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ABSTRACT Many efforts have been focused on the network-wide traffic signal optimization to deal
with the congestion problem in big cities. Nevertheless, research evidence illustrates that both improper
traffic network managements and excessive traffic demands are the key factors leading to the oversaturated
traffic conditions. Current studies encounter the bottleneck in addressing the multi-objective optimization
problem. This point calls for designing the hierarchical control framework. In this paper, we concern a
two-level hierarchical model-based predictive control scheme to improve mobility in heterogeneous large-
scale urban traffic networks, so as to mitigate traffic jams. On the basis of a network partition, a regional
demand management approach regulating the input traffic flow from adjacent regions is proposed for multi-
subnetworks management taking the advantage of the concept of a macroscopic fundamental diagram of
urban traffic networks. This can be viewed as a higher level control layer and can be integrated with other
strategies. The lower level control layer utilizes the traffic signals coordination within the subnetworks
based on a detailed link-level traffic model to optimize the allocation of vehicles in each subnetwork as
homogeneous as possible. The simulation results show that integrating regional demand management with
a local traffic responsive control into a hierarchical framework can significantly improve the whole network
performance under different traffic scenarios in comparison with other available control strategies.

INDEX TERMS Urban traffic networks, hierarchical framework, regional demand management, traffic
signals coordination, model predictive control.

I. INTRODUCTION
As the number of vehicles keeps on increasing and the scale
of cities expands rapidly, growing urban traffic congestion
is a serious problem faced by cities around the world. Traf-
fic congestion results in a large amount of economic and
environmental losses to whole society. Traditional solutions
considered mainly focus on increasing network capacity and
expanding public transport offerings from traffic supply gov-
ernance point of view. With the development of communi-
cation, computing and control technologies for intelligent
transportation systems (ITS), adopting network-wide traffic
signal control strategies is an efficient way to mitigate traffic
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jams and to improve the mobility of the whole network by
regulating vehicle movements.

In the real world, an urban traffic network composed of
thousands of interactive links and signalized intersections
is a typical large-scale system. The unpredictable activi-
ties of travelers make the dynamics of such a system more
complex. With respect to control of urban traffic networks,
developing an effective and feasible strategy is still a big
challenge for addressing traffic congestion problem on the
basis of the available transportation infrastructures. Fortu-
nately, in recent years, cyber-physical systems (CPS) pro-
vide a technically feasible solution for networked systems
management and control [1]. In this framework, the first
and the important step is to establish an artificial traffic
model to describe the dynamics of traffic flows in urban

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

20235

https://orcid.org/0000-0003-2840-7155
https://orcid.org/0000-0002-2676-6341
https://orcid.org/0000-0001-6009-6962


Z. Zhou et al.: Integration of Regional Demand Management and Signals Control

networks. Then, the model-based control strategies can be
designed to regulate the link flows by adjusting the sig-
nal timing plans at the intersections. Based on the well-
known store-and-forward model, traffic-responsive urban
control (TUC) was proposed to manage and control the urban
traffic networks in [2]. They presented a multi-variable feed-
back regulator approach to obtain the optimal signal tim-
ings by using the off-line feedback regulator based on the
current traffic measurements. In order to make this strat-
egy use on-line, Aboudolas et al. [3] further proposed an
model predictive control (MPC) approach by embedding the
quadratic-programming problem into a rolling-horizon con-
trol scheme. Zhang and Zhou [4] proposed a bi-level opti-
mization strategy of signal cycles, offsets and green ratios on
the cloud computing platform. In this framework, the coor-
dination control layer optimizes the public cycle for each
subnetwork and the offsets of adjacent intersections, and
the distributed control layer optimizes the green ratios in
each signal cycle on the basis of optimized public cycles
and offsets. Delis et al. [5] proposed a novel adaptive cruise
control for traffic flow dynamics based on a gas-kinetic traffic
flowmodel.Ma et al. [6] developed a coordinated signal con-
trol system for urban ring roads under vehicle-infrastructure
connected environment. In this approach, the signal timing
parameters such as cycle length, green split, and offset, could
be adjusted based on a heuristic algorithm. Many other works
utilized distributed structure to coordinate the signal splits
in urban traffic networks [7]–[12]. Although TUC can be
applied in practice [13], it may not address the congestion
problem at the oversaturated conditions because of the simple
of the traffic model. Lin et al. [14], [15] designed an MPC
controller based on a more accurate urban traffic model fully
considering the various traffic scenarios. Ye et al. [16] devel-
oped a stochastic expected value traffic model and proposed
a hybrid intelligent algorithm to solve the stochastic MPC
problem. Unfortunately, they have tomake a tradeoff between
the accuracy of modeling and the computational complexity.

In the recent years, the concept of macroscopic fundamen-
tal diagram (MFD) is proposed to model and control large-
scale urban traffic networks at an aggregated level. Based on
the field data in Yokohama (Japan), the existence of MFD
was observed and verified in [17]. Anwell-definedMFDwith
unimodal and low scatter of flows for the same number of
vehicles is shown in Fig. 1, which establishes a static rela-
tionship between the space-mean traffic flow and the number
of vehicles (or densities) in the network. If we aggregate the
traffic state variables by means of weighed average approach
in an urban area, the macroscopic dynamic characteristics
of the regional traffic flow can be described by the MFD-
based model. These findings pave the way for controlling the
road networks from an macroscopic point of view, so as to
mitigate traffic jams and to improve vehicle movements in
large-scale urban traffic networks. For single-region cities,
several studies have developed different control approaches
on the basis of the MFD to restrict the inflows along the
perimeter of an urban network to make sure that the number

FIGURE 1. Well-defined MFD.

of vehicles within the region does not exceed its critical point,
such as bang-bang control [18], proportional-integral (PI)
control [19], robust control [20], PI with data-driven adaptive
control [21] and so on. For multi-region cities, the main
idea is to manipulate the transfer flows between adjacent
regions to prevent all sub-networks from oversaturated con-
ditions. Geroliminis et al. [22] used an MPC approach to
regulate the exchanged traffic flows on the perimeter borders
between two urban regions. Aboudolas and Geroliminis [23]
investigated the combined perimeter and boundary con-
trol for multiple regions by designing a multivariable feed-
back regulator in heterogeneous urban traffic networks.
Keyvan-Ekbatani et al. [24] proposed a multiple concentric-
boundary feedback gating strategy by adjusting the inflow
ratio of different regions of an urban network to prevent
the protected urban region from congestion and to improve
the mobility within the region. Moreover, recent works also
attempt to develop mixed control strategies where not only
the ground network dynamics but also other traffic modal has
been taken into account, such as mixed control strategy inte-
grating perimeter control for urban roads and ramp metering
for freeways in [25], hybrid control approach incorporating
perimeter controllers and switching signal timing plans con-
trollers for urban traffic networks in [26], combined vehicular
flow and passenger flow dynamics management using three-
dimensional fundamental diagram for bi-modal urban net-
works [27], integrated economic MPC with perimeter control
and regional route guidance [28] and so on. More other
control strategies with the utilization of MFD can be found
in [29]. Themost efforts reported in the literature are to design
different control approaches by manipulating two elements:
the input traffic flows from outside of the network (perimeter
control) and the inter-transfer flows between neighborhood
subnetworks (boundary control). However, the disadvantage
of implementing perimeter and boundary control is that they
neglected the impact of link traffic flows on the regional
dynamic features. Zhou et al. [30] designed a two-level con-
trol framework that computes the optimal exchanged flows at
the upper level and then sends the targets to the lower level
for tracking. It performs worse in the oversaturated scenar-
ios because the large volume of traffic demand cannot be
managed or controlled by the high-level controller. Although
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FIGURE 2. The integrated hierarchical control framework.

Zhou et al. [31] proposed a hierarchical control structure for
restricting the inflows and coordinating the signals, they did
not discuss the influences of boundary control that imposed
on the exchange flows between neighbors.

Therefore, integrating theMFD-based control and the TUC
control in a hierarchical framework could tackle the prob-
lems described above. On the one hand, this strategy is able
to make the macroscopic traffic state keep a good perfor-
mance from the network level point of view. On the other
hand, it can create a more homogeneous distributions within
the network by regulating the vehicular movements. In this
paper, we mainly focus on establishing a two-level hierarchi-
cal structure for control of complex urban traffic networks,
which is consistent with the concept of CPS methodology
(see Fig. 2). At the higher-level, on the basis of partitioning
a large-scale traffic network into several subnetworks with
well-defined MFDs, the aggregated dynamics of traffic flow
within each subnetwork is described with an improvedMFD-
based model. A regional demand management approach is
presented to prevent the macroscopic traffic state falling into
the congested part of MFD by operating the proportion of
input traffic demands at the periphery of subnetwork. Here,
the demand management means to design a controller, which
carries out the optimization by using the aggregated data
to obtain the timing plans for the peripheral traffic signals,
and then sends the optimized traffic demands to the lower-
level controller as the input traffic flows. At the lower-level,
a traffic signals coordination optimization problem based on a
more detailed link-level traffic model is formulated to obtain
the optimal timing plan for each signalized intersection, so as
to smooth vehicular movements and to make the vehicular
distribution inside each subnetwork as homogeneously as

possible. The rolling horizon framework ofMPC [32] enables
the proposedmethod to be applied in practice, which has been
widely used in operation planning of high speed trains [33],
cooperative vehicle safety systems [34] and signal coordina-
tion control system for urban roads [35]. Finally, the benefits
of the integrated control approach is demonstrated through
simulations.

To summarize, the main contributions of this paper are
two-fold: (1) We develop a regional demand management
strategy for inflows (including the inter-transfer flows among
subnetworks and the input flows from external regions) gov-
ernance and a traffic signals coordination control strategy for
flow regulation in large-scale urban traffic networks, whereby
the regional features of subnetworks are explicitly modeled
with the utilization of MFD and the dynamic features of
links are described with an improved traffic flow control
model. (2) We propose an integrated approach to control
the whole network by combining the regional demand man-
agement and the traffic signals coordination control with a
two-level hierarchical structure. The advantage of our strat-
egy is that it can improve the total performance of the
system from macroscopic network level to mesoscopic link
level.

The remainder of this paper is organized as follows.
In Section 2, an improved MFD-based multi-subnetwork
model is proposed, and then is used to design the demand
management MPC controller at the higher-level. The sub-
network traffic signals coordination control problem at the
lower-level is formulated in Section 3. Section 4 evaluates
the performance of the proposed approach by using two case
studies with different scenarios in a typical complex traffic
network. Section 5 concludes this paper and outlines future
work.

II. REGIONAL DEMAND MANAGEMENT
In this section, we focus on designing the demand man-
agement MPC controller at the higher-level. The higher-
level controller can adjust green ratios of traffic lights at the
periphery intersections of subnetworks to control or restrict
input traffic flows from outside. It has been investigated that
the MFD has three characteristics at the network level [36]:
(1) the number of vehicles (or mean vehicle density) and the
space-mean flow in an urban region exhibit a unimodal and
low-scatter relationship under certain conditions; (2) the out-
flow (or trip completion flow) of the traffic network is a con-
stant proportion of the space-mean flow within the network;
(3) the shape of the MFD is insensitive to the traffic demand
but is dependent on the topology of the network and the
adopted control strategy. These features provide a tractable
way for describing the macroscopic dynamic behavior of
traffic network and building an aggregated traffic model.
Therefore, on the basis of some network decomposition algo-
rithms presented in [37]–[39], a large-scale heterogeneous
urban traffic network is able to be divided into several homo-
geneous subnetworks with an explicit MFD. In the following,
an improved and extended MFD-based subnetwork model
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is introduced as the prediction model of subnetwork MPC
controllers, and then the corresponding demand management
MPC optimization problem can be formulated.

Consider an urban traffic network with heterogeneous dis-
tribution of number of vehicles, consisting of N homoge-
neous subnetworks, as shown in Fig. 2. Each subnetwork is
assumed to have a well-defined outflow MFD. Therefore,
we can establish a static relationship between the network
outflow (trip completion flow) Mi(ku) and the number of
vehicles Ni(ku) using the traffic measurements at each time
step ku in subnetwork i (i ∈ N ) via the following function

Mi(ku) = Gi(Ni(ku)) (1)

where Gi(·) represents the function of MFD. It should be
noted that this function could be obtained by using a polyno-
mial fitting method (the same as the approximation in [22]).
According to the different destinations of traffic flow, the total
number of vehicles Ni(ku) in subnetwork i at time step ku
is the sum of two components, i.e., the number of vehicles
Nii(ku) denoting their trips from subnetwork iwith destination
subnetwork i, plus the number of vehicles Nij(ku) denoting
their trips from subnetwork i with destination subnetwork j,
where j ∈ Ni, and Ni is the set of subnetworks sharing
a common boundary with subnetwork i, i.e., its neighbors.
Therefore, the dynamic evolution of aggregated traffic flows
in subnetworks i can be described by the following discrete
conservation equations:

Nii(ku + 1) = Nii(ku)+ Tu
· [dii(ku)+

∑
j∈Ni

pii(ku)Mji(ku)−Mii(ku)]

Nij(ku + 1) = Nij(ku)+ Tu

· [dij(ku)+
∑
j∈Ni

pij(ku)Mji(ku)−Mij(ku)] (2)

where Tu is the sample interval, dii(ku) and dij(ku) are
corresponding to the traffic demand going to destination
subnetwork i and the traffic demand going to destination
subnetwork j, at time step ku, respectively; Mji(ku) is the
transfer flow from subnetwork j entering to subnetwork i
at time step ku, Mii(ku) is the exit flow leaving subnetwork
i at time step ku and Mij(ku) is the transfer flow leaving
subnetwork i to subnetwork j; pij(ku) is the one-step transition
probability of transfer flow from subnetwork i with destina-
tion to subnetwork j at time step ku, which also represents the
proportion of traffic flow going to different destinations in the
total network traffic flow. Hence, we have

pii(ku)+
∑
j∈Ni

pij(ku) = 1 (3)

which means that the sum of one-step transition probabilities
of outflows for subnetwork i is equal to 1. It should be noted
that the one-step transition probability refers to two directly
connected subnetworks. With the utilization of the one-step
transition probability, we can obtain the transfer flows with

different destinations of subnetwork i,

Mii(ku) = pii(ku)Mi(ku)

Mij(ku) = pij(ku)Mi(ku) (4)

which shows that the network outflow Mi of subnetwork i
is decomposed into the traffic flows terminating their trips
within the subnetwork and the traffic flows going to its neigh-
bors. These equations are a generalized (several subnetworks
instead of two) equations presented in [22].

If the real-time traffic measurements in subnetwork i at
time step ku are able to be obtained from the detectors
equipped in all links, we have

Ni(ku) = Nii(ku)+
∑
j∈Ni

Nij(ku) (5)

and the one-step transition probability for each destination is
estimated via

pii(ku) =
Nii(ku)
Ni(ku)

, pij(ku) =
Nij(ku)
Ni(ku)

(6)

It should be noted that the one-step transition probability is
time dependent due to the variation of traffic state in each
subnetwork.

The total traffic demand for subnetwork i at time step ku
is the sum of traffic demand for different destinations, which
can be calculated by

di(ku) = dii(ku)+
∑
j∈Ni

dij(ku) (7)

In addition, the traffic flow transferring to subnetwork i
through the boundary from its neighbor subnetworks is

ti(ku) =
∑
j∈Ni

Mji(ku) (8)

Then, the total traffic inflow for subnetwork i is the sum of
traffic demand from external regions and the transfer flow
from its neighbor subnetworks to destination subnetwork i

fin,i(ku) = di(ku)+ ti(ku) (9)

Lin et al. [40] investigated the existence of the network
traffic flow equilibria based on simulation experiments and
analysis. They demonstrated that if the network inflow gen-
erated from adjacent regions exceeds a critical value, i.e., its
equilibria point, the space-mean traffic flow of the entire
network will deteriorate, resulting in oversaturated condi-
tion or gridlock. It is necessary to regulate the input flow to
guarantee the maximum space-mean flow inside the traffic
network. With the utilization of the MFD-based traffic model
mentioned above, we can design an MPC controller to man-
agement the traffic demand among all subnetworks at the
higher-level. Since our goal is to maximize the output traffic
flow of each subnetwork, i.e., the sum of traffic flows leaving
all subnetworks, the aim of this controller is to prevent the
aggregated traffic state within each subnetwork falling into
its congested part of MFD by regulating the proportion of
input traffic demands at the periphery of subnetworks, so as to
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improve the system performance from the perspective of net-
work level. Therefore, the overall optimization problem of the
demand management MPC at the higher-level is formulated
as follows:

min
ri(ku)

Ju =

N u
p−1∑
p=0

∑
i∈N

[max(0,Ni(ku + p)− Ni,critical)]2

=

N u
p−1∑
p=0

∑
i∈N

[max(0,Nii(ku + p)

+Tu[ri(ku + p)d̃ii(ku + p)

+ri(ku + p)
∑
j∈Ni

pii(ku + p)Mji(ku + p)

−Mii(ku + p)]

+Nij(ku + p)+ Tu[ri(ku + p)d̃ij(ku + p)

+ri(ku + p)
∑
j∈Ni

pij(ku + p)Mji(ku + p)

−Mij(ku + p)]− Ni,critical)]2

s.t. Subnetwork model (1)− (9)

fin,i(ku + p) = ri(ku + p)f̃in,i(ku + p)

ri,min ≤ ri(ku + p) ≤ ri,max

0 ≤ Ni(ku + p) ≤ Ni,jam
for p = 0, . . . ,N u

p − 1, for all i ∈ N (10)

where N u
p is the prediction horizon of MPC, the control time

interval is set to be Tu, the control variable ri(ku + p) is the
ratio of traffic demands allowed to enter the subnetwork i,
which is optimized to manipulate the input traffic demands,
ri,min and ri,max are the lower and upper bounds for ri(ku+ p)
respectively, Ni,jam is the number of vehicles at the jammed
density in subnetwork i, f̃in,i is the input traffic demand from
external and neighboring regions, which can be estimated via
historical traffic data. The higher-level controller carries out
the optimization to obtain the optimal value of ri, which can
be used to compute the green time length of the peripheral
traffic signals by gperi,i(ku) = ri(ku)ccycle, and also sends the
optimized traffic demands to the lower-level controller as the
input traffic flows of each subnetwork according to fin,i(ku +
p) = ri(ku + p)f̃in,i(ku + p).

III. TRAFFIC SIGNALS COORDINATION
In this section, we focus on designing the traffic signals coor-
dination MPC controller for each subnetwork at the lower-
level. The lower-level controller can adjust green ratios of
traffic lights at the intersections within each subnetwork to
coordinate or control traffic flows on road links. A link level
urban traffic model proposed in [14], i.e. S model, is selected
as the prediction model of MPC, because it is capable of
describing the dynamic process of link flow in detail, espe-
cially the oversaturated traffic situation. Based on the Smodel
and the real-time traffic measurements, the optimal traffic
signal timing plans for all intersections within each subnet-
work can be obtained to coordinate the traffic flows in links.

FIGURE 3. A typical link between two adjacent intersections.

This controller can not only smooth the vehicular movements
within the subnetwork, guaranteeing the homogeneous vehi-
cle distributions across the subnetwork, but also reduce the
risk of oversaturation and traffic delays.

As the same with other mesoscopic urban traffic models,
the S model mainly focus on revealing the vehicular flow
dynamics in the link. According to the conservation equation
for vehicles in a typical urban link (u, d) ∈ L shown in Fig. 3
we have

nu,d (kl + 1) = nu,d (kl)+ (αenteru,d (kl)− αleaveu,d (kl)) · ccycle
(11)

where u ∈ E and d ∈ E are the upstream and downstream
intersections for link (u, d), L and E are the set of links and
intersections in the network respectively, αenteru,d (kl), αarriveu,d (kl)
and αleaveu,d (kl) denote the entering, arriving and leaving flows
in link (u, d) at time step kl , qu,d (kl) is the queue length in
link (u, d), ccycle is the cycle time of traffic signal (here it is
set to be equal to the sample interval Tl for all intersections).
It should be noted that the entering and leaving flows for link
(u, d) are separately the sum of traffic flows moving from its
upstream links and traffic flows moving to its downstream
links:

αenteru,d (kl) =
∑
i∈Iu,d

αenteri,u,d (kl)

αleaveu,d (kl) =
∑
o∈Ou,d

αleaveu,d,o(kl) (12)

The leaving traffic flow for each downstream intersection
is determined by

αleaveu,d,o(kl) = min(βu,d,o(kl) · µu,d · gu,d,o(kl)/ccycle,

qu,d,o(kl)/ccycle + αarrivu,d,o(kl),

βu,d,o(kl)(Cd,o − nd,o(kl))/ccycle) (13)

where its value depends on the minimum of three terms,
i.e., the capacity of downstream intersection corresponding
to the saturated traffic condition, the waiting and arriving
flows corresponding to the undersaturated traffic condition
and the available space of downstream link corresponding to
the oversaturated traffic condition. Moreover, βu,d,o(kl) is the
turning rate, µu,d is the saturation flow, gu,d,o(kl) is the green
time ratio, Cd,o is the maximum number of vehicles that the
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downstream link (d, o) can hold, the queuing vehicles with
destination o is calculated by

qu,d,o(kl+1) = qu,d,o(kl)+ (αarrivu,d,o(kl)− α
leave
u,d,o(kl)) · ccycle

(14)

the arriving vehicles with destination o is updated by

αarriveu,d,o (kl) = βu,d,o · α
arrive
u,d (kl) (15)

For more information about this model, the reader is referred
to [14] and [15].

It should be noted that as a dynamic flow model, this
model is able to depict all the situations that might occur
in real urban traffic roads, due to the fact that the equation
(13) calculating the average leaving traffic flow takes three
different traffic scenarios into account. However, when this
model is considered as a control model in the optimization
problem of MPC, this operation brings a high level of com-
putational complexity. Therefore, in order to make this model
more suitable for control, an appropriate simplification from
the optimization point of view has to be developed. In the
oversaturated situation, the average leaving traffic flow is
determined by the rate that the downstream link can accom-
modate. Consider that the total mumbler of vehicles in a road
will not exceed itsmaximum capacity in reality, i.e. no vehicle
from the upstream links is permitted to enter the link when its
storage spaces are completely occupied, the third term in (13)
can be removed from this model

αleaveu,d,o(kl) = min(βu,d,o(kl) · µu,d · gu,d,o(kl)/ccycle,

qu,d,o(kl)/ccycle + αarrivu,d,o(kl)) (16)

and be replaced by adding a constraint to the traffic state,
i.e. 0 ≤ nu,d (kl) ≤ Cu,d . Although the improved S model
leaves the oversaturated scenario out, it can also be guaran-
teed by the extra constraints and be convenient to design the
controller based on optimal algorithm due to the reduction.

The criterion is to minimize the total time spent (TTS) of
vehicles within the subnetwork, the objective function over a
prediction horizon N l

p is defined by

JTTS =
∑

(u,d)∈L

N l
p∑

p=0

nu,d (kl + p) · ccycle (17)

We formulate the optimization problem of subnetwork i at
the lower-level as the following discrete time MPC problem:

min
gi(kl )

Ji,l = Ji,TTS

s.t. link traffic flow model (11)− (12), (14)− (16)

for p = 0, . . . ,N l
p − 1, for all (u, d) ∈ Li

8(gi(kl)) = 0

0 ≤ nu,d (kl) ≤ Cu,d

gimin ≤ gi(kl) ≤ gimax (18)

where Li is the set of links in subnetwork i, gi(kl) is the
vector containing the traffic signal green time ratios for all

FIGURE 4. Urban traffic network modeled in CORSIM for simulation.

intersections in subnetwork i, 8(gi(kl)) = 0 denotes that
the sum of green time duration of all phases for each traffic
signal is equal to its cycle time, gimin and gimax are the lower
and upper bounds for gi(kl) respectively. In fact, the moti-
vation of this approach is to simplify the MPC optimization
problem by reducing one nonlinear equation in the dynamic
control model and adding a physical constraint to the state
variables.

IV. SIMULATION AND RESULTS
A hypothetical urban traffic network has been built as the
test-bed to implement the integrated hierarchical control in
this section, as shown in Fig. 4, which contains 55 nodes
and 154 two-way links with lengths varying from 213 to
366 meters. The traffic demands flow into the network
through 21 source nodes, and 34 intersections inside the
network are equipped with traffic signals. The test is carried
out via a microscopic traffic simulator CORridor SIMulation
(CORSIM), which allows external control strategy to operate
traffic signal timing at the intersection. The loop-detectors are
installed in all links to collect real-time traffic data.

The rolling-horizon optimization problem at both levels in
(10) and (18) are nonlinear nonconvex programs, which can
be solved by using sequential quadratic programming (SQP)
in MATLAB to obtain the optimal solution. Moreover, with
respect to the available global optimal solution, here we use
the multi-start SQP technique discussed in [41] to prevent the
optimization problem ending up in a local minimum for our
case studies.

In order to establish the MFD-based traffic model at the
higher-level, a heterogeneous urban traffic network has to be
decomposed into several homogeneous subnetworks firstly.
In our simulation, a network partition method proposed
in [38] is utilized to divide the test network into three sub-
networks, as shown in Fig. 4. In this approach, the whole
traffic network is firstly represented by an undirected network
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FIGURE 5. Characteristics of MFD for each subnetwork. (a), (b) and (c) Relationship between the number of vehicles and the weighted
average flow. (d), (e) and (f) Relationship between the weighted average flow and the subnetwork outflow.

composed of nodes and edges. Secondly, it converts the topol-
ogy of original network into its dual form, where each road is
a node and each intersection is a link. Thirdly, a similarity
function is presented to calculate the difference value of
traffic state between two adjacent roads. Finally, a community
detection method by optimizing the modularity, which is a
criterion to evaluate the quality of division result, is utilized
to decompose the whole network into several subnetworks.
For more details about this approach, we would like to refer
the interested reader to [38]. Since the control strategy has
impact on the shape of MFD, we use the traffic data collected
from five predefined fixed-time control strategies (includ-
ing two strategies for undersaturated condition, one strategy
for saturated condition and two strategies for oversaturated
condition) to depict the shape of MFD for each subnetwork,
as shown in Fig. 5(a), 5(b) and 5(c), respectively. According
to the second feature ofMFD, Fig. 5(d), 5(e) and 5(f) show the
linear relationship between subnetwork outflow andweighted
average flow. Hence, a five-order polynomial function with
nonsymmetric unimodal curve can be used to establish the
relationship between the number of vehicles and the subnet-
work outflow in (1) via traffic data fitting, i.e., M (ku) =
a ·N 5(ku)+b ·N 4(ku)+c ·N 3(ku)+d ·N 2(ku)+e ·N (ku)+ f ,
where a, b, c, d , e, and f are the estimated parameters. From
Fig. 5, each subnetwork with a different MFD is taken into
account with the parameters ai = 1.0172 × 10−15, bi =
−7.5214×10−12, ci = 2.0588×10−8, di = −2.7223×10−5,
ei = 0.0175, fi = −1.1238, aj = 1.2424 × 10−16, bj =
−1.6123×10−12, cj = 7.2341×10−9, dj = −1.5104×10−5,

TABLE 1. Traffic demand for each source node.

ej = 0.0157, fj = −1.3371, al = 1.2286 × 10−17, bl =
−5.4717 × 10−13, cl = 3.8213 × 10−9, dl = −1.0641 ×
10−5, el = 1.1807 × 10−2, fl = −0.624, critical number
of vehicles Ni,critical = 1300 veh, Nj,critical = 1700 veh,
Nl,critical = 1000 veh.
For the simulation tests, two scenarios with different traffic

demands (i.e. the network input flow from external regions)
are introduced to the simulator CORSIM. The first scenario
is to imitate a peak and off-peak period with lightly traf-
fic demand where the inflow first rise gradually and then
descend. The second one is to produce an oversaturated traffic
condition with an increasing traffic demand. For simplicity,
we assume that all source nodes in the network have the same
traffic demand, as illustrated in Table 1. Traffic signals for
all intersections are two-phase timing plans working on a
common cycle time ccycle of 60 s. The total simulation time is
5400 s. Simulation control sample time at both levels is 180 s.
The lower and upper bounds of the inflow ratio are chosen as
ri,min = 0.1 and ri,max = 0.9. In the S model, the average
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vehicle length lveh is set to 5 meters, the saturation flow µu,d
for each link (u, d) is set to 2000 veh/h, the turning rate βu,d,o
for each intersection is set to 33.33%. Bounds of the green
time for all signals are gmin = 10 s and gmax = 50 s. Based
on the analysis in [41], the prediction horizons at both levels
are selected as N u

p = N l
p = 7 for the MPC scheme.

In the following, we compare network performance under
four control strategies to demonstrate the effectiveness of the
integrated control for complex urban traffic networks.
• Fixed-time control. The cycle time and the green time
ratio for each intersection in the network have been
predefined based on historical traffic data. Here, the best
one of five predefined fixed-time control strategies is
applied in the simulation.

• Centralized control. In this method, an MPC controller
is utilized to operate the internal traffic signals within the
whole network, where the S model is used as the predic-
tion model and the TTS is considered as the objective
function.

• Proposed integrated control. This approach combines
the demand management MPC control strategy at the
higher-level described in Section II and the traffic sig-
nals coordination MPC control strategy at the lower-
level described in Section III.

• Compared hierarchical control in [30]. In this scheme,
a boundary MPC control strategy based on the concept
of MFD at the higher-level is applied to obtain the
optimal transfer traffic flows among subnetworks, which
will be sent to the lower-level controllers as reference
targets. The subnetwork controller is identical to our pro-
posed signals coordination controller except the tracking
term is utilized as one of the objective functions.

Two common estimation criteria are introduced to evaluate
the performances of four control approaches. The first one is
TTSind, which represents the accumulated amount of TTS by
all vehicles inside the traffic network since the beginning of
simulation:

TTSind =
Kc∑
k=1

∑
(u,d)∈L

Tc · nu,d (k) (19)

where Kc is the control time step counts in the considered
time horizon. The second one is the accumulated total delay
time (TDT) from the beginning of the simulation to the end

TDT =
Kc∑
k=1

∑
(u,d)∈L

( lu,d
vaverageu,d (k)

−
lu,d
vfreeu,d

)
· nu,d (k) (20)

where lu,d is the link length, vaverageu,d (k) is the vehicular aver-
age speed in link (u, d), and vfreeu,d =50km/h is the free-flow
speed. To shed more light on the subnetwork performance
under our proposed integrated MPC strategy, the weighted
average flow

qwi (k) =

∑
r∈Ri

qr (k)lr∑
r∈Ri

lr
(21)

FIGURE 6. TTSind and TDT comparison for all control approaches. (a) and
(b) Scenario 1. (c) and (d) Scenario 2.

whereRi is the set of links in subnetwork i and lr is its length,
qr (k) is the measured traffic flow in link r at time step k ,
and the number of vehicles in each subnetwork are taken into
account as the criteria in the two scenarios.

Fig. 6 provides a comparison of TTSind and TDT in whole
network over the simulation time for four control strategies
in the two traffic scenarios. This figure demonstrates that all
three MPC schemes is capable of obtaining the decreased
values of TTSind and TDT. From Fig. 6(a), since the traffic
network is not very congested at the beginning of the simula-
tion period, the difference between the four control strategies
is not obvious. With increased input traffic demands as time
progresses, the centralized, the proposed integrated and the
compared hierarchical control could obviously reduce the
TTSind compared with the fixed-time control. It is also noted
that the centralized control performs better than the other
two hierarchical control. The difference for TTSind at the
end of simulation between the centralized and the proposed
integrated control is 8.26%, and the difference for TTSind
between the centralized and the compared hierarchical con-
trol is 3.31%. It can be explained by the fact that the internal
traffic flows within the network are well regulated and coor-
dinated due to the presence of the lower-level controller in
our approach, which prevents the network from congestion.
Thus, the higher-level controller allows more input flows
enter to the network during the simulation, resulting in a little
more accumulated TTSind within the network. FromFig. 6(b),
all three MPC control schemes can improve TDT metric
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TABLE 2. TTSind and TDT for all control strategies in the two scenarios.

FIGURE 7. Comparison for two performance metrics of three subnetworks under four control strategies in Scenario 1.
(a), (b) and (c) Weighted average flow. (d), (e) and (f) Number of vehicles.

compared with the fixed-time control scheme duo to their
regulation ability, increasing the travel speed and decreasing
the stop frequency of vehicles before they exit the network.
The difference for TDT at the end of simulation between
the centralized and the proposed integrated control is 12.2%,
and the maximal difference between the centralized and the
compared hierarchical control is 6.94%. These figures also
illustrate that our integrated approach can approximate the
performance of the centralized control when the network is
moderately congested (as in Scenario 1).

Scenario 2 is designed to test the ability of all con-
trol strategies to against the gridlock phenomenon. From
Fig. 6(c) and 6(d), the fixed-time control strategy cannot
avoid severe congestion due to highly traffic demands, lead-
ing to drastic increase in accumulated TTSind and TDT for
the whole network. However, compared with the centralized
control and the hierarchical control, the integrated approach
yields a better performance significantly in both metrics. This
is reasonable since the higher-level controller will have a

greatly impact on the demand management operation when
the network reaches the oversaturated traffic condition. Along
with a highly increasing traffic demand, the performance of
the centralized and the compared hierarchical control strate-
gies may deteriorate because of local spillback within the
traffic network, whereas the integrated approach can restrict
the inflows from adjacent regions so as to keep the number of
vehicles of each subnetwork close to its critical value ofMFD.
Thus, the traffic signals coordination controllers at the lower-
level are able to regulate the traffic flows within subnetworks,
which can efficiently use the network capacity for improving
the mobility. The two controllers work collaboratively to
improve the system performance at the global network level
byminimizing the probability that the whole network become
congested. The detailed numerical results are given in Table 2.

To shed more light on the subnetwork performance under
our proposed integrated MPC strategy, the weighted average
flow and the number of vehicles in each subnetwork are taken
into account as the criteria in the two scenarios. As depicted
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FIGURE 8. Comparison for two performance metrics of three subnetworks under four control strategies in Scenario 2.
(a), (b) and (c) Weighted average flow. (d), (e) and (f) Number of vehicles.

in Fig. 7(a), 7(b) and 7(c) corresponding to subnetwork i, j
and l respectively, all three MPC control strategies are able
to increase the subnetworks flows compared with the fixed-
time control in scenario 1. Fig. 7(d), 7(e) and 7(f) displays
the variation of the number of vehicles over time in each
subnetwork. In subnetwork j and l, our proposed approach
maintain the networksNj,critical = 1700 andNl,critical = 1000.
In subnetwork i, the number of vehicles in our approach
exceeds its critical point Ni,critical = 1300 in a short duration,
but the weighted average flow is kept at a relative higher level.
The reason is that the aim of our higher-level controller is to
maximize the internal flow within each subnetwork, attract-
ing more inflows from external regions when the network is
loaded with a moderately traffic demands. This is also can
be verified in Fig. 9(a), 9(b) and 9(c), which plot the MFDs
of all subnetworks in scenario 1. These figures show that our
approach keeps the weighted averaged flow in subnetwork
i and j at a comparatively stable state without bending the
curves to the congested part (right-hand side) of MFDs, and
then drives the subnetworks to recover around the critical
points from the saturated condition with the decreased traf-
fic demands in the last simulation period. In subnetwork l,
the MFD in our approach is concentrated in the uncongested
part (left-hand side), even without reaching the critical point.
As can be observed in Fig. 9(a), 9(b) and 9(c), the other
two MPC control strategies experience some lightly traffic
congestion for some subnetworks.

As illustrated in Fig. 8(a), 8(b) and 8(c), compared
with the fixed-time control, a remarkable improvement of
weighted averaged flows for all subnetworks in scenario

2 under three MPC schemes can be observed. Our pro-
posed approach displays a little worse performance compared
with the other MPC approaches due to its lower values of
weighted averaged flow. However, note also that the num-
ber of vehicles time series under our proposed control is
kept below its critical value for each subnetwork, as shown
in Fig. 8(d), 8(e) and 8(f). The results reveal that our pro-
posed approach outperforms the other two MPC control
strategies in managing the traffic demands among subnet-
works, especially in the oversaturated traffic conditions. The
reason for the lower subnetwork flow is that the function
of MFD is obtained from the curve fitting method, which
are not able to describe the scatter errors in the saturated
and oversaturated part of MFD, leading to inefficiently usage
of the network maximum flow. It may be solved by adding
some stochastic terms into the MFD function in future work.
The similar result is clearly seen in the MFDs for the three
subnetworks in Fig. 9(d), 9(e) and 9(f).

In order to further illustrate that the integrated MPC
approach is superior in distributing the number of vehicles
efficiently over each subnetwork, we utilize the standard
deviation (SD) of link densities to analyze the homogeneous
degree within each subnetwork, which is defined as follows

SDi(kc) =

√√√√ 1
mi

∑
(u,d)∈Li

(
nu,d (kc)
lu,d

− ϑi(kc))2

ϑi(kc) =

∑
(u,d)∈Li

nu,d (kc)
lu,d

mi
(22)
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FIGURE 9. Comparison for the MFDs of three subnetworks under four control strategies. (a), (b) and (c) Scenario 1. (d), (e) and (f) Scenario 2.

FIGURE 10. Standard deviation of link densities within three subnetworks under four control strategies. (a), (b) and (c) Scenario 1.
(d), (e) and (f) Scenario 2.

wheremi is the number of links in subnetwork i,ϑi is themean
value of link densities in subnetwork i. Fig. 10 displays the
evolution of standard deviation over time for all four control
strategies. In scenario 1, our proposed approach exhibits a

better performance in the standard deviation of link densities
for subnetwork i and l. For subnetwork j, the performance
of our approach is more close to the compared hierarchical
control due to the fact that there is a quickly decrease of
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FIGURE 11. The control actions of the subnetworks. (a) Scenario 1.
(b) Scenario 2.

the number of vehicles under the centralized control, result-
ing in the insufficiently usage of the subnetwork capacity.
It also reveals the fact that the centralized control cannot
coordinate the traffic flows among subnetworks effectively.
In scenario 2, due to the aforementioned improvements in
the weighted average flow and the number of vehicles by
applying our integrated MPC control strategy, the standard
deviations of link densities for all subnetworks are remark-
ably reduced compared with the other approaches, which
means that the subnetwork homogeneity is well guaranteed
and consequently the vehicular movement within the subnet-
work is better smoothed.

Fig. 11 depicts the control sequences of our proposed
approach at the higher level for two scenarios. The control
sequences show the variation trends of number of vehicles
in each subnetwork. At the very beginning of the control
process, the controllers do not restrict the external traf-
fic demands since all subnetworks are uncongested. While
afterwards, as the subnetworks become more congested,
the controllers attempt to prevent the traffic states falling
into gridlock by changing ri from rmax to rmin in a smooth
manner.

V. CONCLUSION
An appropriate hierarchical framework brings higher effi-
ciency and more flexibility to network-wide control of com-
plex urban traffic networks, for the reason that it is able to

distribute different goals and control strategies into different
levels for solving. In this paper, on the basis heterogeneous
network partition, a two-level hierarchical control scheme
integrating the traffic demand management at the higher
level and the traffic signals coordination controller at the
lower level is proposed to control a large-scale urban traffic
network. The higher-level controller based on the concept
of MFD limits the input traffic flow from adjacent regions
to reduce the risk of oversaturation at the network level,
and the lower-level controller based on an improved link
level traffic model coordinate the traffic flow within the sub-
networks to smooth the vehicular movements. The rolling-
horizon scheme of MPC enables the optimization problems
at both level to be solved online for application in practice.
They work collaboratively to guarantee a better performance
of the whole network. Simulation studies show the benefits of
the combined control strategy in comparison to other control
strategies. A further observation is that the traffic demand
management is capable of stabilizing the traffic state of sub-
networks to their analytical equilibria.

In the future, we will explore how to further improve the
accuracy of MFD-based traffic model and reduce the com-
putational burden in solving the nonlinear MPC optimiza-
tion problem. A potential solution is to apply a distributed
scheme to coordinate the traffic signals inside the subnet-
works. Some intelligent optimization algorithms should also
be applied to facilitate the computational efficiency and to
obtain the globally optimal solution. Possible approaches to
address this problem, such as evolutionary algorithms, robust
optimization algorithm and so on, will also be investigated
in order to further make the proposed approach applicable
in practice. Control for larger scale urban traffic networks
can also be considered and investigated with the utilization
of the proposed approach based on the field traffic data.
In addition, more detailed simulation experiments have to be
implemented to compare with other approaches presented in
the literature.
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