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ABSTRACT Since integrated circuits are performed by several untrusted manufacturers, malicious circuits
(hardware Trojans) can be implanted in any stage of the Internet-of-Things (IoT) devices.With the globaliza-
tion of the IoT device manufacturing technologies, protecting the system-on-chip (SoC) security is always
the keys issue for scientists and IC manufacturers. The existing SoC high-level synthesis approaches cannot
guarantee both register-transfer-level and gate-level security, such as some formal verification and circuit
characteristic analysis technologies. Based on the structural characteristics of hardware Trojans, we propose
a multi-layer hardware Trojan protection framework for the Internet-of-Things perception layer called
RG-Secure, which combines the third-party intellectual property trusted design strategy with the scan-chain
netlist feature analysis technology. Especially at the gate level of chip design, our RG-Secure is equipped
with a distributed, lightweight gradient lifting algorithm called lightGBM. The algorithm can quickly process
high-dimensional circuit feature information and effectively improve the detection efficiency of hardware
Trojans. In the meanwhile, a common evaluation index F-measure is used to prove the effectiveness of our
method. The experiments show that RG-Secure framework can simultaneously detect register-transfer-level
and gate-level hardware Trojans. For the trust-HUB benchmarks, the optimized lightGBM classifier achieves
up to 100% true positive rate and 94% true negative rate; furthermore, it achieves 99.8% average F-measure
and 99% accuracy, which shows a promising approach to ensure security during the design stage.

INDEX TERMS Internet of Things, protection framework, hardware security, hardware Trojan.

I. INTRODUCTION
With the achievements of wireless communication, sensor
technology, embedded system application, and microelec-
tronics technology, the Internet of things (IoT) technology has
been widely valued by the governments, academia and indus-
try of various countries due to its vast application prospect [1].
For example, appointment registration and remote
consultation driven by IoT technologies can promote the
development of smart healthcare. By embedding and inte-
grating IoT devices into industrial systems (such as power
grids, bridges, highways, and buildings), the process of pro-
duction can be managed more precisely and dynamically.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tawfik Al-Hadhrami.

IoT applications can significantly improve the industrial
productivity and relationship between human and nature.

Although the IoT is developing rapidly, the security of
the IoT become extremely prominent (mainly for indus-
trial applications). The perception layer is the source of all
IoT data [2]. It is also the foundation of the entire IoT archi-
tecture. The physical security of sensor layer devices will
be more threatened than the transport layer and application
layer of the Internet of things. Due to the wide distribution of
sensors in agricultural and industrial environments, sensitive
information may be directly captured by the enemy if no one
checks the sensors for a long time. So, most IoT devices in
circulation are vulnerable to malicious attacks. At present,
some scholars have pointed out that wireless embedded
medical devices such as pacemakers and insulin pumps in
the market generally have available security holes [35].
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FIGURE 1. Logical architecture for IoT and Malicious circuit implantation
location.

Some HT circuits or computer virus can cause disruption
to cyber physical systems (for example: industrial con-
trol systems) [3]. The defense science council reported in
March 2017 that U.S. military weapons systems may have
been injected with HTs [4]. It is easy for a malicious attacker
to insert a hardware Trojan that affects the normal operation
of the system or steal sensitive information [5]. A variety of
intelligent devices, from environmental sensors to cameras,
are used to obtain data [6], [7]. Therefore, some malicious
circuits are often embedded in the SoC of IoT devices (such
as video monitors, smartphones and autonomous vehicles)—
see Fig.1. In general, HTs infect the SoC of sensing layer
devices. The structure of HTs is extremely uncomplicated,
including trigger blocks and payloads. Typically, the hard-
ware Trojans does not contain any state information. The
malicious attackers have full control over their HT triggers
and implant various types of HTs which would be extremely
hard to detect by traditional verification techniques. Fur-
thermore, SoC in circulation is a complex heterogeneous
system composed of multiple third-party IP cores. It further
increases the risks faced by IoT devices. In the past few years,
some works have been devoted to SoC security. However,
Trojan-detection techniques in the 3PIPs are difficult to dis-
tinguish Trojan nets completely because of the small size and
concealment of HTs. Some Tojans even need to be ana-
lyzed manually. Moreover, formal verification techniques
for RTL/gate-level cannot take the merit of high efficiency
and accuracy at the same time. Some malicious third party
suppliers even colluded to jointly manufacture HTs to evade
detection. So, how to design safe and reliable SoC secure
strategies and Trojan detection technology are critical tasks
for researchers.

In this paper, we design a multi-layer hardware Trojan
protection framework called RG–Secure, which tackles the
main security threat of IoT terminals — hardware Trojans
lives in RTL and gate level. Our RG–Secure architecture
is established by combining the excellent experience of

previous works. Compared with other approaches, our frame-
work introduces scan-chain netlist features to improve the
detection accuracy of gate-level HTs. In addition, we pro-
pose three SoC design strategies to prevent Trojan IPs from
untrusted vendors. Experiments prove that our framework
can achieve high detection accuracy, wide applicability and
suitable for very large scale integrated circuits (VLSI). The
contributions are summarized as follows:
• We propose RG–Secure, a fast and applicative hardware
Trojan protection framework for third-party IP cores
based on HTs in RTL and gate level. Our RG–Secure can
find HTs by multilayer analysis rather than directly ana-
lyzing the functionality based on netlists. It is suitable
for multi-type hardware Trojan detection.

• Based on the particularity of the SoC structure, we make
attempts to detect HTs in RTL. Introducing three secu-
rity design strategies for untrusted third-party IP cores to
prevent HTs infection. At the same time, our improved
design strategies can reduce the space complexity and
overhead of the original safety design.

• At gate level, some gate-level Trojans cannot be con-
verted to scan-chain netlist in the functional testing
phase. We put forward two new features called sus-
picious trigger module and suspicious observe point
through analyzing the difference between Trojan netlist
and scan-chain netlist. Compared with the traditional
circuit feature analysis methods, our scan-chain analysis
technology has higher detection accuracy.

• In order to deal with high-dimensional circuit infor-
mation, we learn from the idea of feature analysis of
HT detection technologies and propose a gate-level
HT detection method based on LightGBM algorithm.
Experiments show the effectiveness of our framework
using 15 benchmarks from the trust-hub [36].

The rest of the paper is organized as follows. In Section II,
the related works are introduced. In Section III, the design
goals and problem models of this paper are described. The
multi-layer hardware Trojan protection framework is pro-
posed RG–Secure in Section IV. Experimental results are
analyzed in Section V. The Section VI is the conclusion.

II. RELATED WORK
To address the risks that HTs bring, HT detection technology
is a promising direction. Various classification algorithms and
security designs have been proposed.

Hicks et al. [8] proposed a technique called Unused Circuit
Identification (UCI) to find lines of RTL code that have not
yet been executed during the test. Zhang et al. [9] proposed
a hardware verification method called VeriTrust. The veri-
fication module can automatically identify suspicious gates
which are driven by HT. However, some of Trojan gates are
not calculated based on function input. Farahmandi et al. [10]
proposed a HT detection technique based on symbolic alge-
bra. Xiao and Forte et al. [11] briefly summarized the research
situation and development trend of HTs in recent years, while
Karri et al. [12] sorted out the development process of the
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concept of hardware Trojans. There are also HT detection
technologies based on the analysis of HT features proposed
by Salmani et al. [13] and Oya et al. [14]. But the secu-
rity workload is added to the computational effort imposed
by feature extraction and classification algorithms. Existing
HT detection techniques for SoC can be roughly classified
into two categories: formal verification and circuit feature
analysis.

A. FORMAL VERIFCATION
If agreement can be reached between IP vendors and SoC
integrators, specific design rules are assigned to IP cores
at outsourcing time. Rajendran et al. [15], [16] proposed
a technique to formally verify malicious modification of
critical data in 3PIP by hardware Trojans. Their approach
takes advantage of 3PIP from diverse vendors. No need for
‘‘golden’’ IP (A standard IP core without hardware Trojans
implant) as a reference. However, their method leads to high
area and power cost, and it is not able to prevent the hardware
Trojans that are implanted at gate level. Besides, authors
also put forward a formula for information leakage paths,
as shown in formula 1.

P |H (s0 = o) ∨ (¬s0 = o), ∀s0 ∈ {0, 1}. (1)

where, s0 is the binary representation of private informa-
tion (e.g., user password, private key). o is any output path
(e.g., output port). The authors hold that this formula detect
if the sensitive information is leaked. However, researchers
have proved [17] that the method is ineffective in finding
information leakage Trojans by inclusive formal verifica-
tion(IFV) tool of Cadence. As shown in formula 2. If there
is no information path between U1 and Un. The IFV tool will
return a false positive result.

P |H ∃(U1 = Un) ∨ (¬U1 = Un). (2)

Love et al. [18] and Guo [19] proposed a set of circuit
safety attributes and systematically studied a proof-carrying-
based framework. In the framework, IP cores are accompa-
nied by formal proof of security attributes. But, it may hard to
detect other unexpected features introduced by HTs. Formal
verification method does not directly detect HT, but attempts
to evaluate the reliability of IP core, and designs IP cores
through trust strategies to improve the security of integrated
circuits. In addition, the technology can isolate infected third-
party IP through software scheduling protocol [20] or the
correlation of input signals [21].

B. CIRCUIT FEATURE ANALYSIS
Circuit feature information can reflect the health of SOC.
Hasegawa andOya [22], Hasegawa andYanagisawa [23], and
Hasegawa et al. [24] extracted features from the hardware
Trojans to identify dangerous netlist and normal netlists.
The method constructs a machine learning classifier to iden-
tify the Trojans. It has high detection efficiency and low
cost. However, the detection accuracy and algorithm stability
depends on the selection of Trojan features.

Many schemes detect unused circuit modules in various
ways to mark suspicious circuits or nets, such as UCI [8],
Verirust [9] and FANCI [25]. These methods are simple to
implement, but it is so specific that existing benchmarks
may not be general. Additionally, the technologies cannot
guarantee Trojan detection so that a small number of suspi-
cious gates need to be manually analyzed by SoC integrators.
Methods’ limitations have been discussed in details in
papers [26], [27].

Rajendran et al. [26] proposed a hardware Trojan detec-
tion and recovery method based on gate-level netlists. The
method utilizes the controllability and observability to show
the distance relative to the standard circuit. Circuit feature
analysis can be applied to behavior or structural code to find
suspicious assertions or modules. Other literatures [29], [30]
used quantitative measurement or scoring mechanism to label
dubious nets or gates.

Characteristics in circuits also include the side channel
information of SoC. The main idea is to detect the path delay
and power consumption of integrated circuits [31]. A method
is designed to look up the difference in circuit overhead
called MERO. The power component of leaking a bit
Ki is shown in the formula 3, sKi (n) represents the time-shift
correlation of information flow. N is the number of bits in the
binary representation of private information.

PKi (t) =
N∑
n=2

[Ki ⊕ (sKi (n)− sKi (n− 1)) · P0→1(t)]. (3)

However, Chakraborty and Pagliarini [32] proved that
when the Trojan triggers probability is less than 10−3,
MERO will be difficult to detect Trojans.

Yoshimizu [33] attempted to detect the hardware Trojans
with circuit path delay. A temperature-based HT classifi-
cation technology [34] is an example of the circuit feature
analysis. However, it is a pity that ‘‘standard’’ samples are
difficult to obtain in reality, and the detection efficiency of
side channel depends on the precision of the instrument. Side
channel analysis needs to collect information frequently, and
it is weak to deal with the interference of process noise.
So the de-noising of by-pass noise may affect the original
signal again. That is why the side channel approach is hard
to popularize.

III. PROBLEM FORMULATION
In this section, the problem formulation of our RG–Secure is
introduced, including threat model, security model and goals
of paper.

A. THREAT MODEL
Hardware Trojans can be divided into several types: informa-
tion disclosure, change of functionality, and denial of service.
When Trojan triggers are not activated, HTs can coexist with
the original circuit without affecting the normal function.
Once triggers release a rare signal or condition, the payload is
activated to perform a malicious behavior. Generally speak-
ing, the HTs are implanted in the circuit at the design stage.
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Only a small group ofHTs are implanted in themanufacturing
phase.

The realized function R of a SoC (formula 4) is defined
three parts: operation α performed by a chip, sets of input
ports I and output ports O. R is composed of different circuit
subfunctions rn. These subfunctions break down the complex
system-on-chip into a simple circuit structure (formula 5).

R = {α, I ,O}, (4)

R = r1 ∪ r2 ∪ r3 ∪ · · · ∪ rn =
N⋃
n=1

rn, (5)

These malicious activities of HTs undoubtedly break the
original circuit structure and produces unwanted behaviors
(formula 6,7).

R = Rsecur ∪ (Rh ∪ rh), (6)

R = r1 ∪ r2 ∪ r3 ∪ · · · ∪ rn ∪ rh =
N⋃
n=1

rn ∪ rh. (7)

Here, each type of HTs locate in RTL can be expressed
as IR, CR and DR. Similar to the gate-level HTs is IG,
CG and DG. rh represents the hardware Trojan circuits.
If ξ is used to indicate the trigger signal of Trojan, the exis-
tence form of hardware Trojans in SoC will be characterized
by the following equations (formula 8,9). When the Trojans
receive the trigger signal (ξ = true), it will perform the
predetermined behavior. Otherwise, the hardware Trojan is
in static state (rh = φ).

rh = φ if ξ = false, (8)

rh = {IR,CR,DR, IG,CG,DG} if ξ = true. (9)

In this paper, our framework plays a vital role in the pre-
silicon phase of SoC security design. It is suitable for multi-
type HT detection. This method work on combining the
third-party IP trusted design strategy with the netlist feature
analysis technology and ensuring the security of RTL and
gate-level netlist. In other words, it guards netlists instead of
physical layout stage. Hence, it cannot detect HTs inserted in
the layout level.

B. SECURITY MODEL
Due to the increasing number of IoT application, SoC archi-
tecture has become immensely complicated. Our method
considers two stages of HT in SoC: RTL Trojans and gate
level Trojans (IR, CR, DR, IG, CG, DG). Information leakage
hardware Trojans IR and IG mainly attack crypto processor
and graphics controller. DR and DG can lead to circuit dam-
age or denial of service. They are usually located in bus
controller, general processor and system functions. CR and
CG basically change the circuit function and they can be
implanted at any stage of the SoC.

Thus, the physical security of perception-layer devices will
be more seriously threatened than before. It is tough to find
a universal method which can defense all kinds of HTs.
Both formal verification and circuit feature analysis have

FIGURE 2. RG-Secure Model Based on SoC chips in IoT equipments.

their own pros and cons. To protect the safety of SoC in
IoT devices, we overcome these limitations by combining
the two technologies. In the process of SoC integration,
RTL is the most vulnerable to hardware Trojan attacks. Secu-
rity design strategies proposed for 3PIP can prevent and
detect part of the circuits infected by HTs in RTL. In the
next stage, SoC integrators synthesize the RTL description
into a gate-level netlist. Unfortunately, there is still a Trojan
threat at the gate level. Circuit feature analysis technologies
do well in detecting hardware Trojans injected at the gate
level. So a multi-layer hardware Trojan protection framework
is designed for the IoT perception layer SoC, as illustrated
in Fig.2.

C. DESIGN GOALS
Our goal is to create a hardware Trojan protection framework
for IoT Chips. Specifically, we have the following goals:
• Applicability. Our RG–Secure is to cope with the com-
plex and various HTs. The designed framework is able
to fully protect the safety of SoC.

• Accuracy. Accuracy of RG–Secure framework should
be accurate enough to detected hardware Trojans with-
out omission. Also, all normal circuit nets cannot be
misjudged.

• Efficient. Compared with other detection methods,
the time complexity of our algorithm cannot be too
high. It is necessary to ensure timeliness as well as
accuracy.
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FIGURE 3. Overall framework of RG–Secure.

FIGURE 4. Control data flow graph of strategy 1.

IV. SECURITY FRAMEWORK FOR RTL AND GATE LEVEL
In this section, we introduce the proposed multilayer hard-
ware Trojan protection framework — RG–Secure, including
RTL-Trojan prevention and gate-level Trojan detection.

A. TRUSTED DESIGN BASED ON
REGISTER-TRANSFER-LEVEL NETLIST
RTL is the phase of chip manufacturing, which is the easiest
stage to be implanted hardware Trojans. In this part, a trusted
approach is presented to prevent the Trojan threat.

In order to build trustworthy SoCs, we incorporate some
security strategies into the advanced integrated operations to
operator assignment phase. Fig.3 shows the overall frame-
work of our RG–Secure. As shown in Fig.3, the design strate-
gies for RTL hardware Trojan prevention is the first layer of
our approach. Typically, an IP vendor sells multiple 3PIPs.
Malicious IP vendors may implant hardware Trojans in their
products (Trojan IPs). They design a distributed HT by coor-
dinating Trojan triggers. In response to two or more Trojan
IPs form the same vendors, we introduced Strategy 1.
Strategy 1 (IP Diversity): Use IP cores from different

third-party IP vendors whenever possible. Because mali-
cious attackers are difficult to predict and control the output
of 3PIPs from different vendors. They are unable to determine
the placement of Trojan trigger modules and load modules.
An example shown in Fig.4, circles of different colors repre-
sent disparate 3PIP suppliers (red circles represent malicious
IP vendors). Netlists manufactured by single 3PIP vendor
is more susceptible to infection than multiple vendors. It is
because IP components from the same 3PIP vendor can

FIGURE 5. The CDFG of duplication for detection.

quickly form aTrojan trigger signal. Attackers set the location
of HT trigger as they wish. In Fig.4, collusion between a child
and parent operation in the same vendor. The output ‘10’ of
A2 is acquired by opponents. In the way, Trojan payloads are
implanted in A3 and launched when receiving the signal of
‘01*10’ of A1 and A2. However, if we employ 3PIPs from
different vendors to integrate netlists, the output of A2 will be
hard to predict. Malicious attackers are unable to determine a
place that Trojan payload can be implanted.

The abovemethod only applies to the case that there is only
one malicious vendor. For the collusion of multiple malicious
vendors, we also bring in Strategy 2.
Strategy 2 (IP Randomness): Randomly selecte 3PIP at

the design stage, the number of 3PIP within a function is
guaranteed to completely random. It can prevents collusive
attacks between suppliers unless all the vendors are hardware
Trojan manufacturers. There is no doubt that the possibil-
ity almost zero. However, in order to prevent the hardware
Trojans generated by random combination of IP, we take
inspiration from Rajendran’s work. Adding a duplication for
verifying whether there is a malicious circuit in design.
Strategy 3 (Duplication for Detection): Create a copy with

the same function as the original circuit. Certainly, it also
follow Strategy 1 and Strategy 2. Duplication is used to
detect whether the output of an operation contains a hardware
Trojan. The technique can find at least one malfunction of a
given 3PIP. The CDFG of duplication for detection shown
in Fig.5.
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In Fig.5, both the original and copy are composed by differ-
ent IP vendors. The attackers only get the output result of A1.
If the subsequent operation cannot be obtained, the malicious
modification of the circuit will become very difficult. In addi-
tion, for preventing the occurrence of random events (exactly
choose the same IP), we compare the original output with
duplication. Once finding a difference, manufacturers can
believe there is a malicious circuit in the operation. Assuming
the total number of suppliers is N , the number of untrusted
suppliers or colluding attacks is D. The probability that HTs
may escape is (D/N )4 in our method (Footnote: we do not
consider the total of IPs). So, the more types of suppliers we
choose, the safer our proposed design approach will be.

Our RG–Secure is based on Rajendran et al.. However,
we abandon redundant design constraints and remove iso-
lation operations. It is because removing some restrictions
helps reduce the total number of IPs and production costs.
In a nutshel, these above strategies are the first layer of
our RG–Secure framework. It mainly cope with some HTs
in RTL which change the functionality or deny service.
Unfortunately, it is weak to detect HTs that leakage informa-
tion or come from gate level.

B. SCAN-CHAIN FEATURE ANALYSIS BASED ON
GATE-LEVEL NETLIST
In the section, we come up with another layer of our frame-
work for the above threats — Scan-Chain Feature Analysis
based on Gate-Level netlist (in Fig.3).

To evaluate the effectiveness of integrated circuits, the cir-
cuit function needs to be tested in the design process. For
IP cores, the scan chain is a conventional technology of
Design for Testability (DFT). It is supported by all commer-
cial EDA softwares. Based on DFT, we introduce how to
extract Trojan features from scan-chain netlists and classify
HT nets using LightGBM algorithm.

1) SUSPICIOUS TRIGGER MODULE
Identifying suspicious trigger modules of HT is the first step
in our feature analysis. After circuits are designed, manufac-
turers only detect them through its input and output ports.
However, in most cases, it is impossible to rely on a single
test vector to detect chip functionality completely. The scan
chain is able to turn a difficult-to-test sequential circuit into
an easy-to-test combined circuit which is shown in Fig.6.

In scan chain technology, each normal sequence element
(such as D Flip-Flop) will be replaced with a scan sequence
element (such as Scan D Flip-Flop). By connecting the
output (Q) of each Scan D Flip-Flop (SDFF) with the input
interface (SI) of next (SDFF), a scan chain is formed. In Fig.6,
Primary Input x is the original signal of chips. Test Input
accesses a test excitation signal, and Test Output represents
the output signal of the new combinatorial circuit. We can
determine whether there are defects or faults in the circuit
through the values of Scan out.

In order to avoid the scan phase, some types of hardware
Trojans will not be converted to scan elements (As shown

FIGURE 6. Scan chain generation.

FIGURE 7. An information leakage Hardware Trojan.

in Fig.7). In Fig.7, An information leaking hardware Trojan
can reveal important information about the circuit by Trojan
leakage path. To evade functional validation, it still needs to
add HTs rarely triggered. So, the Trojan trigger module must
be different from the standard scan chain trigger module.

Therefore, a new feature has been defined for such triggers
called suspicious trigger module, which is used to look for
suspicious Trojan trigger modules in the scan chain. If our
method finds any triggers which cannot be converted to scan
modules, it will be considered as HT trigger units.

2) SUSPICIOUS OBSERVE POINT
Based on Feature 1, some of Trojan circuits can be iden-
tified conclusively. However, It is far from enough to find
the trigger module of Trojans. In order to avoid suspicious
nets are not missed, we also need to identify the Trojan nets
which are hidden in the normal netlist (such as Trojan leakage
path or Trojan out in Fig.7).

The second step of our gate-level detection is to find some
special nets, which are not only the input of scan triggers
(SDFF) but also the input of main output (Test Output).
Becasue if an attacker wants to steal critical information,
the signal must pass through the final output. However, scan-
ning chain can convert a sequential circuit into a combination
circuit, the circuits will shift a chain structure. Therefore,
HT injection will partially affect the linear relationship of the
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FIGURE 8. Flow of our implementation of the three-level feature analysis.

chain structure. We position this kind of nets as Suspicious
Observe Point. For example, if we discover an observation
point which is both the input of the next scan trigger and the
main input of the circuit thenwe can conclude that there exists
a suspicious leakage path or Trojan out. Generally, and the
HT nets will cause information leaks or functional changes.

C. LIGHTGBM-BASED HARDWARE TROJAN
CLASSIFICATION
In this section, we combine scan-chain features with the
HT features summarized in previous work [22], and explain
in detail why we use lightGBM algorithm to classify.

The feature analysis technique is presented in
Algorithm.1 and shown in Fig.8. The algorithm, first takes
a gate-level netlist as input. Next, initializes statistics (Suspi-
cious Trigger Module, Suspicious Observe Point and Trojan
net). Then, the algorithm classifies the netlist for the first time
based on 51 feature databases [23] (Line 5). Apparently, some
of HTs cannot be detected. Here, we adds scan-chain features
to all netlists. At the same time we use conditional selec-
tion strategies to analyze suspicious netlists. Now, for each
net ∈ netlist, the algorithm judges whether it is suspicious
(Line 10, Line 14). Once the net is judged to be dangerous,
then it will be marked (Line 7, Line 13, Line 17). Suspicious
Trigger Module and Suspicious Observe Point will increase
at the same time (Line 12, Line 16). Finally, count all marked
net as Trojan nets (Line 22).
In order to attain efficient HT detection results, we imple-

ment a three-level HT detection, as illustrated in Fig.8,
including HT feature analysis, suspicious trigger analysis,
and suspicious observation point analysis. At the first level,
the netlists are classified for the first time based on 51 fea-
tures without considering scan-chain features. The 51 circuit
features mainly include: fan in/out features of circuit, multi-
plexer features, flip flop features, the number of circuit loops

Algorithm 1 Scan-Chain Feature Analysis
1: Procedure Scan-Chain Feature Extraction
2: Input: gate-level netlist
3: Output: suspicious trigger module, suspicious observe

point, Trojan net
4: Initialization: STriModule, SObsPoint, TrojanNet
5: for net ∈ netlist do
6: analyze Trojan(netlist)
7: if analyze Trojan = 1 then
8: mark net
9: else
10: analyze input(net, ‘‘test se′′)
11: if analyze input < 1′′ then
12: STriModule = STriModule+ 1
13: mark net
14: else analyze input(net,PO)
15: if analyze input(net,PO) = 1′′ then
16: SObsPoint = SObsPoint + 1
17: mark net
18: else break
19: end if
20: end if
21: end if
22: end for
23: TrojanNet = all markednet

and constant information (such as grounding or constant
signal). The specific features can be referenced in [23]. Some
hardware Trojans that have a large area are distinguished
at this level. In the next level, we increase the Suspicious
Trigger Module feature to the original HT feature library and
train the rest of suspicious netlists. At this stage, Trojan nets
are classified with special Trojan triggers. In the third level,
the Suspicious Observe Point features are introduced to dis-
tinguish between suspected trojan leakage paths. In the level,
a possible signal leakage net can be detected. Through the
above three stages, we can eliminate the gate-level details and
keep important circuit faeture information. The three-level
frame aims to merge the scan-chain features and improve the
detection accuracy.

In the whole experiment, RG–Secure choose to employ
lightGBM algorithm. Because the features of integrated
circuits is very sparse, especially for the very large scale
integrated circuit. Reading and training data repeatedly
will consume a lot of time. Therefore, general super-
vised machine-learning methods are difficult to apply.
LightGBM is a gradient boosting framework that uses tree
based learning algorithms. It transforms continuous eigenval-
ues into discrete histograms to reduce the feature dimension
and improve the optimization of training speed.

D. ANALYSIS OF TIME COMPLEXITY
In our feature analysis technique, some symbols are defined
firstly, which will be used in the time complexity analysis.

23634 VOLUME 7, 2019



C. Dong et al.: Multi-Layer Hardware Trojan Protection Framework for IoT Chips

TABLE 1. The classification results.

The sample size of data is N , the number of features is M .
In LightGBM algorithm, the number of trees is K , and the
depth of the tree is D.
For the Trojan features extraction stage, the time complex-

ity calculation is very common and easy, so we do not explain
them in detail. The worst time complexity is O(N 2) as shown
in Algorithm 1. The addition of scan-chain features has little
effect on the time complexity of the whole feature extraction
algorithm. Therefore, there is no significant difference in time
between our feature extraction algorithm and [20] and [21].

At the Trojan nets classification stage, since the LIght-
GBM algorithm requires a global sort at the beginning of the
classification, the sorting complexity is O(NMlog(N )). And
the algorithm builds a single tree complexity is O(NMKD).
Consequently, the overall time complexity of this step is
O(NMlog(N ))+O(NMKD)+O(N 2). Although the complex-
ity looks high, our method uses a leaf-wise growth strategy
with depth limitations, and it is possible that the depth D
and number of trees K are extremely low. Therefore, our
method reflects higher efficiency than other machine learning
detection algorithms.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
Our framework is used to detect Trojans in Trust-hub [36]
benchmark netlists. We divided them into three types: infor-
mation leakage, denial of service and change of functionality.
Note that, our RG–Secure works at RTL Trojan netlists and
gate-level Trojan netlists. Therefore, it is not suitable for
other HTs detection. The framework is built by the Python
language. The feature extraction experiments are carried out
on an Ubuntu server with an Intel i7-4720HQ central process-
ing unit (CPU) running at 2.6GHz and 16GB memory. The
classification experiments are carried out on a Win10 server
with an Intel i5-6500 CPU running at 3.2GHz and 4GB
memory. The details are shown in Table 2.

We evaluate the effectiveness framework using perfor-
mance measure. There are five values to assess the results:
the true positive rate (TPR), the true negative rate (TNR),

TABLE 2. Experimental setup.

TABLE 3. The average of the classification algorithm.

the precision, the F-measure and the accuracy. In the process
of experiment, we use cross validation method to verify the
effectiveness of our method.

B. RESULTS OF TROJAN DETECTION
In RTL prevention, we introduce the copy comparison
method [15]. So our RG–Secure can achieve the same effect
as Rajendran et al. that most of HTs based on changing func-
tion can be detected in the first layer. The power overhead and
area overhead of our framework are shown in the Fig.9. (Foot-
note: we assume that the 3PIPs from different suppliers have
the same power and area). In the Trojan prevention, because
there are no additional IP cores as references, its overhead are
almost the same as the original design. Once synthesized with
the detection constraint, our operations’ average overhead
is doubled from the original design. It is because a number
of operations are bound to the same IPs in the RTL Trojan
decetion. However, compared with the traditional high-level
synthesismethods [15], [16], our security framework replaces
RTL hardware Trojan isolation mechanism with scan-chain
feature analysis. Because the traditional 3PIP security meth-
ods are not suitable for the HTs which implanted in the
gate level. The addition of circuit characteristic analysis not
only reduces the overhead of traditional security design by
nearly 50%, but also improves the efficiency of HT detection.
Here, we mainly verify the result of gate-level HT detection.
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TABLE 4. Comparison results of the three methods.

FIGURE 9. The power overhead (a) and area overhead (b) of RG-secure
framework in different chip operations.

In the experiments, we analyze the performance of the pro-
posed detection framework and compare them with the other
machine learning classifiers proposed in [22] and [23]. The
results of HT detection by our proposed three-level feature
analysis is shown in Table 1. For the detection methods of
hardware Trojan, what is essential is the recall rate (TNR)
of the nets of hardware Trojan. Twelve of the 15 sets of
netlist information have TNRs above 90%, only one hardware
Trojan (s38147-T300) has a TNR below 80%. Because the
histogram algorithm in LightGBM sacrifices certain segmen-
tation accuracy for training speed andmemory space, it is sen-
sitive to outliers. All kind of netlists are correctly identified to

be HTs in these cases. At the same time, our detection algo-
rithm can guarantee the lowest misjudgment rate. In Table 1,
all the benchmarks realized 93% or more TPRs (the proba-
bility of correctly identifying as a normal net). Especially for
all netlists, the average of accuracy, precision and F-measure
can reach above 99%. It can prove the effectiveness of our
framework classification. The experiment results mean that
HTs from all of the scan-chain features can be classification
effectivly.

Then, we calculated the average value of each index,
used to represent the framework in each type of hardware
Trojan classification effect (in Tbale 3). As shown in Table 3,
the average TPR of three kinds of HTs become 98% above.
However, for HTs which are denial of service, the average
TNR is reduced from 97.6% to 85.6%. It is because most
of denial of service HTs are small in size, and the Trojan
nets located at the boundary are easily judged as standard net
mistakenly. However, for the mere detection of these HTs,
the average TNR is considered acceptable. Since we have
almost got 100% precision in more than half of benchmarks,
the whole process of detection can ensure there is no normal
net be misjudged. In terms of F-measure and Accuracy, most
benchmarks reached more than 98%. As it happens, the clas-
sification method can effectively solve the defects existing in
the first layer of RG–Secure framework.

If the detection is only at the gate-level stage, the netlists
infected at the RTL will be converted into the gate-level
neliset through logical synthesis firstly. It will increase the
detection cost and reduce the accuracy of gate-level detec-
tion. That’s why we designed the framework as two layers.
However, the conclusion may not be universal because the
benchmarks available in the Trust-Hub suite are very limited.

C. COMPARISON WITH OTHER METHODS
Next, the effectiveness of our method is analyzed by com-
paring it with other algorithms. Here, we systematically
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FIGURE 10. Box plots of Trojan Detection algorithms.

analyze the advantages and limitations of RG–Secure
framework.

In the experiment, SVM [22] and RF [23]machine learning
algorithms are compared with our method. Table 4 shows the
comparison results of three detection methods. To show the
advantage of our security method more clearly, we demon-
strate the box plot of each algorithm in Fig.10 (Footnote:
We ignore the accuracy, because the detection accuracy of
three methods is basically the same). From the box plots,
we can observe the classifier’s average TPR, precision and
F-measure become higher than the existing methods. When
merging scan-chain features, the data distribution and median
of the boxplots increased significantly in Fig.10. In particular,
the true negative rate (TNR) and F-measure are obviously
improved. It is because the addition of features enables
the machine learning algorithm to distinguish the trojans
and normal netlist more accurately. Comparing with RF,
the average TNR and F-measure of our method increase by
nearly 15% and 20% respectively. As for SVM, the aver-
age TNR increase by nearly 5% and average F-measure by
nearly 40%. For other metrics, lightGBM can achieve the
same or better results as othermethods. In order to further ver-
ify the validity of scan-chain features, we applied the original
51 features [22] and scan-chain features to lightGBM algo-
rithm at the same time to analyze their impact on the results
(in Fig.11).

For the TPR in the Fig.11, the introduction of scan-chain
features does not affect the classifier’s judgment. In partic-
ular, for some benchmarks (RS232-T1300, RS232-T1500,
s35932-T100), scan-chain features are helpful for the cor-
rect decision of the common nets. Their TPN increase
by 3%-5% or so.

FIGURE 11. Validity analysis of scan chain features.

As for the TNR from our experimental results (Fig.11),
with the addition of scan-chain features, most benchmarks
improve in the detection results of HT nets. Especially for
s38584-T200 and s38584-T300, their TNR increase from
62.5% and 63.1% to 98.8% and 99.9%. s38584-T200 and
s38584-T300 are both information-leakage Trojans, their
hidden HT trigger modules cannot be transferred to scan
triggers, so they are easily identified as suspicious by the
framework. It is why TNR increase significantly compared
with other methods. The results can prove that the method
is suitable for the second phase of the security frame-
work, as a supplement to the first layer of RTL layer
security.
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Some regrets, we find that the TNR in s38147-T300
cannot reach the standard. It is because the netlist has
a special structure and trigger module, which causes the
s38147-T300 netlist to not be effectively classified. Small
parts of nets are at the boundary between the normal netlists
and the Trojan netlists. Our framework also hard to distin-
guish them well due to the randomness of the classifier. It is
why some hardware Trojans cannot be judged correctly. In the
future, we will focus on the study of individual netlists and
boundary nets to maximize the TPR and TNR of our method.

VI. CONCLUSION
In this paper, we discussed the limitations in develop-
ment of hardware Trojan detection technologies for modern
SoC design. To improve these deficiencies, a multi-layer
hardware Trojan protection framework — RG–Secure was
proposed. Both RTL and gate-level security is guaranteed by
fusing the third-party IP trusted design strategies with the
scan-chain netlist feature analysis technology. Experiments
showed that the method achieved up to 100% TPR and 94%
TNR, furthermore, achieved 99.8% average F-measure and
99% accuracy, only one HT had a detection rate below 60%.
Our RG–Secure framework is a promising method to ensure
SoC security during the design stage.

Although the security framework is efficient and effective,
there are still some disadvantages. In the future, we will not
only improve the TPR and TNR of individual netlists but also
design more advanced SoC security framework which can
settle layout-level hardware Trojan threats.
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