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ABSTRACT The approximate range emptiness problem requires a memory-efficient data structure D to
approximately represent a set S of n distinct elements chosen from a large universe U = {0, 1, · · · ,N − 1}
and answer an emptiness query of the form ‘‘S ∩ [a; b] = ∅?’’ for an interval [a; b] of length L (a, b ∈ U ),
with a false positive rate ε. The designed D for this problem can be kept in high-speed memory and
quickly determine approximately whether a query interval is empty or not. Thus, it is crucial for facilitating
online query processing in the information-centric Internet of Things applications, where the IoT data
are continuously generated from a large number of resource-constrained sensors or readers and then are
processed in networks. However, the existing works on the approximate range emptiness problem only
consider the simple case when the set S is static, rendering them unsuitable for the continuously generated
IoT data. In this paper, we study the approximate range emptiness problem over sliding windows in the IoT
Data streams, denoted by ε-ARESD-problem, where both insertion and deletion are allowed. We first prove
that, given a sliding window size n and an interval length L, the lower bound of memory bits needed in any
data structure for ε-ARESD-problem is n log2(nL/ε)+2(n). Then, a data structure is proposed and proved
to be within a factor of 1.33 of the lower bound. The extensive simulation results demonstrate the advantage
of the efficiency of our data structure over the baseline approach.

INDEX TERMS Approximate range emptiness, data structure, information-centric network, Internet of
Things, space lower bound.

I. INTRODUCTION
Approximate membership is an essential and well-studied
data structure problem [1]–[3]. Given a set S of n elements
chosen from a large universe U , the elements in S are called
members, and the other elements are nonmembers. The task
of this problem is to represent S by a memory-efficient data
structure D , and then, for a query element q ∈ U ,

(1) D outputs member with a probability 1, if q truly
belongs to S;

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhenyu Zhou.

(2) D outputs nonmember with a probability no less than
1− ε, if q truly does not belong to S.
Note that when q /∈ S, but D wrongly outputs member,

we call this as a false positive error. Then, the false positive
rate is the faction of the elements from U − S, for which D
wrongly outputs member.

Goswami et al. [4] generalize the ε-approximate member-
ship problem from asking whether a query element q (q ∈ U )
belongs to S or not to asking whether a query interval I =
[a, b] of length L ([a, b] contains L integers) intersects with
S or not, i.e., whether [a, b] ∩ S is ∅ or not. This generalized
problem is called the approximate range emptiness problem,

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

21857

https://orcid.org/0000-0002-8758-5763
https://orcid.org/0000-0003-0537-4522
https://orcid.org/0000-0002-5485-4955
https://orcid.org/0000-0001-6853-5878


X. Wang et al.: Near-Optimal Data Structure for Approximate Range Emptiness Problem in IC-IoT

FIGURE 1. Example of the range emptiness problem in IoT data streams in Information-Centric Internet of Things environment.

as studied in [4], and is defined as follows: the task of this
problem is to represent a set of S of n elements selected from
U by a memory-efficient data structure D , and then, for a
query interval I of length L,

(1) D outputs non-emptywith a probability 1, if I ∩S 6= ∅;
(2)D outputs emptywith a probability at least 1−ε, if I∩S

truly equals to ∅.

A. PRACTICAL SIGNIFICANCE FOR IC-IOT
In the Information-Centric Internet of Things (IC-IoT), IoT
data, such as radio frequency identification (RFID) tag
data [6], or sensor data [7] are continuously generated from a
large number of resource-constrained devices, and then are
delivered and cached throughout a network for the conve-
nience of close data copy retrieval, see [6], [8]–[13].However,
as the potential amount of IoT data is huge, (for example,
an RFID tag-ID can be 128-bit long [6]— there are 2128

possible tag-IDs), and these IoT data are continuously gener-
ated at a fast speed [8], [14]–[17], [19], quickly processing
a query interval over IoT data streams poses a challenge for
facilitating real-time services and monitoring in these sys-
tems. In Fig. 1, we show that, in three different places, namely,
factories, logistic centers, and supermarkets, goods with
attached electronic tags can be connected to information-
centric networks, and the tag-ID of a good is used as its
resource identifier. The IoT data of a good in this scenario
can be its tag-ID as well as other types of information,

such as manufacturer name, date of production, location, and
transportation destination. Many ordinary goods arrive and
leave continuously and quickly to and from each place (for
example, a factory or a supermarket) and there are also many
such places. Therefore, a number of IoT data streams are con-
tinuously collected by the RFID readers or sensors deployed
in these places for monitoring goods, and then cached in the
networking nodes. Now suppose that we want to provide real-
time monitoring of a specific group of goods, say a set of
highly valuable goods with tag-IDs belonging to an interval I ;
naturally, we need to solve the approximate range emptiness
problem. To be more specific, in this scenario, whenever a
sequence of an IoT data stream, denoted by S, which contains
the information of a set of newly arrived goods in one place, is
generated and cached in a nearby networking node. We can
construct a memory-efficient data structure D that approxi-
mately represents S, such thatD can be stored andmaintained
at every networking node, say a switcher or router, without
consuming too many memory resources. After that, the users
at different geographical locations can quickly determine
whether any good in I is present in S or not by querying the
cached data structureD in a nearby node. This is significantly
faster than the enumerative method whereby the user tries
to retrieve each good e ∈ I by sending out a request (an
INTEREST packet [8], [9]) in which the resource identifier
(data name) of e is set as the handle, and then waits for the
reply, which is obviously a time-consuming process when
none of the goods in I are actually present in S.
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Another important issue in Fig. 1 is how to facilitate fine-
grained access control to the IoT data streams. To be more
specific, we want distributed users at different geographical
locations to be quickly informed of the updates of the IoT
data that are related to his or her own goods. For example,
the goods belonging to a dealer can be represented by a
number of query intervals of resource identifiers (such as
the query intervals of tag-IDs), and every dealer needs to
be quickly notified of the real-time logistical information
of his or her own goods. For such a scenario, suppose that
S is a sequence of IoT data streams that are newly col-
lected and updated to a nearby networking node; after a
memory-efficient data structure D that approximately repre-
sents S is constructed and cached throughout the networks,
we can quickly identify those distributed users for which
the query intervals overlap with S, and then inform them
timely.

Last but not least, suppose the data servers (or routers) in
IC-IoT systems cache a set of records S, where each record
can be a long bit-vector, and this set can only be stored to disk
completely of the data-servers in IC-IoT systems. Whenever
a user issues a request to retrieve all the records within a
time interval [a, b], the information resource sharing and
management in IC-IoT needs to search this set by loading
each subpart of the set into the memory of a data server in
order to find all the records within the time interval [a, b]. For
such a scenario, we can use a space-efficient data structure,
denoted by D , which is capable of being maintained in the
high-speed memory, to approximately represent S in each
data-server. Then, when we want to list all the records within
[a, b], we first query D to avoid the slow disk accesses, if
there does not exist a record in S within [a, b]. Please refer
to [20] for other applications.

B. MOTIVATIONS
Goswami et al. [4] study the approximate range emptiness
problem by focusing on the simple case in which S (the
set to be represented) is static, rendering the derived lower
bound and proposed data structure [4] unsuitable for the more
general scenarios of IoT data streams, which are commonly
seen in IoT environments [8], [14]–[17], [19]–[22].

In this work, we study the ε-approximate range emptiness
problem in the sliding window model 1 for a data stream δ in
IC-IoT systems, because of the following:

(1) IoT data usually occur in the form of data streams in
IC-IoT systems, see [7], [14], [20], [21] for example.

(2) Usually, we are more interested in new data (for exam-
ple, the latest n elements in an IoT data stream) rather than
old data in IoT data streams, and the value or the hit ratio of
cached IoT data in IC-IoT systems decreases with time [8],
[14], [15], [19], [20], [23].

1 The sliding window model in data streams is first raised by [23];
there are many studies on the sliding window model for various types of
queries or estimations in data streams, such as [24].

(3) The designed data structureD can obviously provide an
efficient solution for a wide range of applications in IC-IoT
systems.

For example, in warehouse management in a smart
supermarket, the readers continuously collect the tag-IDs
(96-bit or 128-bit arrays) of newly arrived goods, see Fig. 1.
In such scenarios, we care more about the arrival of the
goods that have very short shelf-life or expiration time. AVIP
customer may want to query whether a type of shipping good
with their tag-ID belonging to a given interval [a, b] has
arrived or not (this VIP customer may also ask whether any
of a desired set of valuable goods with their tag-ID belonging
to a given interval [a, b] is present in the n newly arrived
shipping goods), so that he or she can obtain this good as
soon as it arrives. Under this situation, a slow SQL statement
in the database of servers cannot provide real-time service
for this type of query when there are many VIP customers.
Another example is in intelligent transportation, where each
vehicle carries an electronic label, and a police officer wants
to monitor a set of suspicious vehicles among the vehicles
occurring on one main road of a large city in the last hour. For
such scenarios, the designed data structure D can be quickly
loaded into the IC networks, and then the police officer can
rapidly obtain the information of suspicious vehicles.

C. CONTRIBUTIONS
Our main contributions in this paper are summarized as
follows:
(1) We obtain a space lower bound for any data structure

that solves the ε-approximate range emptiness problem over
sliding windows for data streams in IC-IoT.
(2) We design a data structure, denoted by A, for this

problem, and prove that: the number of bits in A is within
in a factor of 1.33 of the space lower bound.
(3) We conduct extensive simulations to verify the per-

formance of the designed data structure A, and the results
clearly demonstrate its superior performance.

The rest of the paper is organized as follows. Section II
presents related works. Section III presents and proves the
space lower bound for the ε-approximate range emptiness
problem in the sliding window model for data streams.
Section IV provides extensive experimental results with syn-
thetic datasets. Section V concludes the paper.

II. RELATED WORKS
A. THE APPROXIMATE MEMBERSHIP QUERY
There are many studies concerning the approximate member-
ship problem, both in a data set S and data streams under
different assumptions [1]–[3], [5], [25]–[30]. For example, a
Bloom filter [3] is the first data structure for the approximate
membership problem in a data set S. Given a false positive
rate ε, and a set S of n elements from U , the number of
memory bits needed in a Bloom filter is log2(e)n log2(1/ε),
and the lookup time for a query element q ∈ U is log2(1/ε).
When the size of the set S is unknown, Pagh et al. [25] show

VOLUME 7, 2019 21859



X. Wang et al.: Near-Optimal Data Structure for Approximate Range Emptiness Problem in IC-IoT

TABLE 1. Symbol definitions.

that the space lower bound of the approximate membership
problem is (1 − o(1))n log2(1/ε) + �(n log2(log2(n))). The
time-decaying Bloom filter (T-DBF) [29], [30] is proposed
to solve the approximate membership problem over sliding
windows in data streams. The key idea is to substitute the
m-bit array used in a Bloom filter with an array ofm counters,
such that the time information of each element in a data
stream can be recorded into these counters. Given a false
positive rate ε, and a sliding window size n, the number of
bits used in T-DBF is O(n log2(n) log2(1/ε)).

B. THE APPROXIMATE RANGE EMPTINESS
Goswami et al. [4] first define and study the approximate
range emptiness problem, which generalizes the approximate
membership query problem from querying a single point
‘‘q ∈ S?′′ to an interval ‘‘[a, b] ∩ S = ∅?′′ (q, a, b ∈ U ). As
far as we know, it is currently the only work that is relevant
to the approximate range emptiness problem. Both the space
lower bound and an optimal data structure are proposed in [4].

C. STREAMING DATA PROCESSING IN IC-IoT SYSTEMS
There are some studies [8], [14]–[17], [19], [30] on effi-
cient streaming processing in IC-IoT systems. For example,
in [15], Ahlgren et al. propose amethod for finding the newest
element in an IoT data stream. Li et al. [16] focus on the
data authorization problem of IoT data streams, and propose
a distributed secure data sharing structure, which contains a
self-update mechanism for this problem.

III. SPACE LOWER BOUNDS
In this section, we prove a space lower bound for any data
structure that solves the ε-approximate range emptiness prob-
lem in the sliding window model for data streams.2

A. PROBLEM DEFINITION
First, we list all the parameters that are needed for the def-
inition of the ε-approximate range emptiness problem in the

2For ease of illustration, IoT data stream is abbreviated as data stream.

sliding windowmodel for a data stream, which is abbreviated
as ε-ARESD-problem.
(1) Let δ = e1, e2, · · · , et , · · · be a data stream, where

each element et arrives at each time point t > 0 and is from
a large universe U = {0, 1, · · · , u− 1} of u elements.

(2) Let n be the size of a sliding window (n � u);
then, at every time point t > 0, the current sliding window
is defined as W t

= emax{1,t−n+1}, · · · , et , where et is the
newest element in W t , et−1 is the second newest, and so on.
Obviously, when t > n− 1, the sliding window contains the
n latest observed elements in δ, and when t ≤ n− 1, all the t
elements e1, e2, · · · , et are in the current window.

(3) Let [a, b] denote a query interval of length L, where
a ∈ U and b = a + L − 1 and ε ∈ [0, 1] be a given false
positive rate.

(4) Let A denote a data structure for the ε-ARESD-
problem, and A (t, [a, b]) ∈ {0, 1} denote the result of
A on a query interval [a, b] at time point t > 0. When
A (t, [a, b]) = 0, A determines that W t

∩ [a, b] = ∅;
otherwise, A determines that W t

∩ [a, b] 6= ∅.
Definition 1: The task of the ε-ARESD-problem is to

approximately represent the sliding window W t at each time
point t > 0 in a memory-efficient data structure A , by only a
one-pass scan of the data stream δ. There are two processing
steps for the data structure A at each t > 0:
Updating step: Before we give the details of theUpdating

step in A , we point out two basic facts: A is given a newly
arrived element et from δ, at each time point t > 0 (owing
to the one-pass scan requirement, A does not have access to
the previous element before time point t , unless this element
is stored explicitly); A needs to evict the information of the
expired element et−n from itself when t > n, and then store
the information of et into itself. These two facts implicitly
lead to A supporting an updating operation that changes its
memory status from representing W t−1 at a time point t − 1
to representingW t at the new time point t by only taking et as
the input. Furthermore, this updating step needs to guarantee
(Q1) and (Q2) shown below in the Querying step, at each
time point t > 0.
Querying step: A needs to answer a query interval [a, b]

such that for any t > 0, the following two statements are true:
(Q1) Pr[A (t, [a, b]) = 1] = 1, if [a, b] ∩W t

6= ∅;
(Q2) Pr[A (t, [a, b]) = 1] ≤ ε, if [a, b] ∩W t

= ∅.
Note that the definition of the ε-ARESD-problem is quite
different from the problem studied in [4], where the authors
only consider the simple case that the set S to be stored is
static, i.e., no insertion or deletion is allowed. In this study,
we consider a more general case that the set to be stored is a
sliding window W t , which changes with time.

B. SPACE LOWER BOUND ANALYSIS
The space lower bound for any data structure that solves the
ε-ARESD-problem is proved based on an encoding argu-
ment, which is commonly used in analyzing the lower bounds
in the research areas of algorithms and complexity [4], [25],
[26]. The high-level idea is as follows: first, we assume
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that there is a data structure A for the ε-ARESD-problem;
second, we can use A and two additional arrays, B and D, to
perfectly encode an ordered sequence s that contains n unique
elements chosen from U ; lastly, the lower bound of A is
derived from the information gap between s and two arrays,
B andD (the difference between the number of bits needed to
perfectly represent a sequence s and the total number of bits
in the arrays B and D). The main idea for designing the two
additional arrays, B and D, is to correct the errors made by
A . Note that by Definition 1, A is allowed to have a false
positive rate ε.
Theorem 2: Let c be equal to u/(nL). Suppose that c ≥ 1

and ε ≥ 1/c. Let |A | represent the number of bits in any
data structure A that solves the ε-ARESD-problem; then,
we have the following

|A | ≥ n[log2(1/ε)+ log2 L + log2 n]− O(n) = SLB. (1)

Proof: We choose the sequences of n unique elements
following two steps:

STEP1: We divide the universeU into u/L disjoint subsets
as U1 = {0, 1, · · · ,L − 1}, U2 = {L,L + 1, · · · , 2 ∗ L −
1},· · · ,{( uL − 1)L, ( uL − 1)L + 1, · · · , ( uL − 1)L + L − 1};

STEP2: we choose n different subsets out of those u/L
disjoint subsets, and then pick exactly one element from those
chosen n subsets.
There are ( uL )

nLn possible sequences, and the number
of bits required to represent all these sequences exactly is
log2((

u
L )
nLn) = log2((

u
L )
n)+ n log2(L) bits.

3

Now, let us say that we generate a sequence s =
(s1, s2, · · · , sn) by STEP1 and STEP2 above. Assume thatA
is a data structure that is capable of solving the ε-ARESD-
problem, and initially at time point 0, A does not store any
elements. Then, the n elements in sequence s are given to A
one by one. To be more specific, s1 is given toA at time point
1 (A uses the Updating step in Definition 1 for storing s1 at
time point 1), s2 is given at time point 2 (A uses theUpdating
step for storing s2 at time point 2), and so on. Then, after time
point n, we say that A is an approximate representation of
sequence s, because the answers to the query interval of A ,
which are A (n + 1, [a, a + L − 1]), a ∈ {0, 1, · · · , u − L},
can help us to recover the sequence s approximately (some
answers can be wrong owing to the false positive rate of A ).

For the exact recovery of sequence s, we need to specify
two pieces of information:

Info-part-a: The n subsets from {U1,U2, ...,U u
L
} in which

the n elements s1, s2, ..., sn are truly contained. For ease of
illustration, let Uki ∈ {U1,U2, ...,U u

L
} (ki ∈ {1, 2, ..., uL })

represent the interval that actually contains the element si of
sequence s, for i ∈ {1, 2, ..., n}. Thus, for this part, we need
to specify the values of k1, k2, ..., kn.
Info-part-b: Which element contained in Uki is actually

the element si, for all i ∈ {1, 2, ..., n}.

3We consider only these ( uL )
nLn possible sequences, because the number

of this type of sequences is sufficiently large for us to obtain a reasonable
lower bound, when u ≥ nL.

Now, we are going to show how to partially recover
sequence s by issuing interval queries to A . Ui is actually an
interval of length L, becauseUi represents L consecutive inte-
gers. We focus on these u/L intervals, and query each Ui, i ∈
{0, 1, · · · , ul } at each time point n + j, j ∈ {1, 2, · · · , n}. Let
qji to be the result related to query Ui at time point (n + j)
to A . The querying process for U1,U2, ..,U u

L
is shown in

Procedure 1.

Procedure 1 Querying Process for All u
L Intervals

U1,U2, · · · ,U u
L
at n Time Points

1:For j = 1to n ||*for time point j+ n*||
2: For i = 1to u

L ||*for each interval Ui*||
3: qji = A (n + j,Ui); ||*store the query result
regarding interval Ui at each time point*||End For
4: A uses the Updating step in definition 1 for

evicting the information of the expired si, and then
stores an element u /∈ U , at time point n+ j;

||* because the universe U = {0, 1, .., u− 1}, u is
an element that is not contained in U *||
End For

From the above process, we can get an n-bit vector qi =
(q1i , q

2
i , · · · , q

n
i ) , where q

j
i ∈ {0, 1}, j ∈ {1, 2, · · · , n}, for

each interval Ui, i ∈ {1, 2, · · · , uL }. According to the values
of the n-bit vectors, these u

L intervals U1,U2, ..,U u
L
can be

classified into n+ 1 categories as follows:



C0 = {Ui, |qi = (0, ∗, ∗, ...∗), i ∈ {1, 2, .., u/L}},
C1 = {Ui, |qi = (1, 0, ∗, ...∗), i ∈ {1, 2, .., u/L}},
C2 = {Ui, |qi = (1, 1, 0, ...∗), i ∈ {1, 2, .., u/L}},
...

Cn = {Ui, |qi = (1, 1, 1, ..., 1), i ∈ {1, 2, .., u/L}},
where ∗ stands for either 0 or 1.

(2)

By (Q1) and (Q2) in Definition 1, we have two facts:
(S1) all the n elements s = (s1, s2, · · · , sn) cannot be

contained in an interval from C0;
(S2) the j-th element in s, which is sj, can only possibly be

in an interval from
⋃n

k=j Ck , for any j ∈ {1, 2, ..., n}.
We present the explanation for (S1) as follows. If an

interval Ui (i ∈ {1, 2, · · · , uL }) really contains one of the n
elements in s, then at the time point n+1, qn+1i must be equal
to 1, by (Q1) in Definition 1 (if Ui ∩ s 6= ∅, A (n + 1,Ui)
is equal to 1 with a probability of 1). In particular, at the
time point n + 1, before we insert the element u into A , all
the n elements in sequence s are not evicted from A . Thus,
the query result to any interval that contains one of the n
elements in s must be 1.
Next, we explain (S2) for j = 1. When j = 1, (S2) means

that s1 can only possibly be contained in an interval from⋃n
k=1 Ck .We can obtain this statement because, by Procedure

1, we know that s1 is not evicted when we obtain q1i at the
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time point n+1 for each i ∈ {1, 2, · · · , uL }. Thus, the interval
Uk1 that truly contains s1 must have q1k1 = 1, and then we
know s1 ∈

⋃n
k=1 Ck . The other cases for j > 1 in (S2) can be

obtained similarly to the case for j = 1.
Let the number of intervals contained in Ci be represented

by ci ≥ 0, for i ∈ {1, 2, · · · , uL }. By (Q2) in Definition 1,
we know that for any interval Ui that does not contain any
element of sequence s, the query result A (n+ 1,Ui) is equal
to 1 with a probability ε. Because there are u/L − n intervals
that do not contain any element of sequence s, we have

c0 = (u/L − n)(1− ε). (3)

Considering that there are u/L query intervals in total,
U1, ..,U u

L
, we obtain∑n

k=1
ci = n+ (u/L − n)ε. (4)

Assume that s1 truly belongs toUk1 ; then, we have q
1
k1
= 1

at the time point n + 1. At the time point n + 2, there
are two possible cases: q2k1 = 1 with a probability ε and
q2k1 = 0 with a probability 1− ε. If q2k1 = 0, according to the
definition of n categories shown in (2),Uk1 is contained inC1;
otherwise (q2k1 = 0), Uk1 can be only contained in

⋃n
k=2 Ck .

In summary, Uk1 can be contained in C1 with a probability of
1−ε, andUk1 is in

⋃n
k=2 Ck with a probability of ε. The other

cases for i ∈ {2, 3, .., n} can be analyzed in a similar way.
Generally, assume that sj belongs to Ukj for each j ∈
{1, 2, ..., n}; we use Zj = 0 (for each interval Ukj ) to denote
the event that Ukj ∈ Cj, and Zj = 1 otherwise (Ukj ∈⋃n

k=j+1 Ck ). By the above analysis, we have the following:{
Pr(Zj = 0) = 1− ε, j ∈ {1, 2, .., n− 1},
Pr(Zn = 0) = 1.

(5)

Consider that there are n intervals Û = {Uk1 ,Uk2 , ..,Ukn} in
total for the n elements s1, s2, ..., sn; thus we know, on aver-
age, there are (n− 1)ε intervals in Û that have Zj = 1, and all
the other (n− 1)(1− ε)+ 1 intervals have Zj = 0.
Therefore, we can see that by the output of A , we cannot

accurately recover sequence s. In the following, we show the
construction of two arrays B and D that correct the errors
made by A , and help us to recover sequence s perfectly.
Without loss of generality, we assume that (n − 1)ε = l

is an integer, Zj = 1 for j ∈ {1, 2, .., l}, and Zj = 0 for j ∈
{l+ 1, l+ 2, .., n}. The first additional array B contains three
parts as follows:

(B1) For each Zj, j ∈ {1, 2, .., l}, first, we need to specify
the index Ij of the category that truly contains Ukj , and then
which interval from CIj (Ij ∈ {j+ 1, j+ 2, .., n}) is Uki ; this
requires log2(n)+ log2(cIj ) bits.

(B2) For each Zj, j ∈ {l + 1, l + 2, .., n}, we only need to
specify which interval from Cj is Ukj ; this costs log2 cj bits.
(B3) We need an n-bit vector to represent the values of each

Zj, j ∈ {1, 2, .., n}.

Thus, the number of bits in B is

|B| = n+
l∑
j=1

(log2 n+ log2 cIj )+
n∑

j=l+1

log2 cj, (6)

where Ij ∈ {j+ 1, j+ 2, .., n} for j ∈ {1, 2, .., l}, (7)
cj ≥ 0 for j ∈ {1, 2, .., n}, (8)

and
∑n

j=l
cj = n+ (u/L − n)ε. (9)

We can see in (6) that each cIj ∈ {j + 1, j + 2, .., n}
for j ∈ {1, 2, .., l}, and each ci occurs exactly once in∑n

i=l+1 log2(ci) of (6), for i ∈ {l + 1, l + 2, .., n}. Let us
say that the number of times that cj, j ∈ {1, 2, .., n} occurs
in
∑l

j=1(log2 n + log2 cIj ) of (6) is αi ≥ 0 times; then,
the number of times that ci, i ∈ {l + 1, l + 2, .., n} occurs in
(6) is 1+αi ≥ 1 times (αi ≥ 0), and we obtain the following:∑n

i=1
αi = l (10)

(see
∑l

j=1 log2(cIj ) shown in (6)).
We consider the maximization problem as follows:

z = max
c1,c2,..,cn

l∑
i=1

αilog2(ci)+
n∑

i=l+1

(αi + 1)log2(ci) (11)

s.t.

{∑n

i=1
ci = n+ (u/L − n)ε,

ci ≥ 0 (i = 1, 2, · · · , n).
(12)

The formula shown in (11) is a concave function, which can
be maximized by using the Lagrangian multiplier method.
The details are shown in Appendix. The maximum of (11)
is equal to the following:

n log2(1+ (c− 1)ε)+
l∑
i=1

αi log2 αi

+

n∑
i=l+1

(1+ αi) log2(1+ αi), (13)

where c = u
nL . Next, we consider the maximization problem

as follows:

v = max
α1,α2,..,αn

l∑
i=1

αi log2 αi +
n∑

i=l+1

(1+ αi) log2(1+ αi)

(14)

s.t.

{∑n

i=1
αi = l,

αi ≥ 0 (i = 1, 2, · · · , n).
(15)

Because both αi log2(αi) and (1+αi) log2(1+αi) are convex
functions of the variable αi, the linear combination of these
functions shown in (14) is also a convex function. Thus,
the maximal value of v can only occur at the boundary
points. We choose the boundary point, where αi = 0 for
i ∈ {1, 2, .., n − 1} and αn = l (the values of this function
over other boundary points are less than or equal to this point).
Thus, the maximal value of v shown in (14) is equal to the
following:

(l + 1) log2(l + 1) = ((n− 1)ε + 1) log2((n− 1)ε + 1).

(16)
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Combining (6), (13), and (16), we can obtain the following:

|B| ≤ n log2(1+ (c− 1)ε)

+ ((n− 1)ε + 1) log2((n− 1)ε + 1), (17)

where c = u/(nL). So far, we have shown an additional
array B that helps us to recover the n intervals in which the n
elements of sequence s are truly contained. More specifically,
by combining Procedure 1 and array B, we can complete the
job needed by Info-part-a.
From now on, we know exactly which interval from
{U1,U2, ..,U u

L
} is Ukj for each element ej, j ∈ {1, 2, .., n}.

Next, we show the recovery process for Info-part-b,
i.e., which element in Ukj is ej. To be more concrete, this is to
recover the tailing log2(L) bits for each element in sequence s.

Procedure 2 Querying Process for Recovering the Tailing
log2(L)-Bit of Each Element ej in Sequence s
0:For j = 1to n
||*assume the interval that truly contains ei is I = [a, a+ l−
1]*||
1:For k = 1to log2(L) ||*for the j-th tailing bit of ei*||
2: let I1 = [a− l

2+1, a+
l
2 ] and I2 = [a+ l

2+1, a+l−1];
3: X kj = A (t, I1) and Y kj = A (t, I2);
||*t is the time point when we find which interval is I by
Procedure 1 and the additional array B.*||
||*I1 and I2 represent the left and right half of I ,

respectively.*||
4: If X kj = 1,Y kj = 1, check the additional array D for
the true values of X kj and Y kj ;
5: If Y kj = 0, set I = I1 and the k-th bit of ej is 0;
6: If X kj = 0, set I = I2 and the k-th bit of ej is 1;

7:End For End For

In Procedure 2, we show how to find the tailing log2(L)
bits for each ej, j ∈ {1, 2, .., n}. Now, we show the number
of bits needed for the additional array D. We know from
Line 4 that when both X kj and Y kj are equal to 1, we need
to specify where ej is located. This costs us exactly one bit.
Next, we calculate the number of times that X kj = Y kj = 1,
for k = 1, 2, .., log2(L). Considering that only one of I1 and
I2 truly contains ei, we know that the query answer to the
other interval is 1 because of the false positive rate of A
or the existence of some other element ei ∈ s (i 6= j) in
interval I1 or I2. Without loss of generality, we assume that
ei is truly contained in I1. Then, Y

j
i = 1 occurs when one of

the following two events is true:
E1: there is no element in s contained in I2, and Y ji =

A (t, I2) = 1;
E2: there is at least one element ei ∈ s (i 6= j) contained in

I2 and Y
j
i = A (t, I2) = 1.

The probability that one element is located in an interval
of length L is equal to L/u, and the probability that all the
n−1 elements are not contained in I2 is (1−L/u)n−1. We can
therefore obtain the following:

Pr(E1)+ Pr(E2)

= (1− L/u)n−1ε + (1− (1− L/u)n−1)

≈ (1−
(n− 1)L

u
)ε +

(n− 1)L
u

< ε + (1− ε)
1
c
, (18)

where c = u/(nL). The approximation in (18) comes from
the fact that u � n in the scenario of the approximate range
emptiness problem, see [4]. Considering that we have log2(L)
queries for each ei, and there are n elements, we thus have at
most log2(L)n(ε+(1−ε)

1
c ) query errors, and each bit in array

D can correct exactly one error. Therefore, the size of array
D, denoted by |D|, must satisfy the following:

|D| ≤ (ε + (1− ε)/c)n log2(L). (19)

By Procedures 1 and 2, and the construction of array B and
D, we know that we can recover sequence s perfectly. Thus,
we have the following (c = u/(nL)):

|A | + |B| + |D| ≥ log2(
u
L
)n + n log2 L

= log2(cn)
n
+ n log2 L

|A | ≥ log2((cn)
n)+n log2 L−|B| − |D| .(20)

By using inequalities (17) and (19), we obtain:

|A | ≥ log2((cn)
n)+ n log2 Ln log2(1+ (c− 1)ε)

− ((n− 1)ε + 1) log2((n− 1)ε + 1)

− (ε + (1− ε)/c)n log2 L. (21)

By Stirling’s formula (see [31, Lemma 7.3]), we have:

(cn)n =
(cn)!

((c− 1)n)!
≥ e−n(cn)n(

c
c− 1

)(c−1)n
1
2
. (22)

By substituting (22) into (21), we derive the following:

|A | ≥ n log2(cn)− n log2 e+ n log2((
c

c− 1
)c−1)− 1

+ n log2 L − n log2(1+ (c− 1)ε)

− ((n− 1)ε + 1) log2((n− 1)ε + 1)

− (ε + (1− ε)/c)n log2 L

≥ n log2(
c

1+ (c− 1)ε
)+ n(1− ε −

1− ε
c

) log2 L

+ n log2 n− n log2 e+ n(c− 1) log2(c/(c− 1))

− 1− (εn) log2(εn)

≥ n
[
log2 c− log2(c+

1
ε
− 1)

+ log2
1
ε
+ (1− ε −

1− ε
c

) log2 L
]

+ n log2 n−1.44n− 1−εn log2 n+εn log2(1/ε)

= n
[
log2 c− log2(c+

1
ε
− 1)+ (1+ ε) log2

1
ε

+ (1− ε −
1− ε
c

) log2 L+(1− ε) log2 n
]
−1.44n−1

≥ n[log2(1/ε)+ log2 L + log2 n]− O(n). (23)

The inequality in (23) is derived from the fact that log2 e ≈
1.44 and (c − 1) log2(c/(c− 1)) ≥ 0, for c ≥ 1. Then
because c = u

nL ≥
1
ε
, log2 c − log2(c +

1
ε
− 1) in (23) is a
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FIGURE 2. Designed data structure A for the ε-ARESD-problem.

monotonically increasing function with respect to c, we know
log2 c− log2(c+

1
ε
− 1) ≥ log2(

1
ε
)− log2(

1
ε
+

1
ε
− 1) ≥ −1.

We also see that 1− ε− 1−ε
c ≥ 1−2ε is true, because c ≥ 1

ε
.

Finally, by εn� n, we obtain the last inequality in the above,
and the conclusion.

DISCUSSIONS ON THE LOWER BOUNDS
In Theorem 2, we assume that c = u

nL ≥ 1 and ε ≥ 1
c =

nL
u . We want to show that this is not a strong restriction. The
size of the universe U is very large in many applications. For
example, in RFID-enabled networks [6] [14]–[17], [19], [30],
a tag-ID is a 96-bit string, which leads to a universe of 296 ≈
8 × 1028 unique IDs. n (the size of a sliding window) and L
(the size of a query interval) are typically far less than u. For
example, suppose we want to identify if a tag that belongs to
a specific interval [a, a+ L − 1] appears in the most recently
arrived n tags of this system or not. Usually, the length of
the query interval L ≤ 107 and n ≤ 107. Thus, we have
c = u/(nL) ≥ 8 × 1014, and then the allowed false positive
rate ε must be larger than 10−15. However, we should point
out that 10−14 is already a very small value of ε for many real
applications.

When c < 1/ε, in (23), we can see that log2 c − log2(c +
1
ε
−1)+ (1+ ε) log2

1
ε
is approximately equal to log2 c. This

means that by introducing false positive errors, we cannot
reduce the number of bits for any data structure D that solves
the ε-ARESD-problem. This is another reason for using this
assumption.

IV. DATA STRUCTURE FOR THE ε-ARESD-problem
In this section, we describe a data structure A for the ε-
ARESD-problem. The number of bits in A is approximately
1.33 times of the space lower bound SLB shown in (1), the
time for the insertion operation is O(1), the amortized cost of

the updating operation is O(1), 4 and the time of querying an
interval of length L is O(L).

A. DESIGN OF DATA STRUCTURE A
The data structure A uses four independent hash functions:
h1, h2, h3, h4, with range {1, 2,.., n/24}, and four hash tables,
denoted by Bj, j ∈ {1, 2, 3, 4}. For each element et ∈ δ

(t > 0), the hash function hj, j ∈ {1, 2, 3, 4}, maps the
element ei to a bucket Bj[hj(et )] in the j-th hash table. A
also contains another hash function f with range {0, 1,.., 24×
21/ε − 1}, which produces f (et ), called the fingerprint of the
element et .

The explicit data structure of A is shown in Fig. 2.
Each hash table Bj, j ∈ {1, 2, 3, 4}, contains n/24
buckets: Bj[1],Bj[2], · · ·Bj[n/24], and each bucket
Bj[i], i ∈ {1, 2, · · · , n/24}, contains eight slots: s[1],s[2], . . . ,
s[8]. Each slot s[i], i ∈ {1, 2, . . . , 8} includes two parts:
s[i].Fp and s[i].Ts, which are used respectively for storing
f (et ) (the fingerprint of et ), and the timestamp of et (log2(2n)-
bit long), denoted by Tet .

The reason for adopting four hash tables, each of which
contains n/24 buckets (each bucket contains eight slots),
is that this parameter setting can guarantee that for each
newly arrived element et ∈ δ, we can find a free slot
among its hashed buckets B1[h1(et )], B2[h2(et )], B3[h3(et )],
and B4[h4(et )] in A with a very high probability [32], [33],
which shall be formally stated in Theorem 4.

Data structure A supports three operations: Insertion,
Update, and Query, which are explained in detail in the
following:

Insertion: When a new element et arrives at time point
t > 0, we first calculate the current timestamp Tet stored in a
wrapround counter T = [(t−1) mod (n)]+n+1, t = 1, 2, ...;

4We do need to perform the update operation, because in a data stream δ,
the past element ei−n expires whenever the new element ei arrives at each
time point i > n, as the window slides forward over δ.
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second, we compute the four hashed buckets: B1[h1(et )],
B2[h2(et )], B3[h3(et )], and B4[h4(et )], and the fingerprint of
et : f (et ); third, we store the fingerprint and timestamp of et
as follows:
(I1): If there exists a slot s with s.Fp = f (et ) in the four

hashed buckets, we only store the information of et into this
slot. Without loss of generality, we assume that the second
slot s[2] in B4[h4(et )] contains the same fingerprint as that of
et , and then we set s[2].Ts = Tet .
(I2): Otherwise, we calculate the number of free slots,

of which the stored timestamp is less than or equal to t mod n,
in each of the four hash tables.We place the f (et ) (fingerprint)
and Tet (timestamp) of et into the least loaded bucket (the
bucket that contains the largest number of free slots). In case
of a tie, we choose the free slot s, from the leftmost hash table
to store the two parts of the information of et .
Notice that, if a slot s has s.Ts ≤ t mod n at time point t , we
call s a free slot, because the stored information (fingerprint
and timestamp) in s belongs to an expired element in δ at time
point t . We shall formally prove this statement in Theorem 3.
It is worth pausing at this point to consider the case in

which we cannot find a free slot for et (when the four hashed
buckets are full). In this case, we simply omit et completely,
and we shall show that this is rarely the case. More formally,
the expected number of the elements of the current sliding
window that are omitted is proved to be less than 1, and
thus, this case has a minor effect on the number of incorrect
responses of A. Please see Theorem 4 and 5 in Section IV-B
for formal statements and proofs.

Update: After the insertion of each newly arrived element
et at time point t , if [t mod n] 6= 0, no update is conducted;
otherwise, we check every slot s in each bucket for the four
hash tables, and then update this slot s as follows:{

if s.Ts ∈ {0, 1, .., n}, then s.Ts = 0

if s.Ts ∈ {n+ 1, n+ 2, , .., 2n}, then s.Ts = s.Ts− n.

(24)

Query: Given a query interval [a, b] at time point t ≥ 0
we check all the L integers contained in this interval one
after another. The query process for an integer q ∈ [a, b]
is as follows. We first calculate the four hashed buckets
of q: B1[h1(q)], B2[h2(q)], B3[h3(q)], and B4[h4(q)], and its
fingerprint f (q). Then, the output of A for I is as follows:
(1) If there exists a slot s among the 32 slots in the four

hashed buckets with s.Fp = f (q), and s.Ts > (t mod n), q
is taken to be an integer that belongs to the current sliding
window W t , and A outputs 1 for this case;
(2) Otherwise, A outputs 0.

B. THEORETICAL ANALYSIS OF A
We shall analyze the performance of the designed structureA
in this section.
Theorem 3: At any time point t > 0, after the Insertion

and Update operations are finished, the stored timestamp
in data structure A for an element belonging to the current

sliding window W t (ei ∈ W t ) takes values in set T t =
{(t mod n)+ 1, .., n− 1, n, n+ 1, .., n+ (t mod n)}.

Proof: We first consider the case that t < n. Then,
the sliding window at the time point t isW t

= {e1, e2, .., et }.
By the Insertion operation, we know the stored timestamp of
the element ei ∈ W t (i ∈ {1, 2, .., t}) is ((i− 1) mod n)+ n+
1 = n+ i, which belongs to set T t .
Next, we consider the case that t ≥ n. Without loss

of generality, we assume that the current time point t =
kn + r , where k ≥ 1 is an integer, and r ∈ {0, 1, .., n −
1}. Then, the sliding window at the time point t is W t

=

{e(k−1)n+r+1, e(k−1)n+r+2, .., ekn, ekn+1, .., ekn+r }, which can
be divided into two disjoint sets W t

1 and W
t
2 as follows:

W t
1 = {e(k−1)n+r+1, e(k−1)n+r+2, .., ekn}

W t
2 = {ekn+1, ekn+2, .., ekn+r }

By the Insertion operation, we know that the stored times-
tamp of the element e(k−1)n+r+i ∈ W t

1 is n + r + i (i ∈
{1, 2, .., n − r}). After the insertion of ekn, data structure
A needs to execute the Update operation, because (kn mod
n) = 0. Then, by the Update operation, we know that the
stored timestamp n + r + i associated with the element
e(k−1)n+r+i ∈ W t

1 is reduced to r + i (see the (24)). Thus,
we can construct a set of stored timestamps for the elements
in W t

1 , which is T t1 = {t mod n + 1, (t mod n) + 2, .., n}.
After the time point kn, by the Insertion operation, we obtain
that the stored timestamp of the element ekn+j is n + j
(j ∈ {1, 2, .., (t mod n)}). Thus, we can build a set of stored
timestamps for the elements inW t

2 , which is T
t
2 = {n+1, n+

2, .., n+(t mod n)}. The conclusion follows from the fact that
T t = T t1 ∪ T

t
2 .

By the Insertion operation, it is clear that we adopt the
randomized allocation scheme called the Always-Go-Left
Algorithm in [32]; in the following, we shall analyze the num-
ber of elements belonging to the current sliding window W t

that are not stored in A (omitted in the Insertion operation),
based on [32, Th. 1].
Theorem 4: At any time point t > 0, the number of

the elements, belonging to the current sliding window W t ,
of which the information is not stored in cell array A, is less
than 1.

Proof: Based on [32, Th. 1] (this theorem shows the
maximum load of the n buckets, where at most h × n balls
exist at any time point), we can obtain that, at any time point
t > 0, with a probability 1 − 1/nα (α > 1 is a constant),
the maximum load of the slots in A is 6+ ln ln(n)/4, which is
strictly smaller than 8 even when we consider a window size
of 2100 ≈ 1030. Therefore, we know that at any time point
t > 0, with a probability less than 1/nα , a bucket B in A is
full.

Next, considering a distinct element ei ∈ W t , we shall
analyze the probability that ei is omitted in the Insertion
operation. First, we know the probability that ei chooses a
bucket B, which is full, is less than 1/nα , and there are at most
n distinct elements contained in W t ; therefore, the expected
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number of omitted elements inW t is less than n× 1/nα < 1
(α > 1).
Theorem 5: Given, at time point j > 0, if a query interval

I = [a, b] intersects with the current sliding windowW t , then
A shall output 1 with a probability 1− 1/nα ≈ 1 (α > 1 is a
constant); if I does not intersect withW t , then A shall output
1 with a probability ε.

Proof: First, we shall analyze the case inwhich the given
interval I does intersect with the sliding window W t at time
point t . Then, there must exist an element ek ∈ W t that also
belongs to I . By the Insertion operation ofA, and Theorem 4,
we know the following two cases:

Case1: With a probability at least 1−1/nα , the fingerprint
f (ek ) and timestamp Tek are saved in one slot s among the four
hashed buckets Bi[hi(ek )], i ∈ {1, 2, 3, 4}, at the time point k;

Case2: With a probability at most 1/nα , et is omitted.
For Case1, the analysis is as follows: Because ek ∈ W t ,

based on Theorem 3, we know that the stored timestamp of
ek takes a value in T t , and then we have s.Ts ≥ t mod n.
Note that, if slot s is used by another element that comes after
ek , the stored timestamp can only be increased, because the
element that comes after ek must have a larger timestamp,
as compared with ek . By the Query process, we know the
query result for I is 1 (see the first case (1) in Query opera-
tion).

From Case2, we see that the probability that the query
result for I is 1 is greater than or equal to 0.

Combining Case1 and Case2, we can see that A outputs 1
with a probability 1− 1/nα ≈ 1, because the window size is
usually large.

Next, we analyze the situation in which the query interval
I does not intersect withW t . We first consider the case for an
integer q /∈ W t , and we analyze the event defined as follows:
the element ei ∈ W t has f (ei) = f (q) (ei has the same

fingerprint as that of q), and ei is placed into one of the
32 slots of the four hashed buckets B1[h1(q)], B2[h2(q)],
B3[h3(q)], and B4[h4(q)].

We denote the above event by C(ei, q), which means that
hash collisions happen between q and ei. Without loss of
generality, assume that nj elements ofW t are placed into the j-
th hash table of data structure A, j ∈ {1, 2, 3, 4}. Considering
that there are at most n elements contained in the sliding
window W t , we know

∑4
i=1 ni = n. Now, we can obtain

the probability that C(ei, q) occurs as follows:

Pr[C(q, ei)] =
∑4

j=1

nj
n
24
n

ε

24L
, (25)

where nj
n is the probability that the information of ei (fin-

gerprint and timestamp of ei) is stored into the j-th hash
table, 24

n is the probability that ei is placed into the bucket
Bj[hj(q)], and ε

24L is the probability that f (ei) = f (q). By
the Query operation of A, it is not hard to see that if there
exists an integer q ∈ I such that the event C(ei, q) occurs,
data structure A shall output 1 for I , even though the query
interval I does not intersect withW t . Therefore, we have the

following:

Pr[A outputs 1|I ∩W = ∅]

= Pr[
⋃

q∈I

⋃n

j=1
C(ej, q)]

≤

∑
q∈I

∑n

j=1
Pr[C(q, ej)] = ε, (26)

where the last equation is based on (25) and |I | = L.
Theorem 6: Given, at time point j > 0, the total number

of bits in data structure A is as follows:

(4/3)n
[
log2(1/ε)+ log2 L + log2 n+ log2(24)+ 1

]
, (27)

which is approximately 4/3 times the lower bound shown in
(1). Furthermore, the querying time for an interval of length L
is O(L), amortized updating time is O(1), and insertion time
is O(1).

Proof: As shown in the first paragraph of Section IV-A,
in a slot s inA, we need log2(2n)-bit for s.Ts and log2(

24L
ε
)-bit

for s.Fp. Furthermore, there is a total of 4× n
24 ×8 slots in A.

Therefore, we can see that the total number of bits contained
in A is as shown in (27).

By theQuery operation in Section IV-A, the querying time
of A is O(L), because we need to try L integers contained in
a query interval I in the worst case. By the Update operation
in Section IV-A, we only need to scan all of the 4 × n

24 × 8
slots in A at specific time points: n, 2n, 3n, · · · , and thus the
amortized updating time is (4/3)n/n = 4/3 = O(1). By the
Insertion operation in Section IV-A, we can easily obtainthat
the insertion time is O(1).

V. EXPERIMENTS
We compare the designed data structure A with the classic
Time-decaying Bloom filter [29], [30], denoted by T-DBF,
which supports point-wise membership querying over sliding
windows in data streams. T-DBF can always represent the
current sliding windowW t for each time point t , and then for
a querying integer q ∈ U , T-DBF can answer the question of
the form ‘‘q ∈ W t?’’, with a predetermined false positive rate.
When we apply T-DBF to the ε-ARESD-problem, for each
query interval I , we simple check every integer e contained
in I by probing T-DBF, and then we decide that I ∩W t is not
empty whenever T-DBF outputsmember for an integer e ∈ I ;
otherwise, we take I ∩W t to be empty.
We evaluate the two data structures: A and T-DBF with

respect to the false positive rate, false negative rate, insertion
time, and querying time. We implement both A and T-DBF
in MATLABR2014b on a PC with an Intel(R) Core(TM)
i7-7700 2.8GHz processor and 8.00 GB of RAM, running
Windows 7.

Let U represent a universe of 108 integers (U =

{1, 2, .., 108}), and L a set of all the possible intervals of
length L over U . We generate two synthetic datasets: UNI-
FORM and NON-UNIFORM, for testing the performance
of A and T-DBF. UNIFORM includes a data stream of 107

elements that are drawn from a uniform distribution over U ,
and a sequence of 107 query intervals of length L are chosen
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FIGURE 3. Performance of A and T-DBF on UNIFORM for various interval
lengths.

TABLE 2. Summary of the performances of A and the classic
time-decaying bloom filter.

randomly and uniformly from L. NON-UNIFORM includes
a data stream of 107 elements that are drawn from a Zipfian
distribution with Z = 1 (Z is the value of the exponent
that controls the skewness of the distribution) over U , and
a sequence of 107 query intervals of length L are chosen
randomly and uniformly from L.
We set the false positive rate ε = 10−2 and sliding

window size n = 103, while varying the query interval
length l from 100 to 104, in order to test the performance
of A and T-DBF. The performances of A and T-DBF over
UNIFORM and NON-UNIFORM are reported in Fig. 3 and
Fig. 5, respectively.

We can observe from Fig. 3 and Fig. 5 that A and T-DBF
have almost the same false positive rate. Both A and T-DBF
have similar querying times and insertion times. To be more
specific, the querying time ofA is at most 1.7 times that of T-
DBF; the insertion of A is at most three times that of T-DBF.
However, Fig. 3 and Fig. 5 clearly show that the number of
memory bits is used by A is close to the space lower bound
SLB, and is significantly less that that of T-DBF. For example,
in Fig. 3, when l = 104, the number of bits used by A is only
11.6% of that used by T-DBF.

To achieve the same false positive rate, A consumes
much less memory space as compared with T-DBF, which

FIGURE 4. Performance of A and T-DBF on UNIFORM for various sliding
window sizes.

FIGURE 5. Performance of A and T-DBF on NON-UNIFORM for various
interval lengths.

demonstrates what we have proved in Theorem 6. The inser-
tion time ofA is slightly slower than that of T-DBF, becauseA
needs to find the least loaded free slot among the four hashed
buckets, whereas T-DBF simply finds k hashed positions in a
bit-array.

We set the false positive rate ε = 10−2 and sliding window
size l = 103, while varying the sliding window size from 102

to 105, in order to test the performance of A and T-DBF. The
performances of A and T-DBF over UNIFORM and NON-
UNIFORM are reported in Fig. 4 and Fig. 6, respectively.
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FIGURE 6. Performance of A and T-DBF on NON-UNIFORM for various
sliding window sizes.

From these two figures, we also see clearly that the false
positive rates of A and T-DBF are almost the same, the
querying time of A is at most three times that of T-DBF, and
the insertion time of A is 1.7 times that of T-DBF. However,
the A uses much less memory as compared with T-DBF. For
example, in Fig. 6, when n = 104, the number of bits used
byA is only 7.6% of T-DBF.

Note that in all four experiments, neither A nor T-DBF
produce any false negative errors.

VI. CONCLUSIONS
In this work, we have defined and studied the ε-approximate
range emptiness problem over sliding windows in data
streams in IC-IoT environments. The main objective is to
design a space-efficient data structure that can always rep-
resent the sliding window W t at every time point t > 0, and
then approximately and quickly answers the range emptiness
query of the form ‘‘W∩I = ∅?′′, for any interval I of length L.
To achieve this, we first proposed a space lower bound for any
data structure that solves the ε-approximate range emptiness
problem over sliding windows in data streams. Then, a data
structure denoted byAwas proposed and proved to be within
a factor of 1.33 of the lower bound. Extensive simulation
results demonstrated the efficiency of our data structures.

APPENDIX
DETAILS OF THE MAXIMIZATION PROBLEM SHOWN
IN (11) AND (12)
It is easy to see that log2(ci) is a concave function of the
variable ci for i ∈ {1, 2, .., n}, and then the linear combination
of these functions is also concave. Then, we can find the
maximizer for z shown in (11) by setting up a function as

follows:

F(c1, .., cn, λ)

=

∑l

i=1
αilog2(ci)+

∑n

i=l+1
(αi + 1)log2(ci)

+ λ(
∑n

i=1
ci − n+ (u/L − n)ε),

where λ is a Lagrange multiplier.
Taking the derivative with respect to ci and setting it to

zero, ∂F(c1, .., cn, λ)/∂ci = 0, we have ci =
αi
−λ ln 2 for

i ∈ {1, 2, .., l}, and ci =
αi+1
−λ ln 2 for i ∈ {l + 1, l + 2, .., n}.

Then, using the equality constraints shown in (12) and (10),
we obtain the following:∑l

i=1
ci +

∑n

i=l+1
ci = n+ (u/L − n)ε∑l

i=1

αi

−λ ln 2
+

∑n

i=l+1

αi + 1
−λ ln 2

= n+ (u/L − n)ε

1
−λ ln 2

(
∑n

i=1
(αi)+ n− l) = n+ (u/L − n)ε

1
−λ ln 2

= 1+ (
u
nL
− 1)ε.

Thus, we obtain that when ci = αi(1+ ( unL − 1)ε), for i ∈
{1, 2, .., l}, and ci = (αi+1)(1+( unL−1)ε), for i ∈ {1, 2, .., l},
the global maximal value of z in Eq. (11) is as shown in (13).
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