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ABSTRACT Saliency-based methods have been widely used in the fusion of infrared (IR) and visible (VIS)
images, which can highlight the salient object region and preserve the detailed background information
simultaneously. However, most existing methods ignore the salient information in the VIS image or they
fail to highlight the boundaries of objects, which makes the final saliency map incomplete and the edges
of the object blurred. To address the above-mentioned issues, we propose a novel IR and VIS images’
fusion algorithm based on the Poisson reconstruction and saliency detection using the Dempster–Shafer
(DS) theory. In detail, we mix the gradient using a mask map derived from the saliency map, which could
avoid low contrast and halo effects in the results. Besides, both the intensity saliency of the IR image and the
structural saliency of all source images are considered by DS to suppress some noise in the IR image. Thus,
we could obtain smooth object contours and enhance the edge information of the salient region. Moreover,
we also propose a novel probabilitymass function to calculate the probabilisticmap in the process of applying
DS to decrease the error from manually assigning the prior probability. Finally, the extensive qualitative and
quantitative experiments have demonstrated the advantages and effectiveness of our method compared with
other nine state-of-the-art IR and VIS image fusion methods.

INDEX TERMS Image fusion, object detection, context, image reconstruction.

I. INTRODUCTION
Image fusion is a popular technology that combines the com-
plementary information from diverse sensors into one image
in order to provide more support to a particular application,
such as those in military affairs [1], [2], medical technol-
ogy [3], [4] and artificial intelligence [5]. The single fused
image contains more detailed information to enhance the
application’s performance and help us to comprehensively
understand the scene [6]. The fusion of infrared and visi-
ble images has been a heavily researched topic for decades
because it not only can increase visual perception but can also
improve the accuracy of object detection and target recogni-
tion [7]. An infrared image could detect the target accurately
since its sensitivity to the heat source and infrared sensors
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could work day and night. However, infrared images contain
less detailed information due to their low spatial resolution.
In contrast, visible images can capture some appearance
information from the object and the background. Therefore,
the fusion of infrared and visible images could provide clear
contextual information regarding the target in the infrared
image from the visible image in order to understand the scene
better.

Various fusion methods of infrared and visible images
have been proposed in recent years. Image fusion could be
categorized into three levels: the pixel level, the feature level
and the decision level [8]. The image fusion based on the
pixel level, which combines the information from the source
image directly, is the lowest level. However, pixel-level image
fusion is still an important research field due to its efficiency
and good human visual perception [9]. In addition, the fused
image based on the pixel level has a close correlation with
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the source images. In this paper, we fuse the infrared and
visible images based on the pixel-level, andwe assume that all
source images involved in this paper have all been registered
in advances.

Several research papers on image fusion deliver a complete
summary of the previous works [10]–[12]. In the previous
research, the earliest research on image fusion average the
pixels of the source image [13], which is the simplest and
most efficient method. However, this method only takes the
average of the corresponding pixels from two raw images,
which has poor performance for preserving the edges and
leads to a low contrast fused image. Since then, the multi-
scale transform (MST) scheme has been widely applied in a
variety of fusion models due to its better expression of the
visual attention system. The MST scheme is implemented
by decomposing the source image into different scales, and
then the multiscale information is fused with proper rules
to reconstruct the final image via the inverse transform.
Examples of these methods include the pyramid transform
[14], [15], the wavelet transform [16], [17], and the non-
subsampled contourlet transform [18], [19]. However, the
MST-based methods ignore the different imaging charac-
teristics of the visible and infrared images in order to use
a single representation, and those methods lose some high
frequency information in the process of themultiscale decom-
position. As a result, the fused result cannot fully preserve
all of the edges and suffers from ringing artifacts. After that
step, the sparse representation (SR) is used for image fusion.
Because SR-based methods usually aim to learn an overly
complete dictionary, they could better represent the source
image [20]–[22]. However, the SR-based methods do not
consider the innovative features and salient features simulta-
neously, and as a result, the innovative features will be faint in
the fused image when the source image has a low contrast. In
general, how to preserve object edges better without reducing
the image contrast is still a problem for the fusion of infrared
and visible images. Thus, many scholars focus on saliency-
based methods.

Saliency-based methods have been a heavily researched
topic in the past several decades. According to the dif-
ferent processing mechanisms, saliency detection methods
could be classified into three categories: biologically based
methods, purely computational methods, and hybrid meth-
ods [23], [24]. The biologically based methods are motivated
by simulating the human visual mechanism in order to com-
pute the saliency map. The typical example is Itti’s algorithm,
which uses the center-surround operator to extract the color,
intensity, and orientation feature maps, and then combines
them into a saliency map with a unique scalar. Moreover,
there are lots of similar methods based on biology [25].
However, this method imitates a simple human visual sys-
tem, which leads to the saliency map having low resolution
and poor detailed information. The purely computational
methods calculate the saliency map without using biological
vision principles and have the advantage of a fast processing
speed [26], [27]. For instance, Bavirisetti and Dhuli [28]

only use two-scale image decomposition to fuse the images
through the saliency map. Liu et al. [21] use the joint sparse
representationmodel to get the global and local saliencymaps
of the source images, and then integrate them using a weight
fusion algorithm. Meng et al. [18] integrate the saliency map
into the nonsubsampled contourlet transform for infrared and
visible image fusion. In addition, for dynamic objects in
image sequences, Han et al. [29] use Markov Random Fields
to combine the high brightness values with motion features
to generate the saliency maps, which are injected into the
final fused image. For the static object, Sun et al. [30] use
the Markov random field to derive the weight map of the
source image, and then the weight map is used to fuse the
image by solving the Poisson equation. The other category of
methods is the one that combines ideas from the aforemen-
tioned two categories. Liu et al. [31] use either the Gaussian
model or the kernel density estimation to express the region
of interest (ROI), and both the color and spatial distributional
features are integrated with the ROI to extract the saliency
map. Zhang et al. [32] use the mean-shift segmentation algo-
rithm and a quad mesh to over-segment the image, and then a
color compactness measure is used to derive the saliency map
directly. Besides, Fu et al. [33] propose saliency detection
method based on normalized cut (Ncut) and adaptive multi-
level region merging scheme, which can highlight the entire
object in complex background. Fu et al. [34] firstly propose
a scheme which completely learns a continuous conditional
random field for saliency detection. They also provide an
optimal way to integrate various unary saliency features with
pairwise cues to discover the salient objects.

It should be noted that the saliency-based methods have
achieved comparable performance for image fusion, and they
can highlight the salient object region and preserve detailed
information. However, most saliency-based methods extract
the saliency information in one image but ignore the salient
information among multi-images, which makes the saliency
map incomplete and the edges of the object blurred [29].
In addition, some saliency-based methods over highlight the
entire salient region but then fail to highlight the boundaries
of objects. Besides, there are many pixel-based methods,
which have achieved excellent results in image fusion. How-
ever, many traditional pixel-basedmethods such asmultiscale
transformmethods [14], [17], [18] fuse the images both in the
high frequency and low frequency domain. Those methods
may reduce the contrast of the fused results.

With themainmotivation to simultaneously better preserve
the object edges and improve the image contrast of fused
images, we proposed a novel method based on Poisson recon-
struction and saliency detection using DS for infrared and
visible image fusion.

In order to better preserve the object edges, the detection
of saliency regions incorporates the structural saliency of
both source images and the intensity saliency of infrared
image by means of Dempster-Shafer theory. As is well-
known, an infrared image is characterized by the intensities
or the image’s uniqueness, and the target has larger intensities
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FIGURE 1. Schematic illustration of image fusion. From the left to right: the visible image, the infrared image, the fusion
result of the Poisson image fusion [30], the fusion result of a popular sparse representation-based method [38], and the
fusion result of our method.

than the background. Therefore, the intensity saliency of an
infrared image is used to detect the saliency map in most
methods, but the saliency map detected only from an infrared
image always has incomplete contours or regions [29].
We use the structural saliency of an infrared image in an
attempt to resolve this problem [35]. This is due to that struc-
tural saliency could indicate the salient edges and textures
by using the image’s gradient or compactness. In addition,
the structural saliency of a visible image is used to suppress
the noise in the infrared image.

Besides, in order to retain the salient foreground target
information and the background information without reduc-
ing the contrast, the Poisson reconstruction is applied to this
work. The major idea of this fusion method is to fuse the
important structures of source images modeled as image gra-
dient by solving a Poisson equation. Poisson reconstruction
fuses the image from the high-frequency gradient domain in
the original resolution without changing the low-frequency
information [30] By this way, the fused images could have a
proper contrast.

Our method has two major steps. In the first step, to better
preserve the object edges, the structural saliency of both
source images and the intensity saliency of infrared image are
simultaneously incorporated to extract the saliencymap using
DS. To obtain an accurate probability for each feature in DS,
a novel probability mass function is proposed. To the best of
our knowledge, this report describes the first time that DS
has been adopted to detect the salient regions. In the second
step, the Poisson reconstruction is applied to improve the
contrast of the fused result in the process of image fusion.
Poisson reconstruction has been widely applied to image
fusion [36], [37], which mixes the gradients using a weight
map, which leads to the possibility that the gradient of a pixel
may be compounded by two corresponding pixels, and the
contrast of the result may be reduced.Wemix the gradients of
the fused image using a mask map derived from the saliency
map rather than aweightmap so that ourmethod could use the
raw gradient of the input image to avoid low contrast and halo
effects in the results. To illustrate the major superiority of our
method, an example is shown in Fig. 1. The left two images
are the visible and infrared images, where the infrared image
highlights the salient foreground target information and the
visible image contains background information. The third
image is the fusion result of a Poisson image fusion based on
the Markov random field [30]. In the third image, the object
has an incomplete edge, and we can observe some halo
effects around the target object in the fusion results, which

demonstrates the importance of preserving the object’s edge.
The fourth image is the fusion result of a popular method
based on sparse representation [38]. In this image, though
the saliency information and the background information are
preserved simultaneously, the background has some blurring
with a low contrast. The rightmost image is the fusion result
of our method. We see that our result has smooth image
contours and a better contrast.

The main contribution of our method includes the follow-
ing three aspects. (i) To improve the contrast of the fused
result and enhance the context of the target object, our method
is biased in favor of the visible image from the Poisson
reconstruction. We mix the gradient of the fused image using
a mask map derived from the saliency map, rather than a
weight map, such that our method can use the raw gradient
of the input image to reconstruct the final result, which could
avoid low contrast and halo effects in the result. (ii) We
extract the saliency map using the intensity saliency of the
infrared image (like several state-of-the-art methods) and the
structural saliency of the infrared and visible images, which
could suppress some noise in the infrared image, enhance the
edge information of the salient region and improve the perfor-
mance in terms of human visual perception. (iii) To obtain a
convincing probability for each feature and decrease the error
from manually assigning the prior probability, we propose a
novel probability mass function to calculate the probabilistic
map in the process of applying DS. It turns out that this
function’s results are more objective, and this method is better
than the approaches in [39] and [40].

The rest of the paper is organized as follows. Section II
presents the framework of our method and the formulation of
the proposed method. We test our fusion method using a pub-
licly available dataset and nine prior methods are compared
to our approach in section III. The study’s conclusions are
presented in section IV.

II. METHOD
In this section, we first illustrate the proposed framework’s
architecture and data flows, and then introduce the definition
of the probability mass function. After that step, we present
our method of saliency region detection based on the DS.
To this end, we introduce the Poisson image reconstruction.

A. FRAMEWORK OVERVIEW
Fig. 2. shows the architecture of the proposed approach.
We divide our method into two major steps: saliency map
detection and Poisson reconstruction. First, the gradients of
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FIGURE 2. Framework of the proposed method.

the input images are calculated using the forward differences.
Then, the structural saliency of the input image and the inten-
sity saliency of the infrared image are calculated using a novel
probability mass function, which will be discussed in the next
section. The structural saliency of the input images and the
intensity saliency of the infrared images are simultaneously
taken as evidences to extract the saliencymap using DS. After
that, the saliency map is taken as the mask map to fuse the
gradients of the source images. In the end, the final fused
image is acquired from the fused gradient by solving the
Poisson equation.

• The calculation of the probabilistic map (IR). The gra-
dient and intensity of the target in the infrared image
always have significant differences from the back-
ground. Based on this, the intensity saliency (IR) is
generated by the intensity of the infrared image and the
structural saliency (IR) is derived from the gradient of
the infrared image. In the end, the intensity saliency (IR)
and structural saliency (IR) are taken as two pieces of
evidence to calculate the probabilistic map (IR) using
the DS.

• The calculation of the structure saliency (VIS).
We notice that the target’s gradients in the visible
image and infrared image usually change simultane-
ously. Therefore, the gradient of the visible image is also
used to calculate the structural saliency (VIS), which can
reduce the impact of the noise in the infrared image on
the results.

• The calculation of the saliency map. To suppress the
noise in the infrared image and obtain a pure saliency
map, the structural saliency (VIS) is chosen as the third
evidence to calculate the saliency map using the DS.

• Poisson image reconstruct. After calculating the saliency
map, we mix the gradient of the infrared image with
that of the visible image, and the final fused image is
reconstructed by solving Poisson equations.

B. DEMPSTER-SHAFER THEORY
Dempster-Shafer theory is a popular theory to deal with
the uncertainty problem, which could emphasize the event’s

objectivity and human’s subjectivity. The distinctive charac-
ter of DS is that the description of uncertainty is based on
an ‘‘interval estimation’’, rather than a ‘‘point estimation’’,
which could integrate the knowledge and data from different
experts ormultiple sensors [41]. In addition, DS also has great
flexibility in distinguishing between unknown and uncertain
aspects. We suppose� is the hypotheses space and the power
set of � is denoted by 2�, which contains all the classes and
their possible unions. The imprecision and uncertainty in DS
are expressed by the definitions of the plausibility (Pls) and
belief (Bel), which are both obtained from a probability mass
(m), and for each class A of 2�, where 0 ≤ m(A) ≤ 1,{

m(A) = 0∑
A∈2� m(A) = 1.

(1)

For the imprecise knowledge, it could be represented by
a nonzero probability mass to a compound hypothesis. The
belief and plausibility functions can be defined for all A ∈ 2�

as follows:

Bel(A) =
∑

B⊂A
m(B), (2)

Pls(A) =
∑

B∩A=∅
m(B). (3)

Meanwhile, DS could combine the different evidentiary
information from several sensors. For every sensor, the poste-
rior probability (M) of all propositions (Ai) is calculated using
the different periods’ data that are acquired from the same
sensor as follows:

MS (Ai) =

∑
∩Aj=Ai

∏
1≤j≤nMsj(Ai)∑

∩Aj 6=∅
∏

1≤j≤nMsj(Ai)
, (4)

where S is the sensor, and 1 ≤ j ≤ n. Then, all the sensors
could be seen as a system to calculate the final posterior
probability, as above.

C. DEFINITION OF PROBABILITY MASS FUNCTION
The definition of the probabilitymass is the critical part of any
application of the DS since it provides a probability of a pixel
being classified to salient regions. Probability mass function
is a function that gives the probability that a discrete random
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FIGURE 3. Three probability mass functions.

variable is exactly equal to some value [42]. A digitized inten-
sity pattern is discrete and the intensity values are recorded as
‘pixels’ [43], and the values of pixel in digital image are taken
in a discrete set of possible values [44]. So the image pixels
we used could be seen as discrete random variables. In our
research, the structures of some salient regional distributions
in the spatial domain are different from that of the background
region. Therefore, we need an appropriate probability mass
function to distinguish their differences. Besides, the value
of the probability mass should be distributed from 0 to 1 with
a smooth distribution. There are many approaches to define
the probability mass function in the state-of-the-art studies.
In [40], the probability mass function is defined by a cubic
parabola with a horizontal, which is shown in Fig. 3. In [39],
they also proposed a probability mass function, which is
shown in Fig. 3. In this paper, the proposed probability mass
function actually is a function based on sigmoid function,
which is shown in Fig. 3. Sigmoid function has been widely
applied in machine learning, because it solves the binary
classification problem very well. The value of sigmoid func-
tion at x represents the probability of x being classified to
positive class (y = 1) [45]. However, in our experiment we
find that if we use the sigmoid function directly, even if the
pixel has a smaller gradient value (or intensity value), there
is still a high probability of being classified to saliency, and
this may lead to inaccurate saliency region. To overcome the
above mentioned problem, we improve the sigmoid function
by defining a threshold N. We assume that these pixels with
gradient value (or intensity value) equals to N will have a
smaller probability (P0) of being classified to saliency map.
The proposed probability mass function also guarantees that
the larger the gradient value (or intensity value) of pixels,
the greater probability of the pixels being classified to salient
regions, which is defined as follows:

P(Xi,j) =
[
1+ eN−Xi,j−ln(

Po
1−Po

)
]−1

, (5)

where P(Xi,j) is the probability of a pixel Xi,j being classi-
fied to salient regions, and N is a threshold, and pixel Xi,j
denotes the gradient value or the intensity value, which is
the random variable in the function to calculate probabil-
ity. When the pixel value in the image is smaller than the
threshold N, we assume that the assignment of a pixel to
the saliency region will be very unlikely, which is modeled

by a small probability P0. Through a lot of experiments,
P0 is defined as 0.05, which means there is a small possi-
bility that it is a salient region. In addition, the probability
mass we proposed is real-valued, monotonic and differ-
entiable. It has a non-negative first derivative that is bell
shaped and maps variables between 0 and 1, which is shown
in Fig. 3.

Furthermore, when we compare our probability mass with
the literature [40] and literature [39], we assume that N equals
literature [40]’s falling threshold of 1.5 (the rising threshold
is 3.5). The results are illustrated in Fig. 3. The probability
value of the method in the literature [39], [40] is abrupt near
the threshold, and the probability change rate is so high that
the overall distribution is less smooth. In addition, when the
pixel Xi,j is smaller than the falling threshold or higher than
the rising threshold, the probability will stay the same with a
small probability or a high probability, which means that the
homogeneity of the probability will lead to an inappropriate
local probability distribution. In addition, the threshold N
needs to be defined only once in our method, which could
guarantee that the probabilistic map is more objective. The
fused results based on the three probability masses are com-
pared in section III.

D. SALIENCY REGION DETECTION
Saliency region detection could be interpreted as a pixel
labeling problem, where each pixel in the image is labeled
as either salient or non-salient. In addition, the pixel labeling
could be seen as a target recognition problem, which can be
treated using DS. This is because the theory allows one to
combine the evidences from different sources and arrive at
a degree of belief that takes into account all the available
evidence [41], [46]. Furthermore, the prior probability needed
in DS is more intuitive and easier to obtain than the proba-
bility theory. The Dempster synthesis rule can continuously
integrate new different knowledge and data to improve the
recognition and extraction precision [46].

We consider that the salient region not only has a greater
intensity and gradient than the neighboring pixels in the
infrared image, but it also has a greater gradient in the vis-
ible image. Therefore, the structural saliency of both source
images and the intensity saliency of infrared image are simul-
taneously taken as evidences to calculate the saliency map
using DS. Meanwhile, the effects of noise within the infrared
image on the fusion result could be suppressed by using
the gradient of the visible image. The image gradient is a
directional change in the intensity or color of an image, which
can be used to illustrate the differences between image pixels.
In this paper, the gradient of the source image is computed by
using the forward difference, so the pixels in gradient image
are still the discrete random variables. Then, the structural
saliency probabilistic map (MG) is acquired through the prob-
ability mass function as follows:

MG(Gi,j) =
[
1+ eNG−Gi,j−ln(

Po
1−Po

)
]−1

, (6)
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whereGi,j is the gradient value at pixel(i,j) and NG represents
the threshold of gradient which has a smaller probability
(P0) of being classified to salient regions. The salient region
of the infrared image that is extracted relies on the human
visual system, which is not very sensitive to the absolute
luminance reaching the retina, but rather it responds to local
intensity ratio changes [47]. Based on this, we proposed a
novel method to calculate the saliency map. The salient map
F for a source image I could be obtained as follows:

Fi,j = Ii,j − Im, (7)

where Fi,j denotes the intensity value at pixel(i,j), Ii,j is
the original pixel value of the source image and Im is the
arithmetic mean pixel value of the image, so the pixels in
salient map F are still the discrete random variables. Then,
the intensity saliency probabilistic map (MF) is obtained as
follows:

MF (Fi,j) =
[
1+ eNF−Fi,j−ln(

Po
1−Po

)
]−1

, (8)

where NF is the threshold of intensity which has a smaller
probability (P0) of being classified to salient regions. There-
fore, the structural saliency probabilistic map of the infrared
image (MG_IR) and the intensity saliency probabilistic map
of the infrared image (MF_IR) are used to calculate the prob-
abilistic map of the infrared image (MIR) by DS, as shown
in Eq. (9). By combining the structural saliency and intensity
saliency of the infrared image, the edge of the saliency map
could be preserved well.

MIR =
MG_IR +MF_IR

1−MG_IR × (1−MF_IR)−MF_IR × (1−MG_IR)
.

(9)

Then, we combine the MIR with the structural saliency
probabilistic map of the visible image (MG_VIS ) to calculate
the final probabilistic mapM by DS as Eq. (10), which could
suppress the noise to derive a pure saliency map.

M =
MG_VIS +MIR

1−MG_VIS×(1−MIR)−MIR×(1−MG_VIS )
. (10)

E. IMAGE FUSION IN GRADIENT DOMAIN
In this paper, we combine the saliency detection with Pois-
son reconstruction to fuse infrared and visible images. Pois-
son image editing has been used in image processing for
decades [30], [36], [37]. This is because it fuses the images
in the high-frequency gradient domain without involving the
low-frequency information, which could improve the contrast
of the fused image. Compared with other works, we use the
mask map rather than the weight map to mix the gradient.
In this way, we could use the raw gradient of the source
image to reconstruct the final result, which could avoid low
contrast and halo effects in the results. First, the gradients of
the input images are calculated using the forward difference.
Then, a threshold λ is initialized to derive the binary saliency

map (S) from M by using the following rule:

S(x, y) =

{
0 if M (x, y) < λ

1 otherwise.
(11)

The image fusion is conducted using the Poisson image
reconstruction, which mixes the gradient of the source image
with that of the destination image. Therefore, the mixed gra-
dient is obtained by combining the gradients of the infrared
image and the visible image, which is expressed as follows:

∇G(x, y)=S(x, y)×∇GIR(x, y)+(1−S(x, y))×∇GVIS (x, y),

(12)

where ∇G(x, y), ∇GIR(x, y) and ∇GVIS (x, y) are the gradi-
ents of the fused image, the infrared image, and the visible
image, respectively, at pixel (x, y). Then, the mixed gradient
is applied to construct the final fused image by Poisson image
editing [48]. This method leads to a seamless result that
preserves the gradient information of both images.

III. EXPERIMENTAL RESULTS
In this section, we test the performance of proposed method
on a publicly available dataset, and compare it with nine
previousmethods. Fusion strategies are generally divided into
several categories according to their adopted theories, i.e.,
multi-scale transform-based methods, sparse representation-
based methods, deep learning based methods, subspace-
based methods and other infrared and visible image fusion
methods [10], [49], [50]. Based on this, we choose nine
previous methods from all above categories to make com-
parisons with our method. The convolutional neural net-
works (CNN) [51] is representative deep learning based
methods. The laplacian pyramid (LP) [14] and nonsubsam-
pled contourlet transform (NSCT) [52] are representative
multi-scale transform-based methods. The adaptive sparse
representation (ASR) [38], laplacian pyramidwith sparse rep-
resentation (LPSR) [53] and sparse representation (SR) [54]
are representative sparse representation-based methods. The
fourth order partial differential equations (FPDE) [55] is
representative subspace-based methods. The gradient trans-
fer and total variation minimization (GTF) [9] and infrared
feature extraction and visual information preservation (IFE-
VIP) [56] are representative other infrared and visible image
fusion methods. These methods are conducted based on the
publicly available codes with the parameters being initialized
according to the original paper, and we try our best to tune
some details. All the experiments are carried on a Macpro
(Intel(R) Xeon(R) with E5-1650 v2 3.5 GHz CPU and 16GB
memory) with the MATLAB software.

A. DATASETS AND SETTING
The images we used to test our method are from the
TNO Image Fusion Dataset. This dataset contains multi-
spectral (intensified visual, near-infrared, and long wave
infrared or thermal) nighttime imagery of different mil-
itary relevant scenarios that are registered with different
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FIGURE 4. Qualitative comparisons of fused images with two probability
mass functions.

multiband camera systems (including Athena, DHV, FEL,
and TRICLOBS), and is available at https://figshare.com/
articles/TNO_Image_Fusion_Dataset. Eight typical image
pairs are chosen to assess the performance of the proposed
method, and the image pairs we used in this paper have been
aligned in advances.

We first show some intermediate results of saliency maps
in the Fig. 6. The image quality evaluation could evaluate
the performances of the infrared and visible image fusion
methods. In addition, the quality evaluation methods could
be classified as subjective and objective evaluation meth-
ods [10], [57], [58]. The subjective evaluation methods play
an important role in fusion quality evaluation because they
focus on the image’s distortion, details, and completeness.
Nevertheless, it is necessary to introduce objective evaluation
methods since they can quantitatively assess the fused image
quality without being biased by observers or interpreters.
Therefore, we use multiple metrics to make a comprehensive
evaluation of the different fusion methods. In this paper,
we choose four metrics. Entropy (EN) [59], [60] measures the
amount of information contained in a fused image based on
information theory. The standard deviation (SD) [61] is based
on the statistical concept that reflects the distribution and con-
trast of the fused image. Mutual information (MI) [62], [63]
measures the information that is transferred from the source
image to the fused image, and QAB/F [62] measures the
amount of edge information that is transferred from source
images to the fused image. Larger values of all these metrics
represent the better performance of the fusion method.

Parameter Initialization: In this paper, there are three
parameters that should be initialized, i.e., NG, NF, and λ
in section II. NG controls the probability of a pixel being
classified to the salient region in the gradient field. Accord-
ing to the experiments, NG = 1 is applicable, and when
NG is larger than 1, the saliency map will be incomplete.

FIGURE 5. Qualitative comparisons of the fused images using our method
and NSCT.

FIGURE 6. Intermediate results of saliency maps.

Furthermore, when NG = 0, there are more no saliency
region are contained in the fusion result than the situation
of NG = 1. Meanwhile, NF should be fixed as 0 after our
experiments because NF ≥ 0 means that it is possible for
the pixel that has a larger intensity than the mean intensity
of the image to be defined by the saliency map. In the end,
to preserve more target information we adopt λ = 0.5 after
numerous experiments during our study.

B. QUALITATIVE COMPARISONS
To get an intuitive impression of the proposed method’s per-
formance, nine excellent methods are selected for the qualita-
tive comparison. These methods are mentioned at the begin-
ning of section III. We first perform experiments on four typ-
ical image pairs in order to compare the result of our proba-
bility mass function with that of literature [39], [40], which is
mentioned in section II, as shown in Fig. 4.We could find that
both the results that use literature [39], [40]’s probabilitymass
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TABLE 1. Quantitative comparisons of images in FIGURE 4.

functions can obtain similar fused result, and they cannot well
preserve the details in the source image. Notably, the salient
region in the infrared image is not extracted completely, such
as the ground information in the first row, the man’s detailed
information in the third row, and the background information
located in the top-right of the image in the fourth row. This
illustrates that the probability mass function we proposed is
appropriate to be used to calculate the probability for each
pixel of the image. Furthermore, the advantage will be more
obvious if the salient region has similar intensities with the
background.

Then, we perform experiments on three typical image pairs
to compare our method with a popular fusion method, known
as the NSCT [52]. The results are illustrated in Fig. 5. The
top two rows are the infrared images and the visible images.
The third row is the fusion results of the NSCT. On the one
hand, it can be seen from the results that the NSCT cannot
well preserve the background information from the visible
image. For example, the sky in the first and third columns is
not preserved in the final fused images and the same occurs
with the trench in the second column. On the other hand,
the NSCT fails to highlight the target information, and the
men in all three image pairs have a lower contrast than our
results. The fourth row is the fusion results of ours, whichwell
preserves both the salient foreground object information and
the background information. In addition, the fused images of
our method look similar to high-resolution infrared images
with clear highlighted targets, which will be beneficial for
understanding the image.

The experimental results of the qualitative comparison
between our method and the nine state-of-the-art methods are
presented in Fig. 7. Eight image pairs are assessed in this step.
By learning from the results, our method preserves the target
information and the background information simultaneously.
In addition, it also preserves more edge information of the

salient targets in the fused image, such as images A, B, E, F,
and H. All the objects in those images have sharp boundaries
and high contrast. Meanwhile, our algorithm inherits plenty
of textural information from the visible image, which leads to
a great image with high contrast and clear details. In addition,
the fusion performances of CNN varied for different image
pairs, and the fused results on image B, C, D and E could
obtain comparable fusion performances with our method.
Whereas the other image pairs using CNN could not well pre-
serve detail information compared with our fusion method.
The quantitative evaluations of the fused images of CNN are
shown in Table 2-5, and it can be clear seen that the metric
values of CNN are lower than our methods in most cases.

C. QUANTITATIVE COMPARISONS
In this section, we first present the quantitative comparisons
of our probability mass function and literature [39], [40]’s
method, which are shown in Table 1. We can see that the met-
ric values of the images that are fused using our probability
mass function have a better performance than that of the other
two methods.

Then, the quantitative comparisons of the nine methods
that mentioned above are implemented using eight image
pairs, which are shown in the Fig. 7. We choose four indexes
to evaluate the fused images, including the EN, SD, MI
and QAB/F. The quantitative results are presented in the
Tables 2-5, where the best values are highlighted with bold.

The evaluation results of the Entropy (EN) for all the
methods are shown in Table 2, and there are five results of
our method that have the largest respective entropy values.
A larger entropy value indicates a better performance for the
fused image. This means that our results contain much more
information than the other methods in most cases because
the results of our method preserve the target information
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FIGURE 7. Qualitative fusion results on the eight image pairs of A-H. From top to bottom: infrared images, visible images, the results of our
method, IFEVIP, FPDE, ASR, GTF, LP, LPSR, NSCT, SR and CNN, respectively.

and the background information simultaneously and inherit
plenty of textural information from the visible image. This is
consistent with the qualitative comparisons. The evaluation
results of the standard deviation (SD) of all algorithms are
presented in Table 3. The SD reflects the distribution and
contrast of the fused image. For all the eight test images,
there are four results of our method that have the largest value
among all the respective results, which are for images A, B,

E and F. While FPDE method gets higher scores in C and
D image pairs compared to our method, because the fused
results of FPDE method have relatively higher contrast than
our method. Our method is biased in favor of the visible
image from the Poisson reconstruction to fuse the images,
when visible images (like C and D image pairs) have low
contrast, the fused results may have relatively low contrast.
But our method gets relatively high scores compared to the
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TABLE 2. Quantitative comparisons of the ENs of the images in FIGURE 7.

TABLE 3. Quantitative comparisons of the SDs of the images in FIGURE 7.

TABLE 4. Quantitative comparisons of the MIs of the images in FIGURE 7.

other methods in the rest image pairs. It demonstrates that
the results of our method have a higher contrast than other
approaches. It is interesting that images G and H have the

largest SD values, but the visual effects are poorer than our
method. Therefore, it is necessary to evaluate the image
quality by using multiple indexes. Note that our method and
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TABLE 5. Quantitative comparisons of the QAB/F of the images in FIGURE 7.

TABLE 6. Running time (seconds) of different image fusion methods.

LPSR could obtain comparable fusion performances and pro-
duce the best MI values in most cases. Because our method
combines the salient regions in the infrared image with the
background information in the visible image, the final fused
images always have much mutual information. The largest
MI indicates that there is a significant amount of information
that is transferred from the source image to the fused image,
and our method has the largest results on images A, B and
F. For QAB/F, our method also has an excellent performance
because we first mix the gradient of the salient region and
the background region, and then the image is reconstructed
by solving the Poisson equations. As a result, the edge in the
source image is preserved very well. Furthermore, the SR and
LPmethods could produce comparable results to our method.
In the end, we can conclude that our method tends to not
only preserve the salient region but also provide abundant
background information to the fused image.

In addition, it is difficult to analyze the computational
complexity of both the compared methods and our fusion
method theoretically. Nevertheless, we have evaluated the
computational complexity of the compared methods and our
fusion method by time consumption, and the running time
of all methods on the eight image pairs (A-H) are given
in Table 4, where each value denotes the mean of run time
of a certain method on the eight image pairs. The methods of
IFEVIP, FPDE, LP and LPSR run faster than others according
to Table 6. The main time consumption of GTF lies in the
optimization process of the gradient transfer fusion model.
NSCT decomposes images into different scales, and it uses
a nonlinear mapping function to obtain the directional sub-
band coefficients, then it reconstructs the fused image by
the inverse multiscale transform, which makes it take more

time than these of IFEVIP, FPDE, LP and LPSR. Besides,
the time consumption of ASR and SR mainly lie in training
the dictionary for image fusion. The time consumption of
CNN fusion methods mainly lies in training to encode a
direct mapping from source images to the weight map, thus
the running time of ASR, SR and CNN is more than these
of IFEVIP, FPDE, LP, LPSR, GTF, NSCT and our method.
Moreover, our method is based on Poisson reconstruction and
saliency detection using the Dempster-Shafer theory (DS).
The time consumption of our method mainly lies in the
process of Poisson reconstruction, and it needs plenty of
time to reconstruct the fused image by solving the Poisson
equation. In summary, our method generally takes more time
than these of IFEVIP, FPDE, LP, LPSR, GTF and NSCT,
and it takes less time than ASR, SR and CNN. In addition,
our method can obtain the best image fusion performance
in most circumstance. Therefore, our method can achieve
a desirable balance between image fusion performance and
time consumption.

IV. CONCLUSION
In this paper, we design an efficient approach for infrared and
visible image fusion based on saliency detection and Poisson
reconstruction. In addition, we proposed a novel probability
mass function before using the DS. By taking advantage of
the accuracy of saliency map detection and the desirable
performance of Poisson reconstruction, the results show that
our method could effectively retain the salient foreground
target information and the background information, and the
fused image has smooth image contours with better con-
trast. Experimental results demonstrate that both the salient
region and the contextual information are well-incorporated
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into the fused image. The experimental results indicate that
our method performs excellently. Nevertheless, our method
is biased in favor of the visible image from the Poisson
reconstruction to fuse the images, when visible image has low
contrast, the fused image may have a relatively low contrast.
So in the future work, the algorithm will incorporate more
features as evidences to acquire a more accurate saliency map
to improve the contrast of results, when visible images have
a low contrast. Furthermore, a new dataset with higher res-
olution images from https://www.ino.ca/en/ video-analytics-
datasets should be applied into the further research.

REFERENCES
[1] Y. Li, C. Tao, Y. Tan, K. Shang, and J. Tian, ‘‘Unsupervised multilayer

feature learning for satellite image scene classification,’’ IEEE Geosci.
Remote Sens. Lett., vol. 13, no. 2, pp. 157–161, Feb. 2016.

[2] S. Yin, L. Cao, Y. Ling, and G. Jin, ‘‘One color contrast enhanced infrared
and visible image fusion method,’’ Infr. Phys. Technol., vol. 53, no. 2,
pp. 146–150, 2010.

[3] G. Bhatnagar, Q. M. J. Wu, and Z. Liu, ‘‘A new contrast based mul-
timodal medical image fusion framework,’’ Neurocomputing, vol. 157,
pp. 143–152, Jun. 2015.

[4] A. P. James and B. V. Dasarathy, ‘‘Medical image fusion: A survey of the
state of the art,’’ Inf. Fusion, vol. 19, pp. 4–19, Sep. 2014.

[5] R. Singh, M. Vatsa, and A. Noore, ‘‘Integrated multilevel image fusion
and match score fusion of visible and infrared face images for robust face
recognition,’’ Pattern Recognit., vol. 41, no. 3, pp. 880–893, 2008.

[6] L. Tang, F. Meng, Q. Wu, N. L. Sowah, K. Tan, and H. Li, ‘‘Salient
object detection and segmentation via ultra-contrast,’’ IEEE Access, vol. 6,
pp. 14870–14883, 2018.

[7] Y. Ma, J. Chen, C. Chen, F. Fan, and J. Ma, ‘‘Infrared and visible image
fusion using total variation model,’’ Neurocomputing, vol. 202, pp. 12–19,
Aug. 2016.

[8] G. Piella, ‘‘A general framework for multiresolution image fusion: From
pixels to regions,’’ Inf. Fusion, vol. 4, no. 4, pp. 259–280, 2003.

[9] J. Ma, C. Chen, C. Li, and J. Huang, ‘‘Infrared and visible image fusion
via gradient transfer and total variation minimization,’’ Inf. Fusion, vol. 31,
pp. 100–109, Sep. 2016.

[10] J. Ma, Y. Ma, and C. Li, ‘‘Infrared and visible image fusion methods and
applications: A survey,’’ Inf. Fusion, vol. 45, pp. 153–178, Jan. 2019.

[11] H. Ghassemian, ‘‘A review of remote sensing image fusion methods,’’ Inf.
Fusion, vol. 32, pp. 75–89, Nov. 2016.

[12] K. Amolins, Y. Zhang, and P. Dare, ‘‘Wavelet based image fusion
techniques—An introduction, review and comparison,’’ Isprs J. Pho-
togramm. Remote Sens., vol. 62, no. 4, pp. 249–263, 2007.

[13] A. Toet, ‘‘Hierarchical image fusion,’’ Mach. Vis. Appl., vol. 3, no. 1,
pp. 1–11, 1990.

[14] P. J. Burt and E. H. Adelson, ‘‘The Laplacian pyramid as a compact image
code,’’ Readings Comput. Vis., vol. 31, no. 4, pp. 671–679, 1987.

[15] A. V. Vanmali and V. M. Gadre, ‘‘Visible and NIR image fusion using
weight-map-guided Laplacian–Gaussian pyramid for improving scene vis-
ibility,’’ Sadhana, vol. 42, no. 7, pp. 1063–1082, 2017.

[16] P. Chai, X. Luo, and Z. Zhang, ‘‘Image fusion using quaternion wavelet
transform and multiple features,’’ IEEE Access, vol. 5, pp. 6724–6734,
2017.

[17] L. Xu, J. Du, and Z. Zhang, ‘‘Infrared-visible video fusion based on
motion-compensated wavelet transforms,’’ IET Image Process., vol. 9,
no. 4, pp. 318–328, 2014.

[18] F. Meng, M. Song, B. Guo, R. Shi, and D. Shan, ‘‘Image fusion based
on object region detection and non-subsampled contourlet transform,’’
Comput. Elect. Eng., vol. 62, pp. 375–383, Aug. 2017.

[19] H.-X. Liu, T.-H. Zhu, and J.-J. Zhao, ‘‘Infrared and visible image fusion
based on region of interest detection and nonsubsampled contourlet trans-
form,’’ J. Shanghai Jiaotong Univ., vol. 18, no. 5, pp. 526–534, 2013.

[20] S. Li, H. Yin, and L. Fang, ‘‘Group-sparse representation with dictionary
learning for medical image denoising and fusion,’’ IEEE Trans. Biomed.
Eng., vol. 59, no. 12, pp. 3450–3459, Dec. 2012.

[21] C. H. Liu, Y. Qi, and W. R. Ding, ‘‘Infrared and visible image fusion
method based on saliency detection in sparse domain,’’ Infr. Phys. Technol.,
vol. 83, pp. 94–102, Jun. 2017.

[22] Q. Zhang, Y. Liu, R. S. Blum, J. Han, and D. Tao, ‘‘Sparse representa-
tion based multi-sensor image fusion for multi-focus and multi-modality
images: A review,’’ Inf. Fusion, vol. 40, pp. 57–75, Mar. 2017.

[23] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, ‘‘Frequency-tuned
salient region detection,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2009, pp. 1597–1604.

[24] J. Ren, Z. Liu, X. Zhou, G. Sun, and C. Bai, ‘‘Saliency integration driven by
similar images,’’ J. Vis. Commun. Image Represent., vol. 50, pp. 227–236,
Jan. 2017.

[25] L. Itti, C. Koch, and E. Niebur, ‘‘Amodel of saliency-based visual attention
for rapid scene analysis,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 20,
no. 11, pp. 1254–1259, Nov. 1998.

[26] X. Zhou, Z. Liu, C. Gong, andW. Liu, ‘‘Improving video saliency detection
via localized estimation and spatiotemporal refinement,’’ IEEE Trans.
Multimedia, vol. 20, no. 11, pp. 2993–3007, Nov. 2018.

[27] Z. Liu, J. Li, L. Ye, G. Sun, and L. Shen, ‘‘Saliency detection for
unconstrained videos using superpixel-level graph and spatiotemporal
propagation,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 12,
pp. 2527–2542, Dec. 2017.

[28] D. P. Bavirisetti and R. Dhuli, ‘‘Two-scale image fusion of visible and
infrared images using saliency detection,’’ Infr. Phys. Technol., vol. 76,
pp. 52–64, May 2016.

[29] J. Han, E. J. Pauwels, and P. De Zeeuw, ‘‘Fast saliency-aware multi-
modality image fusion,’’ Neurocomputing, vol. 111, pp. 70–80, Jul. 2013.

[30] J. Sun, H. Zhu, Z. Xu, and C. Han, ‘‘Poisson image fusion based onMarkov
random field fusion model,’’ Inf. Fusion, vol. 14, no. 3, pp. 241–254, 2013.

[31] Z. Liu, Y. Xue, H. Yan, and Z. Zhang, ‘‘Efficient saliency detection based
on Gaussian models,’’ IET Image Process., vol. 5, no. 2, pp. 122–131,
Mar. 2011.

[32] X. Zhang, Z. Ren, D. Rajan, and Y. Hu, ‘‘Salient object detection through
over-segmentation,’’ in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2012,
pp. 1033–1038.

[33] K. Fu, C. Gong, I. Y.-H. Gu, and J. Yang, ‘‘Normalized cut-based saliency
detection by adaptive multi-level region merging,’’ IEEE Trans Image
Process, vol. 24, no. 12, pp. 5671–5683, Dec. 2015.

[34] K. Fu, I. Y.-H. Gu, and J. Yang, ‘‘Saliency detection by fully learning a
continuous conditional random field,’’ IEEE Trans. Multimedia, vol. 19,
no. 7, pp. 1531–1544, Jul. 2017.

[35] P. Zhang, Y. Yuan, C. Fei, T. Pu, and S. Wang, ‘‘Infrared and visible
image fusion using co-occurrence filter,’’ Infr. Phys. Technol., vol. 93,
pp. 223–231, Sep. 2018.

[36] J. Jia, J. Sun, C.-K. Tang, and H.-Y. Shum, ‘‘Drag-and-drop pasting,’’ ACM
Trans. Graph., vol. 25, no. 3, pp. 631–637, Jul. 2006.

[37] J. Wen, Y. Li, and H. Gong, ‘‘Remote sensing image fusion on gradient
field,’’ in Proc. 18th Int. Conf. Pattern Recognit. (ICPR), Aug. 2006
pp. 643–646.

[38] Y. Liu and Z. Wang, ‘‘Simultaneous image fusion and denoising with
adaptive sparse representation,’’ IET Image Process., vol. 9, no. 5,
pp. 347–357, 2015.

[39] Y. Cao, H. Wei, H. Zhao, and N. Li, ‘‘An effective approach for land-
cover classification from airborne lidar fused with co-registered data,’’ Int.
J. Remote Sens., vol. 33, no. 18, pp. 5927–5953, 2012.

[40] F. Rottensteiner, J. Trinder, S. Clode, and K. Kubik, ‘‘Using the Dempster–
Shafer method for the fusion of LIDAR data and multi-spectral images for
building detection,’’ Inf. Fusion, vol. 6, no. 4, pp. 283–300, 2005.

[41] A. P. Dempster, Upper and Lower Probabilities Induced by a Multivalued
Mapping. Berlin, Germany: Springer, 2008.

[42] W. J. Stewart, Probability, Markov Chains, Queues, and Simulation.
The Mathematical Basis of Performance Modeling. Princeton, NJ, USA:
Princeton Univ. Press, 2009, pp. 40–60.

[43] M. A. Sutton, C. Mingqi, W. H. Peters, Y. J. Chao, and S. R. McNeill,
‘‘Application of an optimized digital correlation method to planar defor-
mation analysis,’’ Image Vis. Comput., vol. 4, no. 3, pp. 143–150, 1986.

[44] R. Klette, Concise Computer Vision. New York, NY, USA: Springer, 2014,
pp. 1–41.

[45] J. Han and C. Moraga, ‘‘The influence of the sigmoid function parameters
on the speed of backpropagation learning,’’ in Proc. Int. Workshop Artif.
Neural Netw., 2005, pp. 195–201.

[46] J. Inglis, ‘‘A mathematical theory of evidence,’’ Technometrics, vol. 20,
no. 1, p. 106, Jan. 1976.

[47] J. M. Dicarlo and B. A.Wandell, ‘‘Rendering high dynamic range images,’’
Proc. SPIE, vol. 3956, pp. 392–401, May 2000.

[48] P. Pérez, M. Gangnet, and A. Blake, ‘‘Poisson image editing,’’ in Proc.
ACM SIGGRAPH, San Diego, CA, USA, 2003, pp. 313–318.

VOLUME 7, 2019 20687



J. Li et al.: Poisson Reconstruction-Based Fusion of IR and VIS Images via Saliency Detection

[49] Y. Liu, X. Chen, H. Peng, and Z. F. Wang, ‘‘Multi-focus image
fusion with a deep convolutional neural network,’’ Inf. Fusion, vol. 36
pp. 191–207, Jul. 2017.

[50] Y. Liu, X. Chen, Z. Wang, Z. J. Wang, R. K. Ward, and X. Wang,
‘‘Deep learning for pixel-level image fusion: Recent advances and future
prospects,’’ Inf. Fusion, vol. 42, pp. 158–173, Jul. 2018.

[51] Y. Liu, X. Chen, J. Cheng, H. Peng, and Z. Wang, ‘‘Infrared and visible
image fusion with convolutional neural networks,’’ Int. J. Wavelets, Mul-
tiresolution Inf. Process., vol. 16, no. 3, p. 1850018, 2018.

[52] A. L Da Cunha, J. Zhou, and M. N. Do, ‘‘The nonsubsampled contourlet
transform: Theory, design, and applications,’’ IEEE Trans. Image Process.,
vol. 15, no. 10, pp. 3089–3101, Oct. 2006.

[53] Y. Liu, S. Liu, and Z. Wang, ‘‘A general framework for image fusion based
on multi-scale transform and sparse representation,’’ Inf. Fusion, vol. 24,
pp. 147–164, Jul. 2015.

[54] Y. Liu, X. Chen, R. K. Ward, and Z. J. Wang, ‘‘Image fusion with convolu-
tional sparse representation,’’ IEEE Signal Process. Lett., vol. 23, no. 12,
pp. 1882–1886, Dec. 2016.

[55] D. P. Bavirisetti, G. Xiao, and G. Liu, ‘‘Multi-sensor image fusion based
on fourth order partial differential equations,’’ in Proc. 20th Int. Conf. Inf.
Fusion (Fusion), Jul. 2017, pp. 1–9.

[56] Y. Zhang, L. Zhang, X. Bai, and L. Zhang, ‘‘Infrared and visual image
fusion through infrared feature extraction and visual information preserva-
tion,’’ Infr. Phys. Technol., vol. 83, pp. 227–237, Jun. 2017.

[57] J. Ma, W. Yu, P. Liang, C. Li, and J. Jiang, ‘‘FusionGAN: A generative
adversarial network for infrared and visible image fusion,’’ Inf. Fusion,
vol. 48 pp. 11–26, Aug. 2019.

[58] D. Liu, P. An, R. Ma, C. Yang, L. Shen, and K. Li, ‘‘Three-dimensional
holoscopic image coding scheme using high-efficiency video coding with
kernel-based minimum mean-square-error estimation,’’ J. Electron. Imag.,
vol. 25, no. 4, p. 043015, 2016.

[59] J. W. Roberts, F. B. Ahmed, and J. A. Van Aardt, ‘‘Assessment of image
fusion procedures using entropy, image quality, and multispectral classifi-
cation,’’ J. Appl. Remote Sens., vol. 2, no. 1, p. 023522, 2008.

[60] X. Zhou, L. Zhi, G. Sun, L. Ye, and X. Wang, ‘‘Improving saliency
detection via multiple kernel boosting and adaptive fusion,’’ IEEE Signal
Process. Lett., vol. 23, no. 4, pp. 517–521, Apr. 2016.

[61] Y.-J. Rao, ‘‘In-fibre Bragg grating sensors,’’ Meas. Sci. Technol., vol. 8,
no. 4, p. 355, 1997.

[62] G. Qu, D. Zhang, and P. Yan, ‘‘Information measure for performance of
image fusion,’’ Electron. Lett., vol. 38, no. 7, pp. 313–315, Mar. 2002.

[63] D. Liu, P. An, R. Ma, C. Yang, and L. Shen, ‘‘3D holoscopic image coding
scheme using HEVC with Gaussian process regression,’’ Signal Process.,
Image Commun., vol. 47, pp. 438–451, Sep. 2016.

JING LI received the M.Sc. degree in geo-
graphic information system and remote sensing
from Beijing Forestry University, Beijing, China,
in 2017. He is currently pursuing the Ph.D. degree
with the Department of Information Technology
and Cyber Security, People’s Public Security Uni-
versity of China.

His research interests include remote sensing,
image processing, and pattern recognition.

HONGTAO HUO received the M.S. and Ph.D.
degrees in computer science and technology
from Beijing Forestry University, Beijing, China,
in 1998 and 2001, respectively.

He is currently a Professor with the Depart-
ment of Information Technology and Cyber Secu-
rity, People’s Public Security University of China,
China. He has published several papers in various
refereed journals. His research has been supported
by the National Key Research and Development

Program of China and the Ministry of Public Security Technology Research
Program. His research interests include image processing, pattern recogni-
tion, remote sensing application technology, and image forensics.

CHENHONG SUI received the Ph.D. degree in
spatial information science and technology from
the Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2015.

She is currently an Associate Professor with
the School of Opto-Electronic Information Sci-
ence and Technology, Yantai University, Yantai,
China. Her research interests include remote sens-
ing image processing, pattern recognition, and
image quality assessment.

CHENCHEN JIANG received the bachelor’s
degree in geographic information system from
the Jinling College, Nanjing University, Nanjing,
China, in 2017. She is currently pursuing the
master’s degree with the Institute of Information
Technology and Cyber Security, People’s Public
Security University of China.

Her research interests include data mining in
crime, public security, remote sensing image clas-
sification, and target detection.

CHANG LI received the B.S. degree in information
and computing science from theWuhan Institute of
Technology,Wuhan, China, in 2012, and the Ph.D.
degree from the School of Electronic Informa-
tion and Communications, Huazhong University
of Science and Technology, Wuhan, in 2018.

He is currently a Lecturer with the Department
of Biomedical Engineering, Hefei University of
Technology, Hefei, China. His current research
interests include the areas of biomedical signal

processing, hyperspectral image analysis, computer vision, pattern recogni-
tion, and machine learning.

20688 VOLUME 7, 2019


	INTRODUCTION
	METHOD
	FRAMEWORK OVERVIEW
	DEMPSTER-SHAFER THEORY
	DEFINITION OF PROBABILITY MASS FUNCTION
	SALIENCY REGION DETECTION
	IMAGE FUSION IN GRADIENT DOMAIN

	EXPERIMENTAL RESULTS
	DATASETS AND SETTING
	QUALITATIVE COMPARISONS
	QUANTITATIVE COMPARISONS

	CONCLUSION
	REFERENCES
	Biographies
	JING LI
	HONGTAO HUO
	CHENHONG SUI
	CHENCHEN JIANG
	CHANG LI


