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ABSTRACT One of the challenging problems in the case of aircraft failure is to determine the new altered
dynamics of the impaired aircraft. Among various methods, neural networks and neuro-fuzzy systems can
be used for high-fidelity modeling of the aircraft nonlinear dynamics with the aim of onboard applications
in real time. However, the method with better generalization capability is more preferred specifically in
the case of unpredicted aircraft failures. Generalization of a network is mainly dependent on the network’s
parameters, the employed training algorithm, and the amount of training data. In this paper, several neural
networks and local model networks are trained using different training algorithms and different amounts
of training data to model the nonlinear dynamics of an impaired aircraft with the damaged rudder. These
networks are compared based on their generalizations to the new cases of rudder failure. The effect of using
different amounts of training data on the generalization capability and performance of the networks has
also been investigated. The results of this paper show that both network types have good performance but
neural networks generalize better to the new failure cases than local model networks. Also based on the
obtained results, a significant reduction in the number of training samples could be accomplished without
a considerable decrease in the network’s performance and generalization. Finally, a neural network-based
sensitivity analysis method is proposed which utilizes the network’s regression equation as an emulator for
fast model evaluations and can be used as an advisory tool for choosing safer path planning strategies.

INDEX TERMS Artificial neural network, local model network, generalization, Bayesian regularization,

LOLIMOT, HILOMOT, global sensitivity analysis.

I. INTRODUCTION
In the case of technical failures or external events such
as control surface defects or icing, aircraft dynamics and
parameters are changed. Due to the nonlinear dynamics of
aircraft, usually the exact new altered dynamics cannot be
determined by the pilot. Therefore the pilot who tries to plan
a safe landing trajectory as soon as possible may implement
a maneuver which is not feasible anymore according to the
altered dynamics of the impaired aircraft and leads to aircraft
loss of control (LOC).

Based on statistical reports published by Boeing and UK
Civil Aviation Authority, Loss of Control (LOC) is the
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primary contributor among different factors causing fatal
accident of commercial airliners [1], [2]. The number of fatal
accidents has been decreasing despite the increase in the
number of flights [2], however still LOC holds the greatest
share in fatal accidents, despite all improvements made to
pilot trainings and aircraft systems.

To avoid LOC, states, control inputs, and maneuvers’ char-
acteristics of the impaired aircraft should be within the admis-
sible ranges of the degraded performance of the aircraft [3].
Generally, aircraft performance is characterized by its flight
envelope which is dictated by the nonlinear dynamics of the
aircraft. Hence, the degraded performance of an impaired
aircraft is depicted in its new flight envelope; which is more
confined than the nominal flight envelope of the unimpaired
aircraft. However, it should be noted that different failure
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degrees result in different flight envelopes [4]. In other words,
the performance capabilities of the impaired aircraft vary with
failure cases. Therefore it is crucial to evaluate the permis-
sible ranges of the impaired flight envelope’s characteristics
and parameters as fast as possible after the occurrence of the
failure, based on the specific occurred failure case.

Due to the need of immediate flight envelope evaluation
in the event of failure, researchers have tried to develop
numerically efficient flight envelope estimation techniques
feasible for real-time execution to integrate them into adap-
tive flight envelope protection systems. Generating an offline
database of impaired flight envelopes is one of these tech-
niques. For instance, [5] presents the Envelope-Aware Flight
Management System (EA-FMS) which is an augmentation to
a conventional flight management system designed to prevent
loss of control. In this system, it is assumed that the fail-
ure is characterized a priori and hence envelope estimation
is performed offline for various failure degrees. Also, it is
presumed that the offline generated database is applicable
to any specific case online. In [6], first the actuator fault
severity level is detected and then the new flight envelope
is estimated via online interpolation of the flight envelopes
from an offline database. A similar method for online flight
envelope interpolation is proposed in [7]. However, using an
offline database of impaired flight envelopes is only appli-
cable to failures characterized a priori and cannot be used in
case of unpredicted failures. Also, online interpolation of the
flight envelopes from an offline database requires carrying
massive databases onboard, and the result of the interpolation
might be not accurate enough especially if the offline flight
envelopes are estimated in high resolution based on high-
fidelity nonlinear aircraft models.

Another technique is to estimate the new flight envelope
only in the neighboring vicinity of the current trim state of
the impaired aircraft. In this technique, flight envelope can
be defined as a set of attainable trim states within a set of
constraints, where trim state is defined as in section II. Loss
of control may occur once any of the constraints is vio-
lated [3]. Due to the confined optimization space, real-time
local flight envelope estimation is computationally feasible.
In this method, local flight envelopes are estimated pro-
gressively as new flight conditions are visited. For instance,
in [6], the reachable set theory is used to estimate local
flight envelopes for airframe faults. However, online local
flight envelope estimation (e.g. using approaches presented
in [8]) is only fast enough for real-time evaluation of low-
resolution flight envelopes, and estimating high-resolution
flight envelopes demands non-negligible amount of time
which must be spent at each step that a local flight envelope
is calculated. Additionally, since the entire flight envelope is
not apparent initially, the pilot may unintentionally choose
to achieve a state or control which is beyond the admissible
ranges of the impaired flight envelope.

Utilizing reduced complexity models instead of high-
fidelity models is another technique which enables fast
estimation of the flight envelope. This technique has been
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used in [9] and [10] to evaluate unimpaired and impaired
flight envelopes. However, flight envelopes estimated using
reduced complexity models are considerably simplified, and
also lack the maneuvers’ characteristic required for high
fidelity nonlinear 6 degree-of-freedom post-failure emer-
gency path planning.

According to the presented explanations, none of the afore-
mentioned methods are capable of real-time evaluation of
the permissible ranges of the high-fidelity impaired flight
envelope parameters for an unpredicted failure degree. They
are either based on simplified models or exploit high-fidelity
nonlinear models to generate offline databases or evaluate
online local flight envelopes.

On the other hand, due to significant learning capabilities
of the Artificial Neural Networks (ANNs) and Local Model
Networks (LMNs), they can be employed for system iden-
tification and modeling of the aircraft nonlinear dynamics.
These networks can be trained offline and predict the intended
dynamic parameters online in real-time. For instance, in [11],
ANN’s have been used to model the nonlinear unsteady behav-
ior of aircraft at high angles of attack, whereas in [12] ANNs
are used for nonlinear aircraft system identification. In [13],
ANNS are utilized to develop an unsteady aerodynamic mod-
eling method applied into coupled oscillations during post-
stall maneuvers, and in [14], ANNs are used to model the
nonlinear unsteady aerodynamics at constant or varying
Mach numbers.

In [15], local linear models have been trained by
LOLIMOT (LOcal LInear MOdel Tree) algorithm for pre-
dicting unsteady aerodynamic loads, whereas in [16], LMNs
have been used to identify the nonlinear aerodynamic deriva-
tives of aircraft. Also, LMNs have been used to model the
airflow sensor calibration data [17] and combustion plant
characteristics [18], successfully. In [19], the aeroacoustic
behavior of aircraft air distribution system was predicted
using LMNs, and in [20], LMNs were used in flight loads
estimation of a transport aircraft.

Even though both ANNs and LMNs are able to model the
nonlinear dynamics of aircraft, they are practically efficient
only if they are able to generalize well to new data. This
paper provides more in-depth and extended coverage of our
previous research published in [21]. First, ANNs and LMNs
are developed and trained with the aim of predicting the
minimum speed (V,;i,) and maximum speed (V;,4r) of an
impaired NASA Generic Transport Model (GTM) in the case
of rudder failure. The trained networks are then compared
based on their generalizations to unpredicted cases of rudder
failure, and also with respect to different amounts of training
data, where these training datasets are portions of the original
training data; diminished with respect to the networks’ input
parameters. Furthermore, it is shown that the trained ANN’s
regression equation can be used for fast model evaluations
required for accurate global sensitivity analysis.

The rest of this paper is organized as follows; in section II,
the research methodology is presented including the net-
works’ architecture, and training algorithms. In section III,
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the dynamic model used in this research is introduced,
the training data generation and preparation process is
explained, and the numerical results of the comparison
between the ANN’s and LMN'’s generalization are presented.
Section IV introduces a neural network-based sensitivity
analysis method along with numerical results and discus-
sions. Finally, section V concludes the paper.

Il. METHODOLOGY

As explained earlier, aircraft performance is depicted in its
flight envelope. Generally, commercial airliners use steady
state maneuvers as trajectory segments between a speci-
fied sequence of waypoints. Trajectory waypoints are either
connected by steady state rectilinear maneuvers (i.e. direct
routes) or steady state turning maneuvers (i.e. heading adjust-
ment routes) [22]. Hence, when dealing with aircraft maneu-
verability, the parameters of maneuvering flight envelopes
better describe the aircraft performance.

Maneuvering flight envelopes (MFEs) are defined as
boundaries containing steady state maneuvers. Such steady
state maneuvers are referred to as trim points in this
research. A steady state maneuver is considered as the con-
dition in which all force and moment components in the
body-fixed coordinate system are zero or constant [23]. This
requires all linear and angular velocity rates and aerodynamic
angles rates to be zero, whilst controls are fixed.

(w0, v, W) = (p.q,7) = (&, B) =0 ey
where, u, v, w, are airspeed components in the body-fixed
axes and p, ¢, r, are roll rate, pitch rate and yaw rate,
respectively. (1), is a general definition of trim state, how-
ever, the steady state maneuvers considered in this research
are the two groups of level/climbing/descending rectilinear

flight and level/climbing/descending turning flight. Therefore
additional constraints need to be imposed:

Level rectilinear: d}, 9, {ﬁ, y =0 2)
Climbing/descending rectilinear: ¢3, é, I/f =0,y=cte (3)
Level turn: ¢, 6, y = 0,/ = cte 4
Climbing/descending turn: q'S, 6= 0, 1&, y = cte 5)

where, ¢, 0, ¥, and y are roll (bank) angle, pitch angle, yaw
(heading) angle, and flight path angle.

The trim state definition in terms of aircraft equations of
motion can be written as

Xerim = f Korim, Ugrim) =0 (6)
aﬂxtrim = [Vv (X, ﬁ’p9 QJ’, ¢’0]T ZX* (7)
irim = [84h, 8¢> 80, 8,17 = u* ®)

(r=v9. (0 =v%).0=0) )

where f is a vector of nonlinear functions, x is the state
vector, u is the control vector, and &, &, &4, and 8, represent
the engine throttle setting and the deflections in the elevator,
aileron, and rudder respectively. Trim condition must satisfy
the aircraft equations of motion, as in (6). In (9), y*, ¥*
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are the desired constant values which define the steady state
maneuvers presented in (2)—(5). Hence, for each desired
steady state maneuver, the trim vectors (x*, u*) are found
by solving all the aircraft nonlinear equations of motion
(X4rim = 0) simultaneously for the desired flight path angle
and turn rate (y*, ¥*) at a specific total airspeed V* and a
specific altitude i*. Therefore, MFEs are comprised of trim
states characterized by four parameters (h*, V*, y*, ¥*), and
the state and control vectors of each trim state are shown as:

X (B, VA yE ) ot (0, VE R ) (10)

(10) shows that MFEs are actually four-dimensional, how-
ever, we can show these flight envelopes as 3D volumes at
each constant flight altitude #*, as in Fig. 1 and Fig. 2.

3 -9
4 . -12 .
v(deg) v W(deg/s)

FIGURE 1. Rudder jammed at 10° at sea level.
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FIGURE 2. Unimpaired case at sea level.

Also by fixing flight path angle y*, 3D flight envelopes
become 2D closed curves, as in Fig. 3.

Vimin and V. are two key characteristics of aircraft
maneuverability. They are specified as the lowest and the
highest speed an aircraft can acquire within its 2D (V — 1)
maneuvering flight envelope. These two parameters vary with
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FIGURE 3. Rudder jamming cases at 10000 ft and y = —5°.

different failure degrees. For instance, as it can be seen in
Fig. 3, the minimum and maximum speeds of an impaired air-
craft with jammed rudder at O degrees is the same as an unim-
paired aircraft. However, as the failure gets severe, the flight
envelope shrinks and the values of V,,;, and V,,,, change.
Bigger jammed rudder angle means the aircraft is more
sideslipped (8 # 0) which yields in more persistent extra
drag force. Such drag increases the required thrust, which in
turn leads to lower maximum speed. Also at bigger jammed
rudder angles, the lateral-directional moments that should be
counteracted with aileron deflection are larger in magnitude
and hence require more aileron effectiveness which is avail-
able only at higher speeds. Therefore the minimum speed is
higher at bigger failure degrees. It is also shown in Fig. 1
that V,,,,x decreases with the increase in flight path angle y*.
Also Vi, and Vi, vary at different flying altitudes which
is due to the change in air density and engines’ available
thrust.

Hence the values of V,,;, and V,,, are dependent on
the values of altitude A*, flight path angle y*, and control
surface’s failure degree (i.e. rudder failure degree (6,) in
this research). However, this dependency is derived from
the nonlinear dynamics of the aircraft and cannot be evalu-
ated straightforward. For instance, even though the minimum
speed of an unimpaired aircraft can be calculated analytically
from the stall speed equation, in the case of an impaired
aircraft; it should be estimated via point by point evaluation
of the trim points until the lowest feasible maneuver is found.
The situation is the same to find the maximum speed of an
impaired aircraft. This process which involves the evaluation
of lots of trim points may take up to few hours and cannot be
accomplished in real-time onboard the aircraft.

Instead in this research, ANNs and LMNs are trained with
data comprising the values of V,,;, and V. at various rudder
failure degrees and different flight conditions. The trained
networks estimate the values of V,,;, and V., at unpredicted
failure degrees or flight conditions, instantaneously.
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A. INPUT DATA

As mentioned earlier, each trim point is characterized by the
four parameters of (*, V*, y*, ¥*). So varying altitude and
flight path angle results in different 2D maneuvering flight
envelopes and hence different V,,;, and V4. Therefore flight
altitude A#* and flight path angle y* are considered as the
inputs of the network. The other inputs are determined based
on the failure category. There are four categories of control
surface failures [24]:

« Control restriction, in which, upper and/or lower limits
of deflection are changed to new, equal or non-equal
values

o Surface jam

« Reduced rate limits, in which, upper and/or lower rate
limits are changed

« Surface runaway, which at first shows up as reduced rate
limits, but eventually changes to surface jam case

The fourth category eventually becomes surface jam; hence
there are three main failure categories which we have con-
sidered two more common of them in this research: control
restriction and surface jam. These two categories are caused
by physical damage, icing, or loss of hydraulic power.

When a control surface is jammed, the corresponding
control parameter of the jammed surface is set to the
jammed deflection angle in the aircraft equations of motion
(e.g. 8, = 20°) orin the other words, the lower limit and upper
limit of the surface deflection angle are changed to the same
value (e.g. 20° < §, < 20°). Also in the case of restricted
deflection angle, the constraint limits on the control parame-
ter are changed to the new lower and upper limit values of the
surface deflection angle (e.g. —10° < 6, < 15°). So in case
of actuator failure, the lower and upper limit values of the
surface deflection angle are considered as the inputs of the
network.

According to the aforementioned explanations, the input
parameters for both ANNs and LMNs are shown in Table 1:

TABLE 1. Inputs of the network.

Failure Type Network Inputs
h (flight altitude)
flight path angle
Rudder failure v (fightp gle)

6, min (lower limit of rudder deflection)

6, max (upper limit of rudder deflection)

B. OUTPUT DATA
Since the networks are designed to estimate the values of
Vimin and V.., these two parameters are the outputs of the
networks. In the case of ANN, both parameters are included
in the output layer of one network as neural networks can have
multiple outputs. However in the case of LMN, each output
parameter is evaluated with one network.

Hence, in order to be able to compare the performance of
multi-output ANN and LMN, the same loss function used in

VOLUME 7, 2019



R. Norouzi et al.: Investigating the Generalization Capability and Performance of Neural Networks and Neuro-Fuzzy Systems

IEEE Access

multi-output ANN is applied to the outputs of the two LMNs
estimating Vi, and Vi

D

1 1g
52 (- vi) (11)

l=1 j=1

where the loss function L is the mean squared error (MSE)
of the multidimensional outputs, D is the number of data
samples, O is the output dimension, y; is the target value of a
specific sample and y; is the network output.

C. NEURAL NETWORK ARCHITECTURE

Multilayer feedforward neural networks are often used to
learn the nonlinear relationship between input and output
vectors. In this research, the aim is to design a network which
is capable of approximating the high-fidelity nonlinear equa-
tions of motion of aircraft with good accuracy. A two-layer
network including one hidden layer with nonlinear sigmoid
transfer function and one output layer with linear transfer
function is most often used for function fitting (nonlinear
regression), and it has been proven that given sufficient neu-
rons in the hidden layer, the network can approximate any
nonlinear function. This two-layer architecture is shown in
Fig. 4 and is used in this study.

FIGURE 4. Two-layer feedforward neural network architecture.

In the presented architecture, R and S indicate the number
of parameters in the input layer and the number of neurons in
the corresponding layer, respectively. Also, a!, and a® which
represent the outputs of the tan-sigmoid transfer function and
the linear transfer function are defined as below [25]:

2
| 4 e 2(Whpleet)
(12)
a* = purelin (LWz’la1 + b2> =Iw>lq! 4+ p? (13)

a' = tansig (IWl’lp1 +b1> ==

In this research, S? = 2 which is the number of the output
parameters (i.e. values of V,,;, and V4, ), also the dimension
of R is 4 according to Table 1. Generally, the number of
neurons in the hidden layer must be determined by trial and
error; however, in the case studies of this research it was found
that for the single actuator failures 10 hidden neurons are
sufficient (see Fig. 41 in the Appendix).

D. NEURAL NETWORK TRAINING ALGORITHM
Typically the performance function used to train feedforward
neural networks is chosen to be the sum of squares of the
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network errors on the training set:

I 2§y
F = mse = - Zizl (ei)” = n Zi:l

The training process of a neural network involves opti-
mizing the performance function by updating the network
weights and biases at every iteration. This can be accom-
plished using a variety of training algorithms. For networks
with up to a few hundred weights, the Levenberg-Marquardt
is often the fastest backpropagation algorithm and will have
the fastest convergence; it is also very accurate. However,
for larger networks or highly nonlinear relationships between
the inputs and outputs, Levenberg-Marquardt performance is
relatively poor. In such cases, the trained network’s general-
ization is weak and it overfits the data. One way to overcome
this issue is to provide as much training data as possible.
However, training data generation for flight envelope estima-
tion is computationally extensive and very time-consuming.

Another way to improve network generalization and avoid
overfitting in the case of small dataset is to use Bayesian
Regularization training algorithm. In this method, regular-
ization modifies the performance function by adding a term
consisting of the mean of the sum of squares of the network
weights and biases [26]:

1 N
v
j=1

Gi—y)* (14

Fw)=¢ + 1 (mse) = ¢ (msw) 41 (mse)

(15)

where ¢ and 7 are the performance ratio parameters. This
modified performance function yields in smaller network
weights and biases and a smoother network response. At each
iteration, the Bayesian regularization modifies the linear
combination presented in (15) by updating the performance
ratio parameters, until the optimal ratio parameters are found
and the network has good generalization qualities. The
Bayesian regularization takes place within the Levenberg-
Marquardt algorithm, which means Levenberg-Marquardt is
used to minimize the modified performance function at each
iteration, and the Gauss-Newton approximation to Hessian
matrix (which is available in the Levenberg-Marquardt algo-
rithm) is used to compute the effective number of parameters.
In the Bayesian regularization algorithm, dataset is split into
training data and test data as there is no stopping criterion
based on validation data, thus the training continues until an
optimal combination of weights and errors are found.

To find the optimum values of the performance ratio
parameters, the Bayesian framework of MacKay [27] is used
in the following steps [26]:

e ¢, n, and network weights are initialized.

o One step of the Levenberg-Marquardt algorithm is used
to minimize the modified performance function.

o The effective number of parameters [Noy = N —
2¢tr(H)™' is calculated using the Gauss-Newton
approximation to the Hessian:
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H = V?Fw) =~ 29J7] + 2¢Iy, where N is the
total number of network parameters, / is the identity
matrix, and J is the Jacobian matrix computed through
a standard backpropagation technique.
« New estimates of the performance ratio parameters are
. _ Ny
computed: { = sy and n = omse)

o The last three steps are iterated until convergence.

In this research, with the aim of comparison, both
Bayesian regularization and Levenberg-Marquardt are used
as the ANN training algorithms. Also, the multiple-neural-
networks-training technique has been used in which each
neural network is trained multiple times (20 times in this
study). Each time; the training process starts from different
initial weights and biases and with different divisions of data
into training and test sets. These different conditions lead
to different networks with different generalization qualities.
It should be noted these different ANNs have the same
network architecture (i.e. one hidden layer with 10 hidden
neurons).

It should be noted that in the multiple-network technique,
the test set of one network could be the training set of another
network, so these test sets are not an independent measure of
the networks’ generalization. Therefore the original dataset is
divided into two parts, one part that is used during the training
process of each network and will be divided into training
data, validation data (in the case of Levenberg-Marquardt
algorithm), and test data, and the other part which is used
as a completely independent test data. Finally, the network
with the least error on the independent test data has the best
generalization and will be selected — among the 20 networks;
as the final network.

E. LOCAL MODEL NETWORK ARCHITECTURE

Local neuro-fuzzy models or a local model network is the
alternative to ANN in the field of system identification. The
basic idea of an LMN is that a nonlinear system can be
approximated from measured data using several simple local
models, instead of one intricate global model [16].

FIGURE 5. Local Model Network (LMN) structure [29].

A local model network structure is shown in Fig. 5.
In this structure, each neuron M is comprised of two parts.
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A local model (LM;) and a validity function (¢;). The out-
put y; of each local model is weighted by its validity func-
tion [28]. Hence the output y of a local model network with
pinputs [uy, ua, . .., up] is the aggregation of M local model
outputsy;.

5=Y"" 5@ (16)

Also in local model networks, validity functions and local
models can have different input spaces. Hence (16) can be
rewritten as:

5= 5 @) (a7

where X and z span the consequent and premise input spaces
respectively [28]. To have a smooth transition between local
models, validity functions are between 0 and 1. Also to have
areasonable interpretation of the LMN, the validity functions
should form a partition of unity Y2, ¢i(i) = 1 [30].

The most common choice for a local model is a polynomial
which can be of any order. However, as the order of the
polynomial increases, the number of required local models
for a specific accuracy decreases, because the number of local
model parameters (i.e. local model complexity) increases.
Therefore low order polynomials are good trade-offs [30].

In this research, three types of local models have been used
to design the LMNss:

o Local linear model (LLM) in which the output is:
Vi (@) = wio + wi1ur +wipua+ ... +wjpu, (18)

where w; is the i model parameters.

o Full quadratic model in which all cross-product terms
are considered. This model becomes inefficient for high-
dimensional input spaces due to the huge number of
Ccross-terms.

o Sparse quadratic model which is a quadratic model
without cross-terms such as uju;.

F. LOCAL MODEL NETWORK TRAINING ALGORITHM
In this research, designed LMNs are trained using LOLIMOT
and HILOMOT algorithms. LOLIMOT is an incremental
tree-structured algorithm that starts with a single model (i.e.
one neuron network) and refines its performance in each
iteration by splitting the input space in an axis-orthogonal
manner. In each iteration one new model (neuron) is added
to the network because the worst local model is split into two
equal halves. Hence unlike the ANN, the number of required
neurons (local models) in an LMN is not pre-determined by
the user but will be determined at the end of the iterations
once the training process of the LMN is finished.

In this algorithm, the models’ parameters are estimated by
local least squares approach, and the validity functions are
normalized orthogonal Gaussians [31]:

o @ =1 [sM G (19)
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where

)2 s 2
ui(ﬁ)zeXp(—% (%TQ”+...+%—2“9>)
il

(20)

It can be seen that the validity function ¢; is dependent
on the center c; and standard deviation o;; of the rectangles
generated during partitioning. These parameters are similar
to the hidden layer parameters of ANN [31].

When the partitioning is done in an axis-oblique man-
ner, the algorithm is called HILOMOT (Hlerarchical LOcal
MOdel Tree) [28], [30]. By using HILOMOT, the limitations
of axis-orthogonal splits are lifted. Also flat model struc-
ture is transformed into hierarchical model structure. In this
algorithm, axis-oblique partitioning is done using sigmoid
splitting functions [30].

Both LOLIMOT and HILOMOT are used to train all three
types of local models mentioned in the previous subsection.
Also, the same multiple-networks-training technique used in
the ANN training is used in the training of LMNs too. So the
LMNs training process can be summarized as below:

o Three local model networks are generated using the
three local model types.

o Each network is trained using both LOLIMOT and
HILOMOT. Hence a total of 6 networks are trained.

« Since the termination criterion for both algorithms is
the performance on the validation dataset, among the
6 trained networks; the one with the lowest error on the
validation dataset is selected.

o The above three steps are iterated 20 times (i.e. 20 rounds
of training) and 20 LMNs are selected. The LMN with
the least error on the independent test data has the
best generalization and will be selected — among the
20 LMNs; as the final network.

1ll. VALIDATION OF THE DYNAMICS

MODELING METHOD

In order to have a valid comparison between the generaliza-
tion capabilities of the trained ANNs and LMNs, the esti-
mated values of V,,;, and V,,, must be compared with
those evaluated via solving the aircraft nonlinear equations
of motion.

A. DYNAMIC MODEL

A key element in every scientific research is a valid model.
The Generic Transport Model (GTM) — with tail number
T2, is a 5.5% twin — turbine powered, dynamically scaled
aircraft which is designed with the aim of flying into drastic
upset conditions and being safely recovered. A schematic of
GTM-T2 along with its control surfaces is shown in Fig. 6.
The GTM-T2 properties are shown in Table 2.

As part of NASA AvSP (Aviation safety program)’s Inte-
grated Resilient Aircraft Control (IRAC) Project, extensive
wind tunnel tests were performed on the GTM to create
extended-envelope aerodynamic data set. Test data were
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FIGURE 6. Schematic of 5.5% subscale GTM-T2 (based on [32]).

TABLE 2. GTM-T2 properties.

Property Quantity
Takeoff weight, W, 257 N (26.2 kg)
Wing area, S 0.5483 m?
Wing span, b 2.09 m

Length, 1 2.59m

Mean aerodynamic chord, ¢ 0.2790 m

obtained at angles of attack as low as —5° and up to +85°
and sideslip angles ranging from —45° to +45° [32].

The dynamic model used in this research is the GTM-T2,
high fidelity, nonlinear, 6 DOF, MATLAB® — Simulink®
model, also known as “GTM-DesignSim” [33]. The model
utilizes extensive wind tunnel test data in tabular form as
the required aerodynamic database. The model’s Simulink®
environment is shown in Fig. 7.

B. TRAINING DATA GENERATION

As mentioned in section II, V,,;, and V,,4: (i.e. outputs of
the networks) are the lowest and highest speed of an aircraft
within its 2D (V — /) maneuvering flight envelope. Hence in
order to generate the required training dataset, maneuvering
flight envelopes of the impaired GTM must be evaluated at
different failure degrees and various flight conditions.

This subsection briefly describes the process in which
maneuvering flight envelopes are estimated for the purpose of
training data collection. For more details refer to [4] and [34].

Flight envelopes estimated in this research are actually
maneuvering flight envelopes, which mean they are bound-
aries containing steady state maneuvers (i.e. trim points).
It was mentioned that the trim vectors (x*, u*) are found
by solving X4in = 0 for the desired trim parameters
(h*, V*, y*, ¥*). Solving (Xiim = O0) is not analytically
possible due to nonlinearities of the equations of motion
and their complexity. However, we can derive trim points
by numerically solving the corresponding constrained non-
linear optimization problem, in which, the cost function
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FIGURE 7. GTM-T2 Simulink® environment.

is J [4], [23]:

J (eou) = ok Otrim 1)
where Q is a positive definite weighting matrix which speci-
fies the state derivatives contributions to the cost function J.
Cost function J is subject to a number of equality and inequal-
ity constraints. Quadruplet (h*, V*, y*, ¥*), directly defines
the following equality constraints:

h—h*=0 (22)
V_V*=0 (23)

(22) and (23) constrain the altitude and airspeed at which we
are trying to find trim points.

ab+siny*\/a? — sin®y* + b? _

tand
2 _ sin’y*

0, 0#+n/2
a

(24)
where,
a = cosacosf, b = singsinf + cospsinacosf  (25)

Equation (24) defines the rate-of-climb constraint which
designates the desired flight path angle. More detail on the
derivation of (24) can be found in [23].

Substituting ¥ = y*and ¢ = 6 = 0 in the aircraft
rotational kinematic equations yields:

p+Yrsing =0 (26)
g — Y*cosOsing = 0 (27)
r —y*cosbcosp = 0 (28)

Equations (22), (23), (24), (26), (27), and (28), form the
required equality constraints on the cost function J. On the
other hand, inequality constraints are dictated by physical
limits on the control inputs, that being:

|8:n —0.5] < 0.5]8.] <30
184l = 2018, <30 (29)
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To obtain the feasible trim points, the constrained opti-
mization problem defined by J and the sets of equality and
inequality constraints is solved via sequential quadratic pro-
gramming (SQP) technique through the frimgtm function of
the GTM-DesignSim, with a convergence criterion of 107,

Being feasible is not enough for a trim state to include
it inside the boundaries of the maneuvering flight envelope.
Feasibility is the necessary condition whilst stability is the
sufficient condition for inclusion in flight envelope. A non-
linear system is considered stable at a specific trim point if
the system inherently converges to the trim state when being
in the vicinity of the trim point.

Hence the stability of the aircraft at each feasible trim point
is evaluated by linearizing the equations of motion about x*
via perturbation method:

X =AX + BU (30)

where X = x—x*, U = u—u*, and A, B are constant Jacobian
matrices:

A= 8f/8x] GD

x*,u*

B = af/au] . (32)
X, u

Analytical derivation of matrices A, B is complicated due

to tabular form of aerodynamic and propulsion data [4].

Hence, numerical approximations obtained through a set of

first-order differences are used [4], [22], [23]:

A~ (@ Fseut) —f (4 ut)) (33)

B~ (f &%, u* +ee;) — f (x*, u*))/8 (34)
in which, ¢ is a positive and small number (10_6 in this
research), and ¢; is the i column of an n-dimensional identity
matrix; with n being the size of the trim state vector x*.

A trim state is considered stable if matrix A has no positive
real eigenvalues or complex eigenvalues with positive real
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e Minimize cost function J in (21) subject to

o Inequality constraints in (29)
o Additional constraints

= 5°<a<105°

= —30°< ¢ <30°

o Linearize system by (30), (33), (34)
= Check eigenvalues of A

o Equality constraints in (22), (23), (24), (26), (27), (28)

o If ] <1077 = triplet (V*,¥",¥") is feasible, then

e If stable = save triplet (V*,y*,4*) as acceptable maneuver
e Ifunstable, check controllability using (35)
o If controllable = save triplet (V*,y*,¥*) as acceptable maneuver
o Ifuncontrollable = ignore triplet (V*,¥*,%*) and move to next triplet
o If J> 1077 = triplet (V*,y*,4") is infeasible, ignore it and move to next triplet

FIGURE 8. Trim point investigation process.

part. Stable trim points are more preferable, because the air-
craft naturally tends to damp the effect of small disturbances
around them, while at unstable trim points; aircraft diverges
away from the trim state.

However, if the feasible trim state is unstable, it still can
be accepted as part of the flight envelope if it is controllable,
i.e. if the linear perturbation system about this trim state has
a full rank controllability matrix C:

C =[B AB A’B---A"'B] (35)

That is because when the system is controllable, the closed-
loop eigenvalues of the linearized system can be assigned
arbitrarily using a linear controller. Hence a controllable trim
state can be maintained despite disturbances given a capable
control law [22].

To evaluate the required 3D maneuvering flight envelopes,
the explained numerical procedure is implemented iteratively
for each triplet (V*, y*, ¥*), as in Fig. 8.

C. TRAINING DATA PREPARATION
In order to have a broad training dataset, rudder failures
have been chosen from lowest to highest degrees such that
they cover different sections of rudder operational range.
Table 3 presents failure cases considered in the training
dataset. Values in bracket are the lower limit (LL) and the
upper limit (UL) of the rudder deflection, as in [LL, UL].
In fact, jamming failure is a special case of restriction failure,
in which LL and UL are identical. It should be noted that in
the derivation process of the failure trim points, the limits in
the inequality constraints (29) are changed to the LL and UL
of the failures.

3D MFEs of the unimpaired and impaired GTM have been
evaluated at four different altitudes of Sea Level, 10000 ft,
20000 ft, and 30000 ft. Taking into account the unimpaired
case and all considered rudder failure cases at the men-
tioned flying altitudes, 3D MFEs have been evaluated for
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TABLE 3. Training data rudder failures.

Failure Type Failure degree

—30°,—20°,-10°,0°,10°,20°,30°

[—30°,—20°], [-30°,—10°], [-30°, 0°], [-30°, 10°],
[—30°,20°], [20°,30°], [10°, 30°], [0°, 30°],
[—10°,30°], [-20°,30°], [-20°, 20°], [-20°, —107],
[—20°,0°], [-20°,10°], [-10°,0°], [-10°,10°]
[10°,20°], [0°, 20°], [-10°, 20°], [0°, 10°]

Surface Jam

Control
Restriction

TABLE 4. Training data 3D maneuvering flight envelope.

Failure Type Control Surface/Altitude || Quantity
Rudder 7
Surface Jam 28
Altitude 4
Rudder 20 112
Control Restriction = 80
Altitude 4
Unimpaired Altitude 4 4

TABLE 5. Flight envelope increments.

Parameter Resolution Increment Size
%4 1 knot

y 1 deg

P 0.2 deg/s

112 different cases (Table 4). All evaluated 3D MFEs are
presented in [35].

The smaller the resolution increments in V, y, and I/f
ranges, the more the trim points, and hence the higher the
accuracy of the flight envelopes and their boundaries. There-
fore we chose these increments as per Table 5 so that high
fidelity flight envelopes could be estimated:

In this research, MFEs have been evaluated for different
flight path angles within the range of —5° < y < 5°.
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FIGURE 9. Training data structure.

Algorithm 1 Training Process of ANNs
Given a training dataset as in Fig. 9: I = Inputs4 1), T =
Targetso T
Load the training dataset and divide it into two parts:
90% for designing networks: x1, #1(x denotes inputs and ¢
denotes targets)
10% to be used as independent test data: xp, tp
Initialize two empty matrices: net(1, j),
Test_Performance(1,j)
Set Training function = Bayesian Regularization
Number of hidden layers = 1
Number of hidden neurons = 10
Performance function = Mean squared error
Forallj € {1,...,20}, do
Divide x1, #{ randomly into training set (90%) and test set
(10%)
Train net(1, j) using the training set and test set of x, #;
Evaluate performance of net(1, j) with respect to x, #2
Let Test_Performance(1, j) = performance of net(Lj)
End for
Return net(l, j), Test_Performance(1, j)

Thus, given the 1 deg resolution increment in the y range,
totally 1102 2D MFEs were estimated for the rudder failure.
The maximum speed and minimum speed of these 2D MFEs
are the targets of the designed networks.

As mentioned earlier, the training dataset is comprised of
two sections. The first section consists of input data in the
form of a (4 x T) matrix where 7 represents the number of
training samples and the second section consists of target data
in the form of a (2 x 7") matrix. The following figure clarifies
the structure of the training data.

The above pseudocode presents the training process of
ANN. As explained in subsection II.D, the training dataset
is divided into two parts, one to design the network which
itself is randomly divided into training set and test set, and
the other to be used as independent test data. The ANN is
trained 20 times with different training set and test set and
evaluated each time with respect to the independent test data.
Eventually, the network with the least mean squared error
(MSE) on the independent test data is selected as the final
network.

Similarly, as explained in subsection ILF, for the training
process of LMN, three local model types are initialized and
trained with LOLIMOT and HILOMOT algorithms using
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Algorithm 2 Training Process of LMNs
Given a training dataset as in Fig. 9: I = Inputs, 1), T =
Targets x T
Load the training dataset and divide it into two parts:
90% for designing networks: xp, #1(x denotes inputs and ¢
denotes targets)
10% to be used as independent test data: X3, >
Initialize three empty matrices:
net(i, j), Selected LMN(i), Test_Performance(i)
Foralli € {1,...,20} do
Initialize three local model types: Linear, Full
quadratic, Sparse quadratic
Set Training algorithm = LOLIMOTI HILOMOT
Performance function = Mean squared error
Forallj € {1,...,6} do
Divide x1, #{ randomly into training set and validation set
Train net(i, j) using the training set and validation set of
X1, 1
Evaluate performance of net(i, j) with respect to validation
set of x1, 11
Let Val_Performance(i, j)= validation performance of
net(i, j)
End for
Selectnet(i, j) with lowest Val_Performance
Let Selected LMN(i)=selected net(iy, j)
Evaluate performance of Selected LMN(i) with respect to
X2, 12
Let Test_Performance(i)=performance of
Selected LMN(i)
End for
Return Selected LMN(i), Test_Performance(i)

the first part of the training dataset which is divided into
training set and validation set. This results in 6 trained net-
works (i.e. 3 trained with LOLIMOT and 3 trained with
HILOMOT), for which the one with lowest MSE on the
validation set is selected. The process is iterated 20 times and
the LMN with the best performance on the second part of
training dataset (i.e. the independent test data) is selected as
the final LMN.

The above pseudocode presents the training process of
LMN. It should be noted that since the output of the LMNs
is one dimensional, each row of the target matrix is trained
separately. Hence in the following pseudocode, the matrix T’
is in the form of (1 x 7).

D. NUMERICAL RESULTS

This section provides the results of the networks’ training
along with the comparison between the networks’ generaliza-
tion. Fig. 10 depicts the performance of the 20 ANNs trained
with the Bayesian regularization and Levenberg-Marquardt
algorithms; on the independent test data. It can be seen
that the ANNSs trained with both algorithms have MSEs
in the order of 1 x 10~* which is an indication of good
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FIGURE 10. Bayesian regularization and Levenberg-Marquardt
performance on the independent test data.

generalization and high accuracy of the selected networks.
However in most ANNSs, the Bayesian regularization outper-
forms Levenberg-Marquardt with a slight difference. In fact,
Bayesian regularization is more robust than Levenberg-
Marquardt with respect to the network parameters.

TABLE 6. Networks’ MSEs on independent test data.

Bayesian regularization Levenberg-Marquardt

Network MSE MSE
1 1.0308E-04 1.2198E-04
2 9.6487E-05 1.0679E-04
3 1.0916E-04 1.1201E-04
4 9.4251E-05 1.0618E-04
5 1.0656E-04 1.0565E-04
6 1.1727E-04 9.6980E-05
7 9.5053E-05 1.1267E-03
8 1.1308E-04 1.0072E-04
9 1.0002E-03 1.2066E-03
10 1.0892E-04 1.1610E-04
11 1.0753E-04 1.0104E-04
12 9.5544E-05 1.0146E-04
13 1.1746E-04 9.4897E-05
14 1.0243E-04 1.0201E-04
15 1.3282E-04 8.5716E-04
16 1.0348E-04 1.0249E-04
17 9.5586E-05 1.1126E-04
18 9.5294E-05 1.1108E-04
19 1.2433E-04 1.0744E-04
20 1.0869E-04 1.0502E-04

Table 6 presents the 20 trained ANNs along with their
MSE:s on the independent test data for each of the two training
algorithms. The best network of each of the two training algo-
rithms (i.e. the network with the least error on independent
test data) is distinguished in Table 4 with green color.

It is shown in Table 6 and Fig. 10 that for the 7t
9t and 15" networks, the Levenberg-Marquardt algorithm
has resulted in relatively larger MSEs. Similar behavior
occurred even after repeating the whole 20 networks training
process. This behavior is due to the stopping criterion of
the Levenberg-Marquardt-algorithm based on the validation
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data. Each of the 20 training processes is initialized with
different network parameters; however, the early stopping has
prevented the aforementioned three networks from reaching a
combination of network parameters with better performance.
On the hand, since there is no such stopping criterion in the
Bayesian regularization algorithm, the ANNs trained with
this method have all reached an optimum value for the net-
work parameters.

Generally, ANN’s test performance is not as good as the
training performance, so it is expected for the test MSE to
be higher than the training MSE. However, the negligible
differences between the training performances of the best
ANNs and their performances on the independent test data
reveal their good fit and generalization.

o Best Training Performance is 6.2986e-05 at epoch 348 _
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FIGURE 11. Training performance of the Bayesian regularization’s final
network.

Figures 11, 12 and 13 present the training performance,
regression plots, and error histogram of the best ANN trained
with the Bayesian regularization algorithm (i.e. the 4™ net-
work) whereas figures 14, 15, and 16 depict the performance
of the best Levenberg-Marquardt trained ANN (i.e. the 13t
network).

The two top and the lower left regression plots of
figures 12 and 15 belong to the first part of the dataset (i.e. the
part used to design network) whereas the lower right plot
corresponds to linear regression on the independent test data
(i.e. the second part of the dataset). It can be seen that for
both networks, the R-value which is an indication of the
relationship between the network outputs and targets; is very
close to 1 and shows very good fit on both parts of the training
dataset.

It should be noted that before training the networks, the tar-
get values of the training dataset are normalized between
0 and 1 (as seen in the regression plots).

The comparison between the generalizations of ANNs and
LMNs is shown in Fig. 17. By comparing the black colored
data, it can be seen that LMNs have also good accuracy, how-
ever in none of the 20 trained networks they can generalize to
the independent test data as well as the ANNs.
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FIGURE 13. Bayesian regularization’s final network'’s histogram of error
on evaluating the independent test data.

Since ANNS’ outputs are 2-dimensional, the black colored
MSE:s of the ANNs are in fact the networks’ averaged errors
of their outputs (i.e. Vyin and Viux). Also as mentioned
earlier, since LMNs’ outputs are 1-dimensional, each of the
20 LMNs’ final MSEs (i.e. black colored data) has been cal-
culated by Eq. (11) using the errors of two LMNs calculating
Vmin and Vmax

For the LMNs estimating V,4x, the best network among
the 6 trained networks of each of the 20 iterations is the
one trained with HILOMOT, whereas in the case of V,;,,
the best networks of the 20 iterations are either trained with
LOLIMOT or HILOMOT.

Also, it can be seen that the error in estimating V,;, is
approximately in the same range for both the ANNs and
LMNSs. However, higher errors of estimating V. in the
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FIGURE 15. Linear regression plots of the Levenberg-Marquardt’s final
network.

LMNs have resulted in higher averaged MSEs. So LMNs
cannot estimate V,,,, with the same accuracy of ANNs.

As shown in Fig. 18, the 18" network is the best LMN
based on the averaged MSEs. Also Fig. 19 depicts the best
ANN along with the errors of estimating V,,;;, and V,,,, for
all 20 ANNSs.

Since the main source of difference between the general-
izations of the LMNs and ANN:Ss is in the estimation of V.,
the performance of the 18™ LMN estimating V4, is shown
in Fig. 20. Also figures 21 and 22 present all 6 LMNs trained
at the 18" round of training. As mentioned earlier, at each
round during the training process of each of the 6 LMNs,
a local model (neuron) is added to the network at each iter-
ation which consequently increases the number of network
parameters and hence the model complexity. For each of the
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luating the independent test data.
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FIGURE 17. ANNs and LMNs performance on the independent test data.

6 networks, the training process is carried on and local models
are added to the network during iterations until the perfor-
mance of the network on validation data is not improved for
two consecutive iterations. The best performance for each
of the 6 LMNs is recorded and the network corresponding
to the lowest achieved MSE is selected as the final LMN of
the 18" round of training. In figures 21 and 22, the crossed
network which is comprised of quadratic models trained
by HILOMOT is the best and final LMN. This final LMN
is the so called 18" network whose performance is shown
in Fig. 20 and has 24 models (neurons) with 452 parameters.
The other 5 LMNs are networks consisting of linear and
sparse quadratic models trained by LOLIMOT and HILO-
MOT, and full quadratic models trained by LOLIMOT.

To understand why LMN has a higher error than ANN in
the estimation of V;,,y, the best networks’ squared errors of
Vinax in the 111 failure cases of the independent test data are
shown in Fig. 23.

In other words, the V. squared errors shown in
Fig. 23 belong to the 4" ANN trained with the Bayesian
regularization algorithm and the 18" LMN estimating V.
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FIGURE 18. LMNs performance on the independent test data.
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FIGURE 19. ANNs performance on the independent test data.
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FIGURE 20. Best LMN's performance for estimating Vmax (18t network).

As mentioned earlier, none of the 111 failure cases of the
independent test data were used during the training processes
of the ANNs and LMNSs. As can be seen in Fig. 23, for most
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of training.
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FIGURE 22. Validation performance of the 6 LMNs trained at the 18th
round of training.

of the failure cases of the independent test data, the best
ANN and the best LMN have similarly very low errors.
However, there are few cases in which the LMN has estimated
Vimax with larger errors than the ANN. Such outliers are the
reason for higher MSE of the 18™ LMN than the 4" ANN.
Hence, even with good averaged performance, the general-
ization capability of LMN is not as good as the generalization
of ANN.

Figures 24, 25, 26, and 27 show the values of V,,,, esti-
mated by the best networks (i.e. the 4™ Bayesian regulariza-
tion ANN and the 18™ LMN) for the outliers 1, 2, 3 and 4 of
Fig. 23, respectively. Outlier 1 corresponds to a restricted
rudder case whereas outliers 2, 3, and 4 correspond to three
jammed rudder cases.

In these figures, blue dots represent the trim states eval-
uated via the iterative numerical procedure explained in the
subsection III.B. In other word, the area covered by the blue
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FIGURE 24. Rudder restricted to [-30°, +10°] at 30000 ft and y = 1°.

dots is the corresponding 2D maneuvering flight envelope.
Obviously, the exact values of V,,;, and V,,,, are the speeds
of the lowest and the highest blue dots, respectively.

It can be seen in these figures that the LMN’s estimation
of Vyin is close to those of the ANNs. However, the LMN’s
estimated V., is considerably lower than the exact value,
yielding in false elimination of many feasible trim states at
the top of the flight envelope.

E. EFFECT OF DIFFERENT TRAINING DATASETS
Results of the previous subsection have been obtained from
networks trained by a high-fidelity training dataset. As men-
tioned earlier, various flight path angles (y), flying alti-
tudes, and different failure degrees were chosen such that
1102 training samples were generated.

However, collecting training data is not an easy task.
Specifically, in the case of modeling aircraft nonlinear
dynamics, the process is very time-consuming and as
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FIGURE 25. Rudder jammed at 10° at 30000 ft and y = 0°.
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FIGURE 26. Rudder jammed at 25° at 10000 ft and y = —5°.
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FIGURE 27. Rudder jammed at 25° at 10000 ft and y = —4°.

mentioned earlier it might take hours to generate few sam-
ples of the training dataset. Therefore it is useful to check
how much the number of required training data could be
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TABLE 7. Input parameters’ values of the original dataset.

Input Parameter Network Inputs

h [Sea level, 10000, 20000, 30000] ft
y [-5, -4, -3,-2,-1,0, 1,2, 3,4, 5] deg
8,min [-30, —20, —10, 0, 10, 20, 30] deg
5, max [=30, =20, 10, 0, 10, 20, 30] deg

TABLE 8. Input parameters’ values of the first diminished dataset.

Input Parameter Network Inputs

h [Sea level, 10000, 20000, 30000] ft
14 [=5,0,5] deg
8, min [-30,-20,-10, 0, 10, 20, 30] deg

8, max [=30, —20, —10, 0, 10, 20, 30] deg

diminished without a significant decline in the networks’
performance. It is expected that reducing the number of
training samples would degrade the networks’ generalization
and performance on the independent test data. However, it is
desirable to find a compromise between the required number
of training data and the networks’ generalization.

One way to reduce the size of the required training dataset
is to check which network inputs have more dominant effect
on the network’s performance and generalization. Each net-
work input (which is either an aircraft state or control or a
function of them) has its own level of influence in the nonlin-
earities of the aircraft dynamics. Inputs with higher levels of
influence have more effect on the network’s performance and
hence require more training samples. These are inputs with
more nonlinear behavior that are harder to predict. On the
other hand, inputs with lower influence can be considered
with lesser training samples, which consequently lead to a
smaller size of the required training dataset.

According to Table 1 and subsection III.C, the original
training dataset used so far is in the form of a 4 x 1102 input
data matrix and a 2 x 1102 target data matrix, constructed
from 1102 2D maneuvering flight envelopes evaluated at the
following values of the network’s input parameters:

For instance, [z = 10000 ft, y = —4°, §;min = —10°,
8rmax = 20°] is one of the 1102 training samples.

In this section, 5 diminished training datasets are con-
structed by reducing the number of input parameters’
instances shown in Table 7. For the first dataset, only the
beginning, the ending, and the middle values of the flight path
angle are considered. This way the y instances are reduced
from 11 to 3 which consequently yields in a reduction from
1102 to 260 training samples. Table 8 presents the input
parameters of first diminished dataset:

For the second dataset (Table 9), the lower and upper limits
of the rudder deflection value are considered only at —20°, 0°,
and 20°. This results in 261 total training samples.

Similarly, for the third dataset (Table 10), the lower and
upper limits of the rudder deflection value are considered
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TABLE 9. Input parameters’ values of the second diminished dataset.

Input Parameter Network Inputs

h [Sea level, 10000, 20000, 30000] ft
14 [-5,-4,-3,-2,-1,0,1,2,3,4,5] deg
8, min [ =20, 0,20] deg

8, max [ 20, 0, 20] deg

TABLE 10. Input parameters’ values of the third diminished dataset.

Input Parameter Network Inputs

h [Sea level, 10000, 20000, 30000] ft

y [-5,-4,-3,-2,-1,0,1,2,3,4,5] deg
6, min [-30,-10, 10, 30] deg

6, max [ =30, -10, 10, 30] deg

TABLE 11. Input parameters’ values of the fourth diminished dataset.

Input Parameter Network Inputs

h [Sea level, 10000, 20000, 30000] ft
14 [-5,0, 5] deg
5, min [—20, 0, 20] deg

6, max [ -20, 0, 20] deg

only at —30°, —10°, 10°, and 30°. This results in 344 training
samples.

The fourth and fifth training datasets are combinations
of the three aforementioned datasets. The fourth dataset
(Table 11) is constructed by considering the reduced param-
eters of the first and second diminished datasets. In other
words, for the fourth training dataset, the flight path angle
values of Table 8 and rudder deflection values of Table 9 are
considered as below:

This yields in 71 training samples for the fourth diminished
dataset.

TABLE 12. Input parameters’ values of the fifth diminished dataset.

Input Parameter Network Inputs

h [Sea level, 10000, 20000, 30000] ft
Y [-5, 0, 5] deg
6, min [ =30, -10, 10, 30] deg

6, max [-30,-10, 10, 30] deg

Likewise, the fifth dataset which is the combination of the
first and third diminished datasets has 88 training samples,
as shown in Table 12.

Summary of the 5 diminished datasets is presented in
Table 13:

As can be seen in Tables 8 to XII, in all of the diminished
datasets, the considered flying altitudes are the same as the
original training dataset. That is because the flying altitude
has already been considered at only 4 instances distanced
from each other by 10000 ft.
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TABLE 13. Input parameters’ values of the fifth diminished dataset.

Dataset Reduced parameters Training Samples
#1 v 260

#2 8 261

#3 8y 344

#4 Y, 6, 71

#5 Y, 6, 88

The training processes presented in the pseudocodes of the
previous subsection are applied to the diminished training
datasets to train ANNs and LMNs. Similar to the original
training dataset, for each of the 5 diminished datasets the
network with the lowest MSE on the independent test data
is chosen as the best network of that dataset. Fig. 28 presents
the best ANNs and LMNs performance on the independent
test data for the 5 diminished datasets.

In this figure, the 6% dataset is the original training dataset
and the values in parentheses indicate the number of training
samples for each dataset. As expected, ANN performs better
than LMN on all datasets. Also, it can be seen that the MSE
is not linearly dependent on the number of training samples.
That is because each dataset has been constructed by reducing
the samples of the input parameters in its own specific way,
and as mentioned earlier; the input parameters have different
levels of influence in the nonlinearities of the aircraft dynam-
ics. Hence different datasets have different natures in terms of
the nonlinear relationship between the input parameters and
the targets.

0.014 — - - - T T
I ANN (Bayesian Regularization)

[ JLMN
0.012 1 _

0.01 - i

MSE: 2.4953e-04 MSE: 9.4251e-05

0.008 4
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0.004 i

0.002 | i
i ]

|
(260) 2 (261) 344) 71) 5 (88)
Training Datasets

MSE

<)

6 (1102)

FIGURE 28. ANN and LMN performance on the independent test data for
different training datasets.

To be more specific, it can be seen in Fig. 28 and
Table 14 that the MSE of the second dataset is higher than the
MSE of the fifth dataset even though the number of training
samples of the second dataset is larger than the number
of samples of the fifth dataset. In other words, more training
samples of the second dataset have not led to a lower error.
That is because the error of the datasets cannot be justified
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TABLE 14. Performance of ANN and LMN on different datasets.

Dataset MSE of ANNs MSE of LMNs Training Samples
#1 1.1746E-03 1.2526E-03 260
#2 1.7366E-03 4.7900E-03 261
#3 2.4953E-04 1.9966E-03 344
#4 5.7781E-03 1.2519E-02 71
#5 1.5934E-03 2.8904E-03 88
#6 9.4251E-05 1.2278E-04 1102
145 . . . . ® 1102 Training Samples
° ® 344 Training Samples
140 ® 88 Training Samples
. s ® 1102 Training Samples
135 - O 344 Training Samples
130 L o 88 Training Samples
125 i
B 120 4
<
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= 115 i
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FIGURE 29. Rudder restricted to [-30°, +10°] at 30000 ft and y = 1°.

solely based on the number of samples, but it is mainly due
to the considered values of the input parameters. According
to Tables 9 and 12, the considered rudder defection values
of the second dataset are [—20°, 0°, 20°] whereas for the
fifth dataset are [—30°, —10°, 10°, 30°]. This shows that
ANN can better model the nonlinear relationship of the inputs
and targets when §, instances are reduced and considered as
[—30°, —10°, 10°, 30°] rather than [—20°, 0°, 20°].

The same explanation exists for the difference between the
MSE:s of the first and second datasets.

As shown in Fig. 28, the best performance (i.e. the lowest
error) among the 5 diminished datasets belongs to the third
dataset whose sample size is almost 69% smaller than the
original dataset. The following figures present the values of
Vinin and V4, estimated by the third, fifth, and the original
datasets for the same failure cases of the previous subsection.

As can be seen in figures 29 to 32, the numerical values
of Vyin and Vp,cestimated by the third dataset are very
close to those estimated by the original dataset. In fact, their
difference is not significant considering that the amount of
training data of the third dataset is only 31% of the original
dataset. The results of the fifth dataset (with 8% of the size
of the original dataset) are almost the same as the third
dataset except for the failure case of Fig. 29 where the error
of estimating V., is considerable. Hence, the fifth dataset
cannot generalize as well as the third dataset and is not a good
choice.

VOLUME 7, 2019

1102 Training Samples
344 Training Samples
88 T'raining Samples
1102 Training Samples
344 Training Samples
88 T'raining Samples

‘leceecoce

V(knot)

W (deg/s)

FIGURE 30. Rudder jammed at 10° at 30000 ft and y = 0°.
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FIGURE 31. Rudder jammed at 25° at 10000 ft and y = —5°.
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FIGURE 32. Rudder jammed at 25° at 10000 ft and y = —4°.

Therefore in order to have a good compromise, the amount
of training data can be decreased to more than one third which
significantly reduces the required time and the computational
cost of the training data generation.
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Obviously, none of the ANNS trained with the 5 diminished
datasets can generalize to the independent test data as well as
the best ANN trained with the original dataset. In other words,
none of the ANNSs of this section can predict the values of
Vimin and V4, as accurate as the best ANN of the previous
subsection. However, the aim of this section is to show that
the performance of a network is not determined only by the
number of training samples, and in the case of the need to fast
training data collection where not enough training data could
be generated, the instances of the input parameters could be
chosen such that the nonlinear relationship between the inputs
and targets is established as well as possible, and the errors
of the model are negligible.

Base on the results of this subsection, it can be inferred
that in order to have a relatively acceptable performance,
the minimum and maximum of the input parameter’s range
must be included in the training dataset along with a middle
value or symmetrical values within the range.

IV. NEURAL NETWORK-BASED SENSITIVITY ANALYSIS
In this section, a neural network-based global sensitivity anal-
ysis approach is presented which enables assessing the degree
of effect of different contributing parameters to the variations
of the impaired aircraft’s maneuvering flight envelope key
characteristics.

This assessment is specifically very important for the
post-failure path planning where prior understanding of the
affecting parameters on the aircraft performance is vital
for a safe trajectory and has an important role in speci-
fying the underlying path planning strategy. More discus-
sion and examples on this are presented at the end of this
section.

Generally, sensitivity analysis which investigates how the
variation of a system model is attributed to the changes in
input factors requires numerous model evaluations regardless
of the sensitivity analysis method used. Roughly speaking,
thousands of model evaluations are required by global sen-
sitivity analysis methods [36]. The higher the nonlinearity
and complexity of the model, the more model evaluations are
needed for an accurate analysis.

In the case of a high-fidelity nonlinear 6 DOF air-
craft model, the relationship between aircraft performance
parameters and specific input factors is governed by multi-
ple inter-related equations involving other variables. Hence
the model evaluations required by the sensitivity analy-
sis methods are such computationally intensive that even
a semi-accurate global sensitivity analysis becomes almost
impossible.

For instance, in the case of aircraft rudder failure pre-
sented in this paper, it was shown that the values of Vj;,
and V4, are dependent on the values of altitude (h), flight
path angle (y), and rudder failure degree (§,). However,
there are no direct equation relating Ay, and 6, to V,,;,, and
Vinax. Mathematically, the values of V), and V. could
be calculated via the state derivative equation (V) which
is the first equation among the 12 equations of motion
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of aircraft:

V = g(cos ¢ cos 0 sina cos B + sin ¢ cosO sinf
qS T
—sin6 cosa cos B)— q—CDWmd +—cos(a + ar)cos B
m m
(36)

In which, g is the gravitational acceleration, g is dynamic
pressure, T is the aircraft thrust force, a7 is the thrust angle,
and Cp_, , is the drag coefficient in wind axes [23].

(36) is dependent on the altitude (%) through the air density
(p) in the dynamic pressure:

I
q=5pV 37)
2
It is also dependent on flight path angle (y) both via the

thrust-required equation:

I 5 2
Tp = Wy + 50VSCp, + 2KW [oV2scosy 9
and the following equivalency [23]:

g(cos ¢ cos O sina cos B+ sin ¢ cos 0 sin

—sinfcosacosB) = —gsiny (39)

Rudder failure degree (6,) is one of the components of
the aircraft non-dimensional forces and moments coefficients
and exists in (36) through the body-axes side force coeffi-
cient (Cy) and body-axes drag force coefficient (Cp) which
appear in the equation of the drag coefficient in wind axes:

CDwind = CD cos ﬂ - CY sin /8 (40)

However, p, ¢, 6, o, B, and §, are components of
other aircraft equations of motion too. Hence evaluating
Vinin and V4, based on (36) requires solving all the aircraft
nonlinear equations of motion (x = 0) simultaneously for the
corresponding trim point. Moreover, as explained earlier,
the process should be iterated over multiple trim points until
the one corresponding to Vi, or V., is found. That is
because in the case of an impaired aircraft, due to additional
drag resulted by the damaged rudder, V., is no longer at its
nominal value and V,,;, is no longer evaluable through the
conventional stall speed equation.

Considering the aforementioned procedure, evaluating at
least thousands of model outputs (Vi or Vy,,y) in order to
assess the sensitivity of Vi, or V., with respect to input
factors (h, y, and §,) is computationally expensive and practi-
cally impossible. Furthermore, putting aside the issue of com-
putational cost, aircraft equations of motion do not include
the lower limit and upper limit of the rudder deflection angle
as input variables. Instead, these limits are exerted during the
nonlinear optimization process of deriving trim points.

On the other hand, the regression equation of the neural
network provides a direct link between the intended input
factors and the model output. Specifically, the regression
equation of the best ANN (i.e. with the least MSE) from the
previous sections can be used as an emulation model to obtain
much faster evaluations of the model response. An emulator
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which is a computationally efficient model and usually has
the form of an algebraic relation is calibrated over a dataset
and can be used instead of a computationally demanding
model in case faster model evaluations are required as in
sensitivity analysis. The following subsection elaborates on
the proposed emulation model [36].

A. ANN REGRESSION EQUATION AS EMULATOR
As explained in subsection II.C, the ANNs considered in this
research are in the form of a two-layer network including one
hidden layer with nonlinear sigmoid transfer function and
one output layer with linear transfer function which is the
network architecture often used for function fitting (nonlinear
regression). This two-layer architecture was shown in Fig. 4.
In order to obtain the ANN regression equation, the trained
network computational process should be simulated using
the network’s weights, biases, and settings associated with
the pre/post — processing functions. For the rudder damage
scenario considered in this research, the ANN regression
equation (F) has the following general form:

Vinin oF Vipax = F(h, v, §,min, §,max) 41

Before training the ANN, it is useful to scale the inputs
and targets data such that they fall in the range [—1, 1]. This
is done using a mapping function which processes inputs and
targets matrices and normalizes the minimum and maximum
values of each row to [—1, 1]. After the network is trained,
the mapping settings should be applied to any inputs that are
given to the trained network. Hence, considering the vector /
to be the new inputs being applied to the trained network:

h
_ 14
I'= 8,min (42)

S,max ax1

We have the processed inputs vector I, such that:

Ipaxcty = [T — IV mindaxt © [[1 = (= Dlax;
QUVinax — Ivmin]4><l] + [(_1)]4><1 (43)

where 1V ,,;, and IV, are vectors of the minimum and
maximum of the training inputs data, and o and @ denote
Hadamard product and division, respectively. It should be
noted that /,, is only a function of / once the numerical values
of IV i and IV . are substituted.

Next the [, vector is multiplied by the hidden layer’s
weights matrix, summed with the hidden layer’s biases vec-
tor, and then the hyperbolic tangent sigmoid transfer function
is applied to the resulting vector to generate the output vector
of the hidden layer:

ajo) = tansig <1W(10x4>1p(4x1) + b(110><1)>
_ 1
= (12l @[ 142 11l @4

10x 1

where a' represent the output of the hidden layer transfer

function, /W and b! represent weights and biases of the hid-
den layer, tansig denotes the tan-sigmoid transfer function,

VOLUME 7, 2019

and any vector in the form of [k],,,1 represents m rows with
identical values of k [25].

Finally, the model output which is the output of the linear
transfer function of the output layer is calculated by applying
the output layer’s weights and biases vectors to a':

@y = LW(2><10)3310><1) + b(zle) = [“//max:| (45)
nin
Each row of the two-row vector a” is an ANN regression
function. Based on the training data structure presented in
Fig. 9, the top and bottom row correspond to the regression
functions producing Vpax and Viip from the four input fac-
tors h, y, §,min, and §,max, respectively.

For the damage case considered in this research and using
the explained network architecture, each of the two obtained
regression equations is in the form of the sum of a constant
decimal number and 10 fractions with exponential functions
in the denominators:

cl
|:Vmaxi| _ egl(h!V>8rmins8)"mch) + 1 T
Vmin - dl
gkl(hsyvarmin»grmax) + 1
cl10
5100y Sy 11 €1
(46)
dl10
gklo(hv)/:arminaarmux) +1 T d1l
where cl,...,cll and d1,...,d11 are constant decimal
numbers, and gl,...,¢ll and k1, ..., k11 are linear com-

binations of A, y, §,min, §,max.

Each of the two regression equations indicated in (46) can
be used as an emulator during the sensitivity analysis of the
aircraft performance parameter Vyax or Vpin with respect
to the input factors (h, y, 8,min, §,max). Each emulator is a
function of only the intended variables (i.e. input factors),
hence enabling efficient model evaluations. To be specific,
the emulators obtained based on the 4th ANN'’s regres-
sion functions were capable of around 30000 model evalu-
ation per minute on a standard desktop PC with 3.00 GHz
AMD Phenom quad-core processor, under Windows 7 oper-
ating system, and using MATLAB®) version 9.3 (R2017b).
As mentioned earlier, without using an ANN-based emulator,
each model evaluation would require multiple trim point
evaluations and could take several minutes to complete.

Another advantage of using ANN-based emulator is that it
can be used as a unique tool to visualize the variation of the
intended model output with respect to specific input factors.
As will be seen in the rest of this section, this feature of the
ANN-based emulator is very useful in better understanding
and interpretation of the results of the sensitivity analysis.
For instance, Fig. 33 depicts the variations of Vi« with the
changes in the lower and upper limits of the rudder deflection
angle (i.e. changes in the failure degree) at 10000 ft and
zero flight path angle. It can be seen that extreme changes
in Vax correspond to sever rudder restriction cases with
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FIGURE 33. Vpax versus §,min and §max at 10000 ft and y = 0°.
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FIGURE 34. Vmax versus y and h for rudder jammed at 15°.

high deflection angles. In this figure, the red thick curve
demonstrates rudder jamming cases.

Also, Fig. 34 represents the variations of Vp,x with
changes in the altitude and flight path angle for an impaired
GTM with jammed rudder at 15°.

The next subsection discusses the global sensitivity anal-
ysis methods used along with the numerical results of their
applications to the derived ANN-based emulators.

B. GLOBAL SENSITIVITY ANALYSIS

Two main classes of sensitivity analysis methods are local
and global based on the input variability space under anal-
ysis [37]. Local method investigates the output variability
due to variations of an input factor around a specific nominal
value. On the other hand, global sensitivity analysis considers
the variations of input factors within the entire variability
space [36].

Sensitivity analysis methods also differ in their sampling
strategy. In OAT (i.e. One factor At a Time) sampling, all
input factors except one factor at a time are kept fixed,
whereas in non-OAT sampling all input factors are varied
simultaneously. Utilizing the latter strategy can characterize
the interactions between different combinations of input fac-
tors, while methods using OAT sampling at best can only give
a hint on the importance of the interactions [36].

The local method which is based on the OAT sampling
measures the output sensitivity to the i/ input factor through
the partial derivative of the regression equation at some nom-
inal input value 7°, which is approximated by the corre-
sponding finite differences. Hence, for the aforementioned
damage scenario considered in this research we have (47)
as shown at the bottom of this page, where, n = ]_.(10) is
the normalization factor used to rescale the sensitivities of
different factors with different units. The number of required
model evaluations in the local method is (M + 1) with M
being the number of input factors which is 4 in the case study
of this research.

For a highly nonlinear system such as an impaired aircraft,
local method is not a proper choice for sensitivity analysis
as it only provides the local sensitivity and is not capable of
assessing the sensitivity through the whole input space.

An extended version of the local method which evaluates
the global sensitivity by aggregating multiple local sensitiv-
ities measured over different points within the input space is
the Morris method [38], also named the Elementary Effect
Test (EET) [39]. In this method, r trajectories are built in the
input space each comprising (M + 1) points. The starting
point of each trajectory can either be selected using random
sampling (as originally suggested by Morris [38]) or by Latin-
Hypercube sampling as proposed in [40]. Latin-Hypercube
sampling is a particular type of stratified sampling which
reduces the gaps between the clusters of sampled points and
hence produces a more uniform sample grid than the ones
generated by the pseudo-random number generator in the
random sampling strategy [41].

Once the starting point in each trajectory is selected,
the subsequent points of the trajectory are evaluated either
by moving one input at a time (OAT approach) a fixed step
A (i.e. pre-specified step between two consecutive points
of the trajectory) or through the radial-based design where
variations of all subsequent points of the trajectory are taken
from the starting point of the trajectory [42]. The latter pro-
vides more efficiency and conforms better to the non-OAT
sampling sensitivity analysis [36]:

li=1Io+ Aj, Liy1 = Io+ Aigs (48)

where Iy is the starting point of the trajectory and each point
has its corresponding variation step A.

) —Fy, ..., 1,

U(W

21086

{f(]l,...,li-i-Ai,...,

,I/vt)} @7

A;

VOLUME 7, 2019



R. Norouzi et al.: Investigating the Generalization Capability and Performance of Neural Networks and Neuro-Fuzzy Systems

IEEE Access

In the EET method, the Elementary effects are finite dif-
ferences calculated via (47). The mean of these Elementary
effects over the complete set of trajectories is a sensitivity
measure (S;) and indicates the effect of input factor I; on the

model output:
1« aF| \Y
= 0El,) @

Jj=1
The standard deviation of Elementary effects is also a
sensitivity measure indicating the effect of nonlinearities
and interactions of input factor /; on the model output

variations [37]:
2
) - Si] (50)
10

- AF
=l

The EET method provides a general indication of each
input factor’s main-effect and interactions, with far less num-
ber of required model evaluations than other more accurate
and detailed global sensitivity methods. Specifically, it is
useful for detecting non-influential factors that can be dis-
regarded in other time-consuming global methods [36].

In the following subsection, we have applied the EET
method with Latin-Hypercube sampling and radial-based
design to the impaired GTM with rudder damage.

One of the most powerful global sensitivity analysis meth-
ods is the variance-based method which provides accurate
numerical indices for the main-effects, total-effects, and inter-
actions of input factors. However, this method requires tens
of times more model evaluations than the EET method [36].
Very fast model evaluations through the derived ANN-based
emulator practically meet this requirement. In the following
subsection, the numerical results of applying this method to
the case study of this research are presented.

In variance-based sensitivity analysis, the contribution to
the model output variance from a specific input factor is
considered a measure of sensitivity. Assuming Y to be the
model output we have [39]:

Ep, (Vi, Y1) + Vi, (Er, (Y1) = V(YY) (51)

where V and E denote variance and expected value, respec-
tively. The first term of (51) which represents the average of
conditional variance of Y, taken over all factors but the i
input factor (I;) when [; is fixed, is a measure of influence of
other factors but ;. Hence, the smaller this term, the greater
the second term of (51) and the influence of I;.

Therefore the second term is the first-order effect (main-
effect) of I; on Y, and the corresponding first-order sensitivity
index is defined as:

S — VI,‘ (EINI‘ (Y|Il))
T V(Y)
Similarly, the total-effect of the input factor /; which is the

overall contribution from the i input to the output variance
including the first-order effect and all interactions with other

(52)
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inputs (i.e. all higher order effects due to these interactions)
is defined as [39]:

o _ B (Vi Vi) Vi (Er (Vi)
i V(Y) V()

When the input factors are independent (i.e. orthogonal),
the variance of the model output can be decomposed using
the so-called ANOVA-HDMR (High Definition Model Rep-
resentation) decomposition [37], [39]:

VO =3 Vit 3y Vit Vi (9

Dividing both sides of (54) by V (Y) enables the evaluation
of higher order indices which correspond to the effect of
interactions between input factors that cannot be expressed
as the sum of their main effects [39].

In the case of four input factors as in this research, the rela-
tion between the Sobol indices is:

(53)

ST = Si + Sij + Sik + Sin + Sijk + Sijn + Sikn + Sijin~ (55)

where Sij, Sik, Sin, Sijk, Sijn» Sikn. and Sijkn indicate higher
order indices.

First and total-order effect indices are generally estimated
via Monte-Carlo estimators within a Monte-Carlo based
numerical procedure. As proposed by Kucherenko et al. [44],
S; and SiT can be efficiently estimated through the following
steps:

o Two (N, M) matrices of random numbers are generated
and defined as A and B, where N is the number of base
samples.

o A matrix C; is constructed from all columns of B except
the i column which is taken from A.

« Model output is evaluated for all samples in the matrices
A, B, and C;:

Yawxny=F (A), Yevxy=F (B), Yc,vx1) = F(Ci)
(56)

(VN) ZjN=1 Yéyéi - ]:3

2
(1/1\/) YL~ R
(57)

g Vi, (Er, (Y1)
T V(Y) -

where

o (L ) 58
—(172,»:1 A) (58)

S-Tzl—(/N) j=11B1C 0 (59)

l (I/N) N - R

To evaluate the higher order indices associated with the
interactions between inputs, the matrix C;_; is constructed
in the same manner as C;, except that all columns corre-
sponding to the intended inputs must be taken from matrix A.
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_ (I/N) Y [f(i, ~ iy F(i, ~ i’)f] - (% SN Fi,~ l.),-)Z

() Sy i~ o = (5 5 7~ )
(v) 2 [76 ~ O Fa~ 1] = ( 2 F~ i)/')2

(60)

(Vo) S (P~ 07 = (3 0 7~ i)

(61)

For instance, to evaluate Sjj, a matrix Cj is constructed
by substituting the i and j” columns of B with the same
columns from A [37].

The total computational cost of the aforementioned numer-
ical procedure is N(M + 2), due to 2N model evaluations
required for matrices A and B, and N M model evaluations
required for the complete set of matrix C.

When all or some of the input factors are not independent,
the decomposition of (54) does not hold. In such cases,
the joint probability density function of the dependent inputs
and conditional distributions must be taken into account
instead of the marginal distributions considered when the
inputs were independent. It is suggested in [44] that the first
and total-order indices of a dependent input factor could be
estimated via the Monte-Carlo estimators, (60) and (61), as
shown at the top of this page. Equations (60) and (61) are sim-
ilar to the estimators suggested by Saltelli (i.e. (57) and (59)),
except that F(i, ~ i)j is the model evaluations based on the
joint density function of the input factor i and other input
factors, F(i, ~i’) is the model evaluations based on the con-
ditional distribution of other factors when the i input factor
is fixed, and F(i’, ~i’) is the model evaluations based on the
joint density function of the input factor i and other input
factors in the second base samples (similar to matrix B).

Among the four input factors of the case study of this
research (h, y, §,min, §,max), the lower limit and upper limit
of the rudder deflection angle are correlated, which means
their values are dependent upon each other. For instance,
an impaired rudder with restricted lower limit of —10° can-
not have a restricted upper limit of —20° (i.e. failure case
[—10°, —20°] is not valid), whereas for the lower limit being
at —25° ; an upper limit value of —20° is valid (i.e. failure
case [—25°, —20°] is valid). Hence, in order to estimate
the Sobol indices, (60) and (61) were used along with the
sampling strategy proposed in [44]. In this strategy, uniformly
distributed random numbers are generated between O and 1,
and then samples are transformed into their variability range
based on their joint distribution function. All lower limit and
upper limit samples should lie within a triangle observing the
following inequality condition:

Symin < §,max (62)

According to the nominal range of rudder deflection angle
[—30°, 30°], the mentioned triangle has the coordinates:
A1(—=30, 30), A>(—30, —30), and A3(30, 30). The follow-
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ing equation transforms any two randomly selected sam-
ples (p1, p2) between 0 and 1 to a point within the triangle
boundary [44]:

g= (1= Vpl) A1 +pl (1= p2) Ay + plp24s  (63)

Utilizing this transformation along with the estimators pre-
sented in (60) and (61) enables applying the variance-based
method to the rudder damage scenario.

C. NUMERICAL RESULTS AND DISCUSSION

As explained in the previous subsection, since the ANN
trained for the case study of this research has two outputs
(Vmax and Vpin), there are two regression equations each
acting as an emulator for the corresponding output. So the
numerical results have been obtained for both Vax and Vpip.
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FIGURE 35. Effects of the inputs on Vmax based on the EET method.

Figures 35 and 36 present the means and standard devia-
tions of the Elementary effects of the input factors on Vpax
and Vpin, respectively. The more mean of EEs of a point,
the more effective the input factor. The more deviation of
EEs of a point, the more its interactions with other inputs.
As can be seen, the obtained results are accurate enough
for the method used and the confidence bounds (shown as
rectangles) are narrow. As mentioned earlier, the purpose
of the EET method is a general analysis of the sensitivities
that can be achieved with fewer model evaluations than the
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FIGURE 36. Effects of the inputs on V,,;,, based on the EET method.

precise variance-based method. To obtain these results via
the EET method with Latin-Hypercube sampling and radial-
based design, 12000 trajectories were considered and a total
of 60000 model evaluations were conducted (M + 1 samples
per trajectory). Samples for this method were also generated
based on the joint density function explained in the previous
subsection.

Based on the evaluated Elementary effects, flight path
angle is the most influent input factor on the variations of
Vmax. Lower limit and upper limit of rudder have the least
individual effects but their interactions and nonlinearities are
more than the other input factors. Flight path angle is a non-
influential factor on the variations of Vi, both individually
and based on the interactions. Altitude has the most main-
effect on Vpin, and lower and upper limits of rudder have the
highest interactions on Viin as on Vpax.
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FIGURE 37. First and total-order indices for the model output Vmax.

Figures 37 and 38 present the Sobol sensitivity indices of
the input factors obtained through the variance-based method
for the model outputs Vpax and Vg, respectively. As can
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FIGURE 38. First and total-order indices for the model output V ;..

be seen, the error bars show low estimation errors for the
evaluated indices. The results are similar to those obtained
by the EET method. First and total order indices of the
lower and upper limits of rudder are identical because aircraft
and rudder deflection range are symmetrical about the body
x-axis, and slight differences between their numerical values
are due to the numerical method errors.

Numerical values of the first-order, higher order, and total-
order Sobol indices are presented in Table 15:

TABLE 15. Sobol indices of input factors for model outputs Vmax
and Vpin-

vmax Vmin
S, 01687 ST 0.2660 S, 06809 ST 0.6849
S, 04558 ST 05528 S, 00042 ST 0.0051
Ssrmn 0.1411 ST 02848 g . 0.1385 Sp . 02498
Ssrmax 01417 SL.. 02840 5. 0.1444 SE... 02501
Sy 0.0973 Sy =0

Sﬁrminé‘rmax 0.1437 Sﬁrminé‘rmax 0.1113

As can be seen in Fig. 37, flight path angle has the largest
value of first-order index, and altitude has the second rank.
The main-effect of each rudder deflection limit is small
because most samples fall in the smooth area of the surface
shown in Fig. 33, where variations of V. are negligible.
However, there are instances where deflection limits are very
close to each other (i.e. failure is severe) and very drifted
with respect to the rudder neutral point, in such cases the
variation of Vpax 1s extreme. For instance, a lower limit of
—25° does not have a significant main-effect because for
most samples its combinations with the upper limit value
correspond to a point on the smooth area of the aforemen-
tioned surface. However, samples containing the combination
[—25°, —23°] result in a big reduction of V.. These inter-
actions between the rudder deflection limits are responsible
for the non-zero second order index Ssminsrmax Which is
the difference between the deflection limits’ first-order and
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total-order indices. As shown in Fig. 34, variations in flight
path angle results in a persistent decrease in Vmax, hence
flight path angle has very large main-effect. But also it can
be seen in the same figure that at high altitudes and certain
flight path angles, the variation of V.« is more drastic. This
is due to interactions between altitude and flight path angle
and accounts for the non-zero index Sy, . Higher order indices
other than Ss.minsrmax and Sy are zero.

According to the obtained results, flight path angle does
not have any effect on the variations of Vi, that is because
by changing the flight path angle, the lower boundary of the
maneuvering flight envelope remains the same and does not
change. Altitude is the most influential factor on the varia-
tions of Vin, and rudder deflection limits have almost the
same main and total-effects as they have on V. Unlike the
model output V., there are no interactions between altitude
and flight path angle for Vi, and slight differences between
main and total-effect indices of these input factors is due to
numerical procedure errors. Variance-based method results
were obtained using a total of 3 million model evaluations
conducted in about 100 minutes.

Number of Model Evaluations Number of Model Evaluations
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FIGURE 39. Convergence analysis of first and total-order indices for the
model output Vmax.

It is important to evaluate the robustness of the esti-
mated indices. This is done by deriving confidence inter-
vals via bootstrapping through a convergence analysis [45].
Figures 39 and 40 present the analysis results for the esti-
mated indices for both model outputs Vipax and Vg, It can
be seen that for both model outputs, the confidence intervals
of the evaluated indices have converged at 3 million model
evaluations. This shows that the estimated indices are robust
with respect to different samples of the model.

Due to the good structured ANN-based emulator
used, such a large number of model evaluations was
computationally affordable. However, in the case were

21090

L Number of Model Evaluations Number of Model Evaluations

@ ALT @ ALT
@ UL @ UL
091 S L ] -
FPA FPA
0s|—@ ] sl ®
07r 0T emeoceess= |
L 06¢ {1 . o6
| o
<5 ()
ESl R S o5
= 04F £0.4.
03} 1 o3} ]
—_— e
02} 1 o02f - ¥ ]
01} 1 o0t
| E-ECEE S 0 S |
0 06 12 18 24 3 0 06 12 18 24 3
%100 %108

FIGURE 40. Convergence analysis of first and total-order indices for the
model output Vi,

other failure scenarios with higher number of input fac-
tors are considered, a quasi-random sampling method with
low-discrepancy such as Sobol sequences can reduce the
number of the required samples to estimate the Sobol
indices [37], [44].

As mentioned at the beginning of this section, by utiliz-
ing the proposed ANN-based sensitivity analysis approach,
the ANN which is going to be used onboard the impaired
aircraft for real-time evaluation of Vyax or Vmin, can also
be used to create a prior knowledge of the influential input
factors and their interactions so that a safer path planning
strategy is chosen for the impaired aircraft during flight.

Maneuvering flight envelope of an impaired aircraft is
contracted due to the imposed failure. A secondary fail-
ure which may be induced due to the excessive use of the
damaged control surface would shrink the already restricted
flight envelope, hence increasing the possibility of loss of
control. Also, changing the flight condition to an altitude or a
flight path angle that contracts the maneuvering flight enve-
lope more than before; would increase the risk of loss of
control following a new failure or an adverse atmospheric
condition. Therefore it is important to identify the param-
eters with significant effect on the flight envelope limits
(e.g. Vimax and Vin). Such parameters could be control sur-
faces deflection limits, altitude, and flight path angle in the
case of actuator failures. Once the corresponding parameters
are identified, a path planning strategy with less emphasize
on changing those parameters should be used instead of the
nominal strategies such as minimum-time or minimum-fuel.
The proposed sensitivity analysis method which provides
accurate results on the influential parameters can be used as
an advisory for the decision making process of choosing the
safer path planning strategy.

For instance, in the case of a terrain ahead of an impaired
aircraft with damaged rudder, assuming that collision with
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terrain could be avoided either by performing a shorter climb-
ing turn or a longer level turn, even though performing a
climbing turn is in compliance with the minimum-time path
planning, it requires an increase in the flight path angle which
based on the sensitivity analysis results would lead to a
considerable reduction of Vy,x (i.e. shrinking maneuvering
flight envelope). This is important because in this case where
maneuvering flight envelope is more limited, a secondary
control surface failure could lead to a complete loss of control
of the aircraft. However, maneuvering flight envelope in the
longer level turn is less limited because flight path angle is
not changed, therefore it is less likely for a secondary surface
failure to eliminate the whole flight envelope and cause loss
of control. Hence, it is more reliable to choose the level turn
to avoid the terrain even though it is not the minimum-time
path.

Another case is when the aircraft is climbing and rudder
failure occurs. In such case, it is safer to perform the necessary
climbing with lower climbing rate (smaller flight path angle).
Because based on the sensitivity analysis results, altitude
has smaller effect on Vi« than the flight path angle. Hence
increasing altitude would not contract the flight envelope as
much as increasing flight path angle does. Again, a more
contracted maneuvering flight envelope is more prone to loss
of control due to a secondary failure.

In the case of combinatory failures such as an impaired
aircraft with damaged rudder and elevator, a comparison
between the Sobol indices of rudder and elevator deflection
limits reveals which one is less effective in changing the
maneuvering flight envelope, so that an objective for the path
planning could be chosen that puts the control efforts mainly
on this less effective input factor. This way the flight envelope
would not degrade too much in the case of a secondary failure
of that control surface.

V. CONCLUSIONS

In this research, a comparison has been made between the
generalization capabilities of ANNs and LMNss in the aircraft
nonlinear dynamics modeling. To do so, maneuvering flight
envelopes were evaluated for a number of rudder failure
degrees based on a high-fidelity nonlinear transport model.
Flight conditions and failure degrees for which the flight
envelopes were evaluated were organized and prepared as
the input data whereas and the values of V,,;, and V4« of
the evaluated flight envelopes were considered as the target
data. Multiple ANNs were trained using Bayesian regular-
ization and Levenberg-Marquardt algorithms. Also, multiple
LMNs were created based on linear, full quadratic, and sparse
quadratic models and trained by LOLIMOT and HILOMOT
algorithms. Performance of the trained ANNs and LMNs
were evaluated on an independent test data and the results
show that both network types have good accuracy; however
ANN generalizes better to the new data. Also, the effect
of different reductions in the number of training samples
was investigated on the networks’ performance. 5 diminished
training datasets were constructed by reducing the number
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of samples of the input parameters (k, y, 6,) in different
ways. According to the results, the networks’ performance
is not solely dependent on the number of training data and a
good compromise between the amount of training data and
networks’ generalization could be obtained if an appropriate
reduction in the training samples is implemented. Finally,
an ANN-based global sensitivity analysis approach was pro-
posed which utilizes the trained network’s regression equa-
tion as an emulator for fast model evaluations required by
precise sensitivity analysis methods such as variance-based
method. The proposed approach can be used to choose the
safer path planning strategies of an impaired aircraft.

Two alternatives to ANN are Support Vector Machine
(SVM) and GP (Gaussian Process) which generally tend to
have better generalization than ANN. However, ANNs were
used in this research due to faster setup process and learning,
the capability of predicting more than one output, and the pos-
sibility of online training which could be used in future works
concerning real-time path planning of the impaired aircraft.
For the case studies of this research the generalizations of the
trained ANNs were accurate enough; however, in the case
of structural failures were the number of inputs increases,
the network’s size grows and the ANN’s generalization could
degrade drastically. In such cases utilizing SVM or GP could
provide better generalization. Hence, it is an interesting topic
for future researches to investigate replacing ANN with SVM
for failure cases with higher number of inputs.

APPENDIX

In order to find the number of required hidden neurons,
neurons were added to the hidden layer one by one up
to 20 neurons. Network’s performance for each number of
hidden neurons was estimated, and the process was iterated
10 times. As shown in Fig. 41, results show that the network’s
performance improves significantly by increasing the number
of neurons from 1 to 4. Increasing the number of neurons from
5 to 9 slightly improves the network’s performance however

0.035 T T

—%— Iteration 1
*— Iteration 2
Iteration 3
—x— Iteration 4
Iteration 5
Iteration 6
—x— Iteration 7
—— Iteration 8
+— Iteration 9
—— Iteration 10

0.03

0.025 -

MSE

Number of Hidden Layer Neurons

FIGURE 41. Variation of MSE by the number of hidden layer’s neurons.

the value of MSE fluctuates considerably. From 10 hidden
neurons all 10 iterations have close MSEs and increasing
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the number of hidden neurons does not improve the net-
work’s performance anymore. Hence, 10 hidden neurons are
selected.
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