = 1, ∀v, b = 1, 2, · · · , n. (6)

The third constraint guarantees that the belief reliability of the
line Br is not greater thanUB and not less than LB. Therefore,
the third constraint is

LB ≤ Br ≤ UB (7)

where Br = minj=1,2,··· ,m9j(c). The Pareto-optimal set of
themodel can provide various choices of cycle time and belief
reliability combinations. Production managers can select the
appropriate pair according to the specific practical require-
ment. In the next section, we propose an algorithm to find the
Pareto-optimal set.

IV. SOLUTION PROCEDURE
In this section, we develop a restart neighborhood search
(RNS) algorithm to solve the proposed problem. The general
framework is depicted in Figure 2. The proposed algorithm
features a restart mechanism to escape the local optimum. The
algorithm begins with generating an initial random feasible
solution using the encoding and decoding procedures. Then,
the steps in themainmodules are iterated until the termination
criteria are met. The main modules are neighborhood search,
Pareto-optimal set update, and restart mechanism. The details
of the RNS are presented in the following sections.

A. ENCODING AND DECODING
The solution contains the information of cycle time c and task
assignment Ta in each workstation, S = {c,Ta}. The length of
Ta is equal to the number of tasks. In Ta, if the ith element is j,
the ith task should be assigned to station j. The Pareto-optimal
set consists of pairs of cycle time and belief reliability, Ps =
{c,Br}
Step 0: Initialization: generate a random array Ta0. If every

value from 1 to m appears at least once, go to step 1; other-
wise, repeat this step.

Step 1: Set k = 1, c0 =
∑n

i=1 E[t̃i]/m.
Step 2: Extract the elements whose corresponding values

in Ta0 are equal to k and form a vector A. If A is empty, set
k = k + 1 and reimplement step 2;otherwise, go to step 3.
Step 3:Checkwhether the predecessors of the first task inA

has been already assigned. If yes, go to step 5; otherwise, reset
the values of Ta0 that refer to the unassigned predecessors to
k and go to step 4.
Step 4: Add the indices corresponding to the reset values

of Ta0 to the beginning of A and go back to step 3.
Step 5: Assign the task to station k and remove the task

fromA. IfA is empty, set k = k+1 and go to step 6;otherwise,
go back to step 3.
Step 6: Check whether all tasks have been assigned. If yes,

go to step 7;otherwise, go back to step 2.
Step 7: Vary c0 so as to find several belief reliabilities

(the belief reliability can be calculated by Eq.(4)) that lie
in the range [LB,UB], then c0 = {c01, c

0
2, · · · } and Br

0
=

{Br01 ,Br
0
2 , · · · }.

With the above decoding scheme, the initial solution set
S0 = {c0,Ta0} and Pareto-optimal set Ps0 = {c0,Br0} can
be constructed. The advantage of the decoding scheme is that
several solutions can be generated in one iteration.

B. NEIGHBORHOOD GENERATION
Suppose the iter th iteration is finished, we employ the fol-
lowing procedures to find its neighborhood solution,Siter+1.
Step 1:Locate the station with the smallest belief reliability

(station j), and go to step 2.
Step 2: Randomly choose a task i from station j and go to

step 3.
Step 3: Find the set B that consists of all possible targeted

stations to which task i can be assigned while the precedence
relationships remain satisfied. Go to step 4.
Step 4: If there is no possible targeted station for task i,

go back to step 2;otherwise, go to step 5.
Step 5: Randomly choose a value r from B and change the

ith value of Taiter to r , and a new task assignment Taiter+1 is
found.
Step 6: Vary the cycle time so as to find several belief

reliabilities that lie in the range [LB,UB], then citer =
{citer1 , citer2 , · · · } and Br iter = {Br iter1 ,Br iter2 , · · · }.
Step 7: Update Siter+1 = {citer+1,Taiter+1}
The advantage of the generation procedure is that optimum

may be improved since stations are likely to be balanced in
terms of the belief reliability. Further, the feasibility of the
new solution is guaranteed.

C. PARETO-OPTIMAL SET UPDATE
After a new set of solutions is generated, we check each
solution to determine whether it is a non-dominated solution.
If the solution is not dominated by any of the solutions in the
Pareto-optimal set, it will be added into the current Pareto-
optimal set, and the original solution will be eliminated from
the set if it is dominated by the new solution. This procedure
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FIGURE 2. The general framework of RNS.

can be executed by locating the cycle time of new objective
pair {c,Br} in the current Pareto-optimal set Ps. Let c′ and c′′

are the two adjacent cycle time of c in Ps, c′ ≤ c ≤ c′′. Br ′

and Br ′′ are the corresponding belief reliabilities of c′ and c′′,
respectively. Now we discuss the following scenarios.
Scenario 1: Br ≤ Br ′. This scenario indicates that sacri-

ficing the line efficiency does not lead to reliability improve-
ment. Therefore, {c,Br} is dominated by {c′,Br ′}, and Ps
remains unchanged.

Scenario 2: Br ′ < Br < Br ′′. This scenario indi-
cates that sacrificing the line efficiency from c′ to c leads
to reliability improvement, and sacrificing the reliability
from Br ′′ to Br lead to efficiency improvement. Therefore,
{c,Br} is a non-dominated solution and should be added
to Ps.
Scenario 3: Br ′′ < Br . This scenario indicates that

improving the line efficiency from c′′ to c leads to reliability
improvement. Therefore, {c,Br} is a non-dominated solution.
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TABLE 2. Restart mechanism.

However, {c′′,Br ′′} is a dominated solution and should be
eliminated from Ps.

D. RESTART MECHANISM
As is well known, neighborhood search methods may lead
to local optima. To address this issue, we develop a restart
mechanism proposed to escape the local optima. It is a
diversification strategy that will enlarge the capacity of the
Pareto-optimal set. If a non-dominated solution is not found
after a number of dmax moves, a solution from the Pareto-
set is selected. Instead of choosing the solution randomly,
the restart mechanism will choose the solution with the
largest crowding distance. The crowding distance describes
the degree of isolation of a solution at the Pareto front. If the
most-isolated solution is chosen, the gaps in the objective
solution space can be reduced and the spread of the Pareto-
optimal set can be enhanced. To prevent a solution from being
selected several times, we utilize a counter (Sc), which is set
to 1 at the beginning, to reduce the crowding distance. The
restart mechanism is presented as follows.

V. NUMERIC EXPERIMENTATION
A. EXPERIMENTAL SETTINGS
In this section, the performance of RNS is evaluated. Three
benchmark problems, Arcus111 (111 tasks), Bartholdi148
(148 tasks) and Scholl297 (297 tasks), are solved [27]. All
the algorithms are programmed in Matlab. The experiments
are conducted on a computer equipped with Intel(R) I7 with
CPU 2.8 GhZ.

The uncertainties are introduced to the dataset as follows:
each task time follows a normal uncertainty distribution
N(µ, σ ); µ is the deterministic task time in the original
dataset; σ is randomly generated between 0 and (µ2 )

2.

B. EVALUATION METHODS
To evaluate the algorithms, three metrics are applied:the ratio
of non-dominated solutions(Rp), the convergence of the non-
dominated solution (Cp) and the spread metric (Sp). These
metrics are widely applied to multi-objective assembly line
balancing problem to evaluate the performance of algorithms.

Supposewe have several Pareto-optimal sets (Ps1,Ps2,· · ·,
Psw) generated by different algorithms. The higher Rp is,
the better the Pareto-optimal set is. Let P = Ps1 ∪ Ps2 ∪ · · · ,
then,

Rp(Ps) =
|Ps− {x ∈ Ps|∀y ∈ P : y ≺ x}|

|Ps|
, (8)

where y ≺ x shows the solution x is dominated by solution y.
Rp(Ps) measures that the solution in Ps is not dominated by
other solutions in P.

The convergence of the Pareto-optimal set (Cp(Ps))
describes the difference between one Pareto-optimal set and
the approximated true Pareto-optimal set Tp. In the experi-
ment, Tp is approximated by running the algorithms twenty
times. Let dte refer to the minimum distance between solution
e and the other solutions in the Pareto-optimal set. f maxl =

maximum value for objective l and f minl = minimum value
for objective l. A low value of Cp(Ps) indicates a good
convergence to the true Pareto-optimal set. Cp(Ps) can be
calculated as follows,

dte = min
u=1,··· ,|Tp|

√√√√ 2∑
l=1

(
fl(e)− fl(u)

f maxl − f minl

)2

, (9)

Cp(Ps) =
|Ps|∑
e=1

dte
|Ps|

, (10)

The spread metric captures the distributions of the solu-
tions at the Pareto front. sd1 and sd2 are the Euclidean dis-
tance between the extreme solutions in Ps and the boundary
solutions in Tp. sde (e = 1, 2, · · · , |Ps| − 1) is the Euclidean
distance between two consecutive solutions in Ps. s̄d is the
average distance. The smaller value of Sp(Ps) means a better
spread of the Pareto-optimal set. Sp(Ps) can be calculated as
follows.

sde =

√√√√ 2∑
l=1

(
fl(e)− fl(e+ 1)

f maxl − f minl

)2

, (11)

Sp(Ps) =
sd1 + sd2 +

∑|Ps|−1
e=1 |sde − s̄d |

sd1 + sd2 + (|Ps| − 1)s̄d
, (12)

For the parameters of RNS, dmax is to be determined
by users. dmax indicates the maximal number of moves for
the neighborhood generation process to update the Pareto-
optimal set without invoking the restart mechanism. we con-
duct some experiments to calibrate dmax . Three levels of dmax
are tested:10, 30, 50. Therefore, there are three algorithm
configurations. Each configuration is tested on Scholl297
5 times.m is set to 12. In each run, the algorithm is terminated
when the CPU runtime reaches tlimit = n×n×pmilliseconds.
In this experiment, n = 297 and p = 10. We select Cp(Ps)
as the response variable. ANOVA is employed to analyze the
results. It shows that there is no significant difference among
the results. Therefore, we arbitrarily choose dmax = 30.
To test the performance of RNS, two other related algo-

rithms are utilized for comparison, namely, NS and NSr. NS
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FIGURE 3. Pareto fronts of different examples generated by the three algorithms. (a) Pareto fronts of Arcus111 with
m = 16. (b) Pareto fronts of Bartholdi148 with m = 14. (c) Pareto fronts of SCHOLL297 with m = 297.

is the pure neighborhood search procedure (c.f.section 4.2)
without the restart mechanism. NSr includes the restart algo-
rithm, but the algorithm restarts with a new random fea-
sible solution. The performance of the three algorithms is
tested on 18 problem instances which include Arcus111,
Bartholdi148 and Scholl297 with different number of sta-
tions. Each algorithm is tested on each instance 5 times. The
termination criterion is the time limit of the CPU runtime,
tlimit = n × n × 10 milliseconds. There are a total of
18× 5× 3 = 270 samples. The average results for the three
evaluation metrics are shown in Table 3. It can be observed
that RNS outperforms the other two algorithms for all cases
under the ratio of non-dominated solutions(Rp). As a result,
most points on the true Pareto front belong to the output of
RNS. As for the convergence of the non-dominated solution
(Cp), three algorithms do not distinguish each other very
much although RNS achieves the best results for all cases.
That means solutions generated by the three algorithms, if not
on the the true Pareto front, are very close regarding their
distances from the true Pareto front. As for the spread metric
(Sp), RNS outperforms the other two algorithms in 12 out
of 18 cases. Again, the differences of Sp among algorithms
are very small. To further examine two criteria (Cp and Sp),
non-parameter Wilcoxon signed-rank test is conducted. For
each criterion, the test is conducted twice (RNS versus NS,
RNS versus NSr). For each sample, the best result receives
a score 1, the worst result receives a score 2. The results
show that the differences of two criteria, although small, are
significant under a 1% significance level. The p values are
1.4×10−12 and 0.24 for RNS versus NS, 0.0004 and 0.009 for
RNS versus NSr with criteria of Cp and Sp, respectively. As a
result, RNS is better than NS in all criteria and better than
NSr in Cp. In conclusion, the restart mechanism increases the
efficiency of the neighborhood search.

To exhibit the performances of the three algorithms,
Figure 3 depicts the Pareto fronts of some examples from the
tested instances. Each case is solved 5 times, and the final
Pareto front, which is obtained by considering all Pareto-
optimal sets from five runs, is shown in the figures. The
three figures show similar patterns: 1) on the Pareto front,
there are many solutions before a specific point (the turning
point) and few solutions after it; 2) the (1-belief reliability)
decreases faster before the point than after it. Because the

TABLE 3. Results of the comparisons of algorithms.

belief reliability cannot improve to a large degree after the
cycle time goes beyond the cycle time of the turning point,
one can make a good tradeoff between the cycle time and
belief reliability by selecting the solutions with the cycle
time smaller than or equal to the cycle time of the turning
points. In contrary, the other solutions on the front correspond
to a managerial decision of increasing a small amount of
reliability but sacrificing a significant amount of production
efficiency. These patterns can be explained by two reasons.
First, by investigating Equation (4), the reliability deems to
be a value controlled by one of the uncertainty distributions
of station load. Therefore, As c increases,9j(c) approaches 1
at a decreasing speed. Further, there are some limitations of
our algorithm that the solutions are sparse near the extreme
point (one with the largest cycle time) on the Pareto front. The
turning point can be found by the following formula.

max
i

(1− Bri)− (1− Bri−1)
ci − ci−1

−
(1− Bri+1)− (1− Bri)

ci+1 − ci
, (13)

where i ∈ Ps\{i = 1}.

VOLUME 7, 2019 34127



Y. Li et al.: Optimizing the Reliability and Efficiency for an Assembly Line

Point i is the turning point where the maximal difference
between the slopes of the turning point and its two adjacent
points (i− 1 and i+ 1) is achieved.

VI. CONCLUSIONS
Analyzing reliability is a very new topic for assembly line bal-
ancing problems. Almost all of the existing research focuses
on measuring the reliability by probability theory, which
requires data to obtain the task time distribution. However,
there is a lack of data in some practical situations, especially
when mass-producing customized items. The main objective
of our paper is to characterize the reliability for assembly line
balancing problem with uncertainty theory, which is based on
the experts’ information. The most recently established con-
cept in production—belief reliability, is adopted herein as the
reliability measure for assembly line production for the first
time. A multi-objective optimization model is developed that
considers the reliability and cycle time as objectives. Further-
more, a neighborhood search method with restart mechanism
is proposed to solve the stated problem. Computational stud-
ies show that the restart mechanism increases the efficiency
of the algorithm. Our research is the first attempt to optimize
the reliability of the assembly line with uncertainty theory.

There are still some limitations to this study. The math-
ematical model only considers the regular constraints of
ALBP, which can be complemented by incorporating more
advanced constraints, e.g.,positional constraints and distance
constraints. Moreover, the efficiency of the proposed algo-
rithm can be further increased because the solutions near the
extreme points of the Pareto front are sparse (Figure 3). In the
future, there are several research directions worth to be inves-
tigated. Firstly, the objective can be the minimization of the
number of workstations and belief reliability given the cycle
time. Secondly, more real-world constraints can be integrated
into the optimization models and other intelligent algorithms
(particle swarm, genetic algorithm, etc.) are constructed to
solve the models. Moreover, the ideas in this paper can be
applied to other layout structures, including U-shaped lines
and two-sided lines.

APPENDIX
In the appendix, we introduce some fundamental concepts
and properties in uncertainty theory including uncertain mea-
sure, uncertain variable and uncertain programming.
Definition 4 [16]: Let L be a σ -algebra on a nonempty

set 0. A set function M : L → [0, 1] is called an uncertain
measure if it satisfies the following axioms,
Axiom 1:M{0} = 1 for the universal set 0;
Axiom 2:M{3} +M{3c

} = 1 for any event 3;
Axiom 3: For every countable sequence of events

31,32, · · · , we have

M

{
∞⋃
i=1

3i

}
≤

∞∑
i=1

M{3i}.

In order to provide the operational law, the product uncer-
tain measure on the product σ -algebre L is defined, which is
called product axiom [17] .

Axiom 4: Let (0k ,Lk ,Mk ) be uncertainty spaces for k =
1, 2, · · · . The product uncertain measureM is an uncertain
measure satisfying

M

{
∞∏
k=1

3k

}
=

∞∧
k=1

Mk{3k}

where 3k are arbitrarily chosen events from Lk for k =
1, 2, · · · , respectively.
Definition 5 [16]: An uncertain variable ξ is a function

from an uncertainty space (0,L,M) to the set of real numbers
such that for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ 0|ξ (γ ) ∈ B}

is an event.
In order to describe uncertain variable in practice, uncer-

tainty distribution 8 : < → [0, 1] of an uncertain variable ξ
is defined as 8(x) = M {ξ ≤ x}. An uncertainty distribution
8(x) is said to be regular if it is a continuous and strictly
increasing function with respect to x at which 0 < 8(x) < 1,
and

lim
x→−∞

8(x) = 0, lim
x→+∞

8(x) = 1.

If ξ is an uncertain variable with regular uncertainty distribu-
tion8, thenwe call the inverse function8−1(α) as the inverse
uncertainty distribution of ξ .
An uncertain variable ξ is called normal if it has a normal

uncertainty distribution

8(x) =
(
1+ exp

(
π (e− x)
√
3σ

))−1
,

denoted by N(e, σ ), where e and σ are real numbers with
σ > 0. The inverse uncertainty distribution of normal uncer-
tain variable N(e, σ ) is

8−1(α) = e+
σ
√
3

π
ln

α

1− α
.

Definition 6 [17]: The uncertain variables ξ1, ξ2, · · · , ξm
are said to be independent if

M

{
m⋂
i=1

{ξi ∈ Bi}

}
=

m∧
i=1

M {ξi ∈ Bi}

for any Borel sets B1,B2, · · · ,Bm of real numbers.
The expected value operator of uncertain variable, pro-

posed by Liu [16], is the average value of uncertain variable
in the sense of uncertain measure, and represents the size of
uncertain variable.
Definition 7 [16]: Let ξ be an uncertain variable. Then

the expected value of ξ is defined as

E[ξ ] =
∫
+∞

0
M{ξ ≥ x}dx −

∫ 0

−∞

M{ξ ≤ x}dx

provided that at least one of the two integrals is finite.
Further, for an uncertain variable ξ with uncertainty distri-

bution 8(x), Liu [19] showed that its expected value can be
obtained by

E[ξ ] =
∫
+∞

−∞

xd8(x). (14)
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Furthermore, if 8(x) is regular, then

E[ξ ] =
∫ 1

0
8−1(α)dα. (15)

Theorem 1 [17]: Let ξ and η be independent uncertain
variables with finite expected values. Then for any real num-
bers a and b, we have

E[aξ + bη] = aE[ξ ]+ bE[η].

Theorem 2 [19]: Assume ξ1, ξ2, · · · , ξn are independent
uncertain variables with regular uncertainty distributions
81,82, · · · ,8n, respectively. If f (ξ1, ξ2, · · · , ξn) is strictly
increasing with respect to ξ1, ξ2, · · · , ξn, then the uncertain
variable ξ = f (ξ1, ξ2, · · · , ξn) has an inverse distribution

9−1(α) = f (8−11 (α),8−12 (α), · · · ,8−1n (α)).

Theorem 3 [16]: Let ξ1, ξ2, · · · , ξn be independent nor-
mal uncertain variables with normal uncertainty distribu-
tions N(e1, σ1),N(e2, σ2), · · · ,
N(en, σn), respectively. Then, η = ξ1 + ξ2 + · · · + ξn follows
normal uncertainty distributions N(

∑n
i=1 e1,

∑n
i=1 σ1).
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