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ABSTRACT A key justification for molecular communications is low energy consumption and limited
complexity. However, this is only the case if effective architectures for transmitting and receiving devices
exist, which is not the case for most modulation and coding schemes at present. One approach to implement-
ing these devices is to use biological circuits, based on chemical reaction networks and DNA transcription
processes. In this paper, we develop a biological circuit to demodulate a class of molecular shift keying
modulation schemes. A feature of our scheme is that only a single kind of receptor is required to which
either of the signaling molecules can bind. We analyze our scheme to tune parameters and compare it to
an optimal demodulation scheme. This reveals tradeoffs between performance and complexity in biological
circuit implementations.

INDEX TERMS Biological circuits, detection, molecular communication.

I. INTRODUCTION
For communication systems to support biological com-
puting [1], nanoscale sensor networks [2] and lab-on-chip
devices [3], there is a need for simple devices with very
low energy consumption. To meet these requirements,
approaches inspired by nature have been proposed. One
such approach is communication exploiting the exchange
of information-carrying molecules—known as molecular
communications [4]—with information processing carried
out using biological circuits [5].

Recently, there has been significant progress in developing
biological circuits for transmitters and receivers in molecular
communication systems. These include the encoding and
decoding circuits in [6], the pulse generators in [7], and the
analog demodulation circuits in [8] and [9] for reaction-shift
keying.

Despite this rapid progress, none of these circuits are
suited to digital communication with more than one type of
signaling molecule. As such an approach forms the basis
of the popular molecular shift keying (MoSK) modulation
scheme [10] (see also the survey in [11]), it is desirable to
develop biological circuits for demodulation of this class
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of modulation schemes. However, any demodulation circuit
must account for potential non-specificity of receptors to
which signaling molecules bind. That is, it is necessary to
account for the possibility that multiple types of signaling
molecules are able to bindwith each receptor, potentially with
different affinities.

In this paper, we view the non-specificity of the receptors
as an opportunity. In particular, we propose a scheme based
on MoSK, where there is only a single type of receptor.
This means that either of the types of signaling molecules
are able to bind with any receptor. The key benefit of this
approach is potential complexity reductions in fabrication of
the receiving device, or a reduction in the total number of
required receptors.

Our modulation scheme differs from classical MoSK [11]
in that the number of each type of molecule is Poisson
distributed, bearing some similarities to the concentration
shift keying scheme in [12]. This modulation scheme is more
reasonable when it is difficult for the transmitter to guarantee
that a fixed number of molecules is produced in a given time
period. As such, our approach is applicable when there are
time-varying energy constraints or the transmitter molecule
production circuit is far from the thermodynamic limit [13].

Our approach exploits a newly developed technique for
reconstructing the number of each type of molecules bound
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to each receptor [14]. This technique provides a method to
design chemical reaction systems that produce samples from
the posterior distribution for the number of each type of
species bound to the receiver, given the number of molecules
produced by each receptor. By tailoring this method to our
MoSK demodulation problem, we are able to solve the
hypothesis testing problem for which message was sent.

In particular, with the posterior samples in hand,
we develop further chemical reaction systems to output
a decision. These chemical reaction systems are inspired
by robust adaptation mechanisms that arise in bacteria
chemotaxis [15], [16]. Via an analysis of the probability of
error, we demonstrate the impact of each parameter in the
communication system. We compare the error probability in
our scheme with the optimal detection rule for the average
Bayes’ risk, which reveals insights into the tradeoffs between
performance and system complexity.

A key observation from our analysis is that for desirable
choices of system parameters, the communication channel
closely approximates a binary erasure channel. This is a
useful observation as it suggests that recent work on channel
coding with small numbers of messages is applicable [17].
In particular, it provides a means of obtaining nearly optimal
codes for the probability of error to be reduced to an arbitrar-
ily low level.

The remainder of this paper is organized as follows.
In Section II, we introduce our system model. In Section III,
we present the concept of chemical reaction networks, which
is used extensively throughout the remainder of the paper.
In Section V, we analyze the output statistics of our receiver
and optimize parameters in order to minimize the symbol
error probability for uncoded transmissions. In Section VI,
we discuss coding for our demodulator and additional mech-
anisms that may be required for implementation, as well as
open issues. In Section VII, we conclude by highlighting
future research directions.
Notation: Vectors are denoted by bold lowercase letters,

random vectors by bold uppercase letters, and matrices by
bold uppercase sans serif letters (e.g., x, X, X). Chemical
species by uppercase upper case sans serif letters (e.g.,S) and
the concentrations by square brackets (e.g., [S]). We denote
the distribution of a random vector X by PX. The Poisson
distribution with intensity parameter λ > 0 is denoted by
Poiss(λ).

II. SYSTEM MODEL
Consider two devices that can emit and detect two chem-
ical species, respectively. Denote the chemical species by
S1 and S2. The two devices communicate over time slots of
duration T by modulating the number of molecules S1 and
S2 emitted by the transmitter.

Our focus is on binary modulation schemes. At the begin-
ning of each time slot [S1] molecules of S1 and [S2]
molecules are emitted. In particular, when the messagem = 0
is to be sent, [S1] ∼ Poiss(λ0) and [S2] = 0. On the other

hand, when the message m = 1 is to be sent, [S1] = 0 and
[S2] ∼ Poiss(λ1).
After entering the fluid medium between the transmitter

and receiver, the signaling molecules are transported to the
receiver. We assume that each emitted molecule binds to a
receptor on the receiver within the time slot duration T with
a probability p. Moreover, the events that the molecules bind
to a receptor within the time slot are all independent.
We remark that the particular transport process carrying

molecules from the transmitter to the receiver is not of sig-
nificant importance for the purposes of this paper. As long as
the probability p is constant and the binding events for each
signaling molecule are independent, any transport process
can be considered. One important example is diffusion, which
can often be modeled by the Wiener process. The probability
p is then given by the first hitting time of eachmolecule. In the
case of one dimensional Brownian motion with non-zero
drift, the first hitting time is inverse Gaussian distributed [18].
As such, the probability p can be obtained as

p =
∫ T

0

√
λ

2πu3
exp

(
−
λ(u− µ)2

2µ2u

)
du, (1)

where µ = d
v and λ = d2

σ 2
, with d the distance between

the transmitter and the receiver, v the drift velocity and σ 2

the variance of the Wiener process. In the case of anomalous
diffusion (e.g., due to turbulence), a Lévywalkmay be amore
appropriate model [19].

There may also be molecules of S1,S2 naturally in the
environment and noise in the reception process. For example,
a signaling molecule binds with a receptor more than once
due to non-zero reverse reaction rates. The noise consisting
either of molecules of species S1 or S2, is then modeled by
independent Poisson random variables. In particular, the nat-
urally occuring concentrations are S1 and S2 is Poisson with
intensity λZ .

The effect of the channel is to introduce independent
thinning for the number of transmitted molecules and the
Poisson distributed noise is additive, independent of the input.
As such, it follows that the number of molecules of S1 and S2
at the receiver, denoted by [SR,1], [SR,2] are both Poisson dis-
tributed, conditioned on the message m that was transmitted.
In particular, the number of binding events, [SR,1], [SR,2],
during a time slot T have the conditional distributions

[SR,1]|m=0 ∼ Poiss(pλ0 + λZ ), [SR,1]|m=1 ∼ Poiss(λZ )

[SR,2]|m=0 ∼ Poiss(λZ ), [SR,2]|m=1 ∼ Poiss(pλ1 + λZ ).

(2)

The goal of this paper is to develop a chemical receiver
that produces a distinct chemical signal, depending on which
message is detected. The role of the receiver is to output a
decision for which mesage was sent, denoted by m̂ ∈ {0, 1}.
A key feature of our model is that we include the impact of
non-specific receptors. That is, both the signaling molecules
S1,S2 can bind to any receptor on the surface of the receiver,
albeit with different affinities.
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After a signalingmolecule binds with a receptor, molecules
of another chemical species Y are produced inside the
receiver. As such, these molecules can be directly observed
and processed to detect the transmitted message. We consider
a linear model [14] for the number of molecules of Y that
are produced by the binding events during a given time slot.
In particular, the number of molecules, [Y], of Y that are
produced is given by

[Y] = o1[SR,1]+ o2[SR,2], (3)

where o1, o2 ∈ Z≥0. The coefficients o1, o2 depend on the
affinities of the receptors to S1,S2. If o1 > o2, the receptor
has a higher affinity for S1 than for S2.

III. CHEMICAL REACTION NETWORK PRELIMINARIES
Our proposed receiver architecture is implemented by a
biological circuit. In order to design the circuit, we require
results from chemical reaction network theory. To this end, let
S = {X1, . . . ,Xm} be a set of chemical species. Associated
with the system is a set of r reactions. For the j-th reaction,
let νj, ν′j be the vectors in Zm

≥0 representing the number of
molecules of each species consumed and created, respec-
tively, in one instance of the j-th reaction. The j-th reaction
can then be written in the form

m∑
i=1

νj,iXi→

m∑
i=1

ν′j,iXi. (4)

The set of all chemical reactions is denoted by R.
A complex is a formal linear combination of chemical

species; e.g., X1 + 3X2. We denote the set of all complexes
defined by νj, ν′j by C. A chemical reaction network is then
the triple (S, C,R).

We will require the notions of both stochastic and deter-
ministic models for the kinetics of chemical reaction net-
works. The stochastic model will be based on the chemical
master equation, which can be well approximated by a deter-
ministic model in the thermodynamic limit [13]. However,
in general, the stochastic and deterministic models can sig-
nificantly differ in their behavior.

The stochastic model for a chemical reaction network
(S, C,R) specifies the rate of production of each new species.
If the j-th reaction occurs at time t , the new state of the system
is

X(t) = X(t−)+ ν′k − νk , (5)

where X(t) is the random vector of concentrations of each
chemical species at time t . Let Rk (t) denote the number of
times that the k-th reaction occurs by time t . Then, the state
of the system at time t can be written as

X(t) = X(0)+
∑
k

Rk (t)(ν′k − νk ), (6)

where the sum is over all previous reactions.

The process Rk (t) is a counting process [20] with intensity
λk (X(t)) and can be written as

Rk (t) = Yk

(∫ t

0
λk (X(s))ds

)
, (7)

where the Yk are independent, unit-rate Poisson processes.
The intensity functions λk are assumed to be of the form

λk (x) = κk

(
m∏
l=1

νl,k !

)(
x
k

)
, (8)

which is known as the stochastic mass actionmodel. Note that
the concentration trajectories of each chemical species can be
obtained using stochastic simulation techniques [21], a fact
that we will exploit later to obtain Monte Carlo estimates of
error probabilities.
It is clear from (5) thatX(t) forms a Markov chain. A such,

it may admit a stationary distribution. In particular, if the
reactions are all reversible, a unique stationary distribution
π (x) exists, given by

π (x) = lim
t→∞

Pr(X(t) = x|X(0) = y), (9)

for all reachable x, y.1

For the results in the sequel, it is necessary to specify
conditions under which this stationary distribution can be
characterized. These conditions are given in terms of a deter-
ministic model for the chemical reaction network (S, C,R).
Initially, we will focus on a particular class of chemical

reaction networks defined by the reactions

X1
κ1
→ aX2

aX2
κ2
→ X1, (10)

where a ∈ Z>0.
The concentration of each species X1,X2 is the number

of molecules normalized by the volume, V , of the con-
tainer. In our case, the container is the receiving device. Let
[X1](t), [X2](t) be the concentrations of sX1,X2 at time t ,
respectively. Deterministic mass-action kinetics of this class
of chemical reactions is defined by the system of ordinary
differential equations

d[X1](t)
dt

= −κ1[X1](t)+ κ2[X2](t)a

d[X2](t)
dt

= −κ2[X2](t)a + κ1[X1](t). (11)

Note that this chemical reaction network satisfies the detailed
balance condition for any choice of κ1, κ2 > 0, and in
particular κ1 = κ2 which we will assume in all that follows.
As a consequence by [20, Th. 4.1], the unique stationary
distribution of the reaction network defined by (10) is given
by

π (x) = M0e−c1−c2
cx11
x1!

cx22
x2!
, x ∈ 0 (12)

1That is, the number of molecules of each species can take the values
in x, y.
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where (c1, c2) is a point of detailed balance2 satisfying the
identity c1 = ca2, 0 is the irreducible subset of Z2

≥0 accessible
via the reactions in (10) and M0 is a normalizing constant.
When we develop a thresholding scheme within our pro-

posed receiver in the following section, wewill require amore
general class of chemical reaction networks. However, for the
purposes of exposition, we will defer further discussion until
Section IV-B.

IV. PROPOSED RECEIVER ARCHITECTURE
In this section, we develop our proposed receiver architecture.
There are three stages: sampling from the posterior distribu-
tion; demodulation; and the decision rule. The first stage can
be viewed as providing an estimate of the true number of each
chemical species S1,S2 that bind with the receptors. On the
other hand, the second and third stages exploit this estimate in
order to make a decision m̂ ∈ {0, 1, e}, where the estimate e
corresponds to an erasure (i.e., no estimate for the symbol is
obtained).

A. STAGE 1: SAMPLING FROM THE POSTERIOR
The first stage of the receiver is to obtain partial estimates
of the concentrations, [SR,1], [SR,2], of S1,S2 on the surface
of the receiver. These estimates are obtained via the output of
the receptor [Y], given by

[Y] = a[SR,1]+ [SR,2]. (13)

We seek to sample from the Bayesian posterior

P[SR,1],[SR,2]|[Y](y1, y2)

∝ P[Y]|[SR,1],[SR,2](yR)P[SR,1],[SR,2](y1, y2), (14)

where P[SR,1],[SR,2](y1, y2) is a product-Poisson prior, given
by

P[SR,1],[SR,2](y1, y2) = e−2q
qy1

y1!
qy2

y2!
. (15)

The parameter q > 0 is the rate parameter, to be selected.
In order to sample from the posterior in (14), we will

use a method recently developed in [14]. Let X1,X2 be two
chemical species. The basis of this scheme are the reactions

X1
q
→ aX2

aX2
q
→ X1, (16)

where q is the rate parameter in (15). The concentrations at
time t are denoted by [X1](t) and [X2](t), respectively. The
reaction will be initialized by [X1](0) = [Y] and [X2](0) = 0.

It follows from [20, Theorem 4.1] that the unique sta-
tionary distribution corresponding to the chemical reaction
network in (16) is given by

π (x) = ML([Y])
cx11
x1!

cx22
x2!
, x ∈ L([Y]), (17)

2Note that this point is not necessarily unique. Nevertheless, any point
satisfying the detailed balance condition will yield the same stationary
distribution [20].

where

L([Y]) = {x ∈ Z2
≥0 : ax1 + x2 = [Y]}. (18)

The fact that π (x) corresponds to the desired posterior
distribution in (14) follows by specializing [14]. As such,
in order to sample from the posterior in (14), it is sufficient to
observe the chemical reaction network in (16) at a sufficiently
large time t . If t is chosen large enough, the observations of
[X1](t), [X2](t) will well approximate samples from (14).
To illustrate the behavior of the chemical reaction network

in (16), suppose that [Y] = 6. Assuming that a = 5 in (16),
the values of [X1](t) and [X2](t) are plotted in Fig. 1. Observe
that ([X1](t), [X2](t)) oscillates between (1, 1) and (6, 0).
Since [Y] = 6, it follows that L([Y]) = {(x1, x2) ∈ Z2

≥0 :

a ·x1+1 ·x2 = 6} = {(1, 1), (0, 6)}. As such, the values taken
by the concentrations of [X1](t) and [X2](t) are consistent
with L([Y]).

FIGURE 1. Plot of samples with [Y] = 6, o1 = 5, o2 = 1, q = 1.

The final component of Stage 1 is to obtain a sample of
[X1](tS ), [X2](tS ) at the desired sampling time tS . This can be
achieved using two transcription activation networks, which
has also been applied in the biological circuit-based decoder
in [6]. In particular, the sampling circuit consists of a repres-
sor transcription factor and its corresponding corepressor.
The corepressors bind to specific sites on transcription factor
proteins and produce a steady state concentration of activated
transcription factors equal to the concentration of transcrip-
tion factors, if the initial concentration of corepressors is suf-
ficiently high. Therefore, at the sampling time it is sufficient
to inject a large number of corepressors to activate the produc-
tion of the activated transcription factors corresponing to the
species X1,X2. In the steady state, the concentration of the
activated transcript factor will be equal to [X1](tS ), [X2](tS )
at the sampling time.

As noted in [6], the sampling procedure is not instanta-
neous. In our setting, this can potentially cause a problem
when a reaction in (16) occurs shortly after the corepressors
are introduced into the system, particularly when a in (16)
is large due to the significant changes in the number of
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molecules. This remains an open problem and we discuss it
further in Section VI. In the following, we assume that the
quantities [X1](tS ), [X2](tS ) have been perfectly sampled.

B. STAGE 2: DEMODULATION
Stage 1 provides a means of sampling from the posterior
distribution in (14). Stage 2 produces two signals, one cor-
responding to each of S1,S2. In particular, as is common in
MoSK-based demodulation, a threshold test will be applied
to the samples [X1](tS ) and [X2](tS ).
To apply the thresholding to the signals [X1](tS ) and

[X2](tS ), we will exploit two further chemical reaction net-
works that form integral feedback controllers. This kind of
control system is used to determine if a chemical signal
exceeds a given level in a variety of biological systems; most
notably bacteria chemotaxis [15], [16].

To illustrate the idea, consider the chemical reaction
network

A+ B α
→ 2B

B
β
→ A, (19)

where B is an unactivated protein and A is the corresponding
activated form. Under the deterministic mass action model,
the kinetics for this reaction network are given by

d[A](t)
dt

= −α[A](t)[B](t)+ β[B](t)

d[B](t)
dt

= α[A](t)[B](t)− β[B](t). (20)

Let2 = [A](0)+ [B](0). Observe that this chemical reaction
network satisfies the conservation law [A](t) + [B](t) =
2, t ≥ 0. As such, the equilibrium solution satisfies

α[A]e[B]e = β[B]e
[A]e + [B]e = 2, (21)

where [A]e and [B]e are the equilibrium concentrations of A
and B, respectively. Solving these equations yields

[A]e =
β

α

[B]e = 2−
β

α
, (22)

when a positive equilibrium exists. This means that whenever
2 >

β
α
, corresponding to a sufficiently large value of [B](0),

the equilibrium concentration is given by [A]e =
β
α
.

To illustrate this behavior, Fig. 2 plots the concentration
trajectory [A](t) for different values of [B](0). In the fig-
ure [A](0) = 0. Observe that when [B](0) exceeds β

α
= 2.5,

the equilibrium concentration [A]e = 2.5, as expected.
We use the reaction network in (19) to produce a chemical

signal used to output the decision in Stage 3. In particular
we require two reaction networks of the form in (19), with
non-interacting chemical species. One of these reaction net-
works will be applied to X1 and the other to X2. The conse-
quence is that when the concentration of [X1](t) or [X2](t)

FIGURE 2. Plot of trajectories with α = 1, β = 2.5.

exceeds β
α
, the reaction network will always output the same

value. After sampling using a transcription activation network
as in Stage 1, the concentrations of [A1](t ′S ) and [A2](t ′S ) at the
sampling time t ′S can then be used to obtain an estimate m̂.

Before presenting Stage 3, we remark that the chemical
reaction network in (19) is not the only choice. In general, bio-
logical systems usemuchmore complicated integral feedback
controllers, such as in [16]. Nevertheless, the key idea behind
integral feedback control is the presence of zero-order kinet-
ics. For more details on this more general class of chemical
reaction networks see, for example, [22].

C. STAGE 3: DECISION OUTPUT
The final stage is to obtain the estimate m̂. This is achieved
by observing the two output signals [A1](t ′S ) and [A2](t ′S )
from the integral feedback control circuit based on (19). The
value of β

α
is chosen to be equal to the thresholds τ1, τ2.

Therefore, if the threshold test is passed, the value of [A1](t ′S )
and [A2](t ′S ) will be fixed to β

α
. On the other hand, if the

input to Stage 2 is below the threshold then one or both of the
conditions [A1](t ′S ) < τ and [A2](t ′S ) < τ will be satisfied.
Observe that it is possible that both [A1](t ′S ) and [A2](t ′S )

either exceed or fall below the threshold. In this case, we say
that an erasure has occured and the erasure symbol e is output
from the detection circuit. To determine whether an erasure
has occured, we introduce a third signal (called an erasure
signal), which takes a constant value e1 if an erasure has
occured and e0 otherwise.
The erasure signal can be obtained using the XOR opera-

tion, and as such we require an implementation of the XOR
logic gate. This is in principle possible by exploiting the XOR
biological circuit in [23].

V. PROBABILITY OF ERROR ANALYSIS
In this section, we analyze the probability of error for the pro-
posed receiver. There are a number of parameters that a sys-
tem designer may tune. These include the molecular weight a
in (10), the thresholds τ1, τ2, the production intensities λ0, λ1
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and even potentially the quality of the channel encoded in the
probability p. We first obtain and analytical expression for
the probability of error in terms of finite sums, which can
be easily computed numerically. We then provide numerical
results to investigate the effect of each parameter on the
probability of error.

Recall that there are three possible estimates obtained from
the receiver: m = 1; m = 0; or an erasure. No error
occurs if m = 0 and [A1](t ′S ) > τ1, [A2](t ′S ) ≤ τ2 or
m = 1 and [A1](t ′S ) ≤ τ1 < [A2](t ′S ) > τ2. Under the
assumption that the sampling times tS and t ′S are sufficiently
large to well approximate the stationary distribution in Stage
1 and the equilibrium in Stage 2, the probability of successful
transmission is well approximated by

PS ≈
1
2
Pr([A1](t ′S ) > τ1, [A2](t ′S ) ≤ τ2|m = 0)

+
1
2
Pr([A1](t ′S ) ≤ τ1, [A2](t ′S ) > τ2|m = 1). (23)

It follows from the decision rule in Stage 3 of the receiver
that the probability a message is correctly detected given
m = 0 was transmitted is given by

Pr([A1](t ′S ) > τ1, [A2](t ′S ) ≤ τ2|m = 0)

=

∑
a1,a2∈Z2

≥0

1{a1>τ1,a2≤τ2}

×Pr([A1](t ′S ) = a1, [A2](t ′S ) = a2|m = 0).

(24)

Similarly, in the case that m = 1 was transmitted, the proba-
bility of correctly detecting m̂ = 1 is given by

Pr([A1](t ′S ) ≤ τ1, [A2](t ′S ) > τ2|m = 1)

=

∑
a1,a2∈Z2

≥0

1{a1≤τ1,a2>τ2}

×Pr([A1](t ′S ) = a1, [A2](t ′S ) = a2|m = 1).

(25)

By using the fact that the output concentrations depend on
the stationary distribution of the chemical reaction network
in Stage 1, it follows that in the case m = 0

Pr([A1] = a1, [A2] = a2|m = 0)

=

∑
y1,y2∈Z≥

πay1+y2 (a1, a2)Pr([SR,1] = y1)Pr([SR,2] = y2)

=

∑
y1,y2∈Z≥

πay1+y2 (a1, a2)

× e−pλ0−λZ
(pλ0 + λZ )y1

y1!
e−λZ

(λZ )y2

y2!
. (26)

Similarly, in the case m = 1 we have

Pr([A1] = a1, [A2] = a2|m = 1)

=

∑
y1,y2∈Z≥

πay1+y2 (a1, a2)Pr([SR,1] = y1)Pr([SR,2] = y2)

=

∑
y1,y2∈Z≥

πay1+y2 (a1, a2)

×e−λZ
(λZ )y1

y1!
e−pλ1−λZ

(pλ1 + λZ )y2

y2!
. (27)

The probability measure πz(x1, x2) is obtained from the
stationary distribution for the stochastic chemical reaction
network in Stage 2. To obtain an explicit representation of
πz(x1, x2), note that

L(z) = {(x1, x2) ∈ Z2
≥0 : ax1 + x2 = z}. (28)

The stationary distribution is then given by [14]

πz(x1, x2) =

{ 1
K
e−2q q

x1qx2
x1!x2!

, (x1, x2) ∈ L(z)

0, otherwise,

}
(29)

with normalization constant

K =
∑

(x1,x2)∈L(z)

e−2q
qx1qx2

x1!x2!
. (30)

Fig. 3 shows the probability of error for varying molecular
weight a in Stage 1. Observe that the analytical approxima-
tion of the probability of the error obtained from (23) is in
good agreement with the probability of error obtained from
Monte Carlo simulations. For small values of a, the proba-
bility of error is very high, and in fact greater than 0.5 since
errors due to erasures can occur. The high probability of error
is due to the fact that when [Y] < a, the true values of
[SR,1], [SR,2] can be perfectly reconstructed. However, in the
case [Y] ≥ a, there is more than one element of L([Y]) in (18).
As such an error can occur, with probability depending on
the choice of the prior distribution in (15). Therefore, it is
desirable to make a as large as possible, subject to constraints
on the available chemical species used to implement the
reaction network.

FIGURE 3. Probability of error for varying molecular weight a. The
parameters for the simulation are: p = 0.9; λZ = 1; λ0 = 6; λ1 = 6; τ1 = 2;
τ2 = 2.

Fig. 3 also demonstrates that for a sufficiently large value
of a, the probability that an erasure occurs very closely
approximates the probability of error. That is, almost all
errors are in fact erasures. This is a useful observation from
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the perspective of designing channel codes, which we discuss
further in Section VI.

Fig. 4 shows the effect of changing the intensity param-
eter for the Poisson distribution governing the number of
molecules that are transmitted. A key observation is that a
large intensity λ = λ0 = λ1 does not improve the probability
of error. The key reason for this is that as more molecules
are transmitted, the number of molecules [Y] produced by the
receptors also increases. As noted in the discussion of Fig. 3,
this can result in imperfect reconstruction of [SR,1], [SR,2].
As such, the error probability increases. On the other hand,
for small values of λ, there is a higher probability that [SR,1]
or [SR,2] contain no information about the transmitted signal
as only noise is present. Therefore it is desirable to optimize
the choice of λ to minimize the probability of error.

FIGURE 4. Probability of error for varying λ0 = λ1 = λ. The parameters for
the simulation are: p = 0.9; λZ = 1; a = 5; τ1 = τ2 = 2.

Fig. 4 also shows the erasure probability. For small val-
ues of λ, the erasure probability better approximates the
actual probability of error. Again, this is a desirable feature
from the perspective of channel coding, discussed further in
Section VI.

VI. DISCUSSION
In this section, we discuss limitations of the receiver design
and methods to improve the performance. In particular,
we first compare our design with the optimal decision pro-
cedure. We show that the optimal decision scheme is more
challenging to implement within a biological circuit, albeit
with the benefit of lower error probabilities. To remedy this
problem, we discuss channel coding schemes suitable for the
molecular communication regime. Finally, we discuss some
practical implementation issues.

A. COMPARISON WITH OPTIMAL DECISIONS
Based on samples [A1](t ′S ), [A2](t ′S ), we seek to obtain the
optimal decision rule in the sense that the average Bayes’ risk
is minimized. Let H0 be the hypothesis that m = 0 and H1
be the hypothesis that m = 1. It follows immediately from
the likelihood ratio test [24] that the optimal decision rule is

given by

Pr([A1](t ′S ), [A2](t ′S )|m = 1)
H1
≷
H0

Pr([A1](t ′S ), [A2](t ′S )|m = 0). (31)

Note that

Pr([A1](t ′S ), [A2](t ′S )|m = 1)

=

∑
y1,y2∈Z≥0

πL(y1+ay2)([A1](t ′S ), [A2](t ′S ))

×e−λZ
(λZ )y1

y1!
e−pλ1−λZ

(pλ1 + λZ )y2

y2!
(32)

and

Pr([A1](t ′S ), [A2](t ′S )|m = 0)

=

∑
y1,y2∈Z≥0

πL(y1+ay2)([A1](t ′S ), [A2](t ′S ))

×e−pλ0−λZ
(pλ0 + λZ )y1

y1!
e−λZ

(λZ )y2

y2!
. (33)

Table 1 compares the performance of the proposed scheme
and the optimal scheme in (31). The system parameters cor-
respond to: λ = λ0 = λ1 = 4; p = 0.9; λZ = 1;
τ1 = τ2 = 2, q1 = q2 = 1. As expected, the optimal scheme
admits a lower probability of error, with roughly a factor
of 3 improvement over our scheme albeit with the need for
more complex computations. As can be inferred from Fig. 4,
a significant proportion of the error contribution is due to
the presence of erasures in our scheme. Due to the challenge
of implementing the rule in (31), it may be more desirable
to instead introduce error control coding. We examine this
approach next.

TABLE 1. Probability of error for the proposed scheme and optimal
detection for varying a in (19).

B. CODING SCHEMES
In Section V, we observed that for parameter choices that
lead to lower probabilities of error, the probability of error is
dominated by the probability of erasure. As a consequence,
the communication channel in this setting can be approxi-
mated by an erasure channel. It is therefore of interest to
understand how channel coding might be performed.

In molecular communications, the symbol period, T ,
is typically long due to the slow transportation of molecules
from the transmitter to the receiver. As such, letting the block-
length n → ∞ may not be a desirable approach. Recently,
there has been significant interest in fundamental limits of
communication in the finite blocklength regime. Perhaps
the most well known work is the second order asymptotic
approach developed in [25], which yields bounds on the rate
in terms of the blocklength and channel parameters.
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Another approach is to fix the number of messages M as
well as the blocklength n, and then find an optimal code.
This approach has been studied by Lin et al. in [17]. For
the erasure channel with a maximum likelihood decoder,
they have shown that the class of weak flip codes (which
are in general non-linear) are optimal in the sense that the
probability of error is minimized.

The work by Lin et al. can be adopted in our work with
M = 2 messages to reduce the probability of error. In this
case, the optimal code with a blocklength n (i.e., n sym-
bols are transmitted) is the flip code of type t for any t ∈
{0, . . . , bn/2c} given by

C =
(
0 · · · 0 1 · · · 1
1 · · · 1 0 · · · 0

)
, (34)

where each row of C corresponds to a codeword (i.e., m ∈
{0, 1}) with t ones on the first row. Note that for t = 0, this
corresponds to a repetition code. For M > 2, more general
classes of weak flip codes are optimal (see [17]).

Due to the high degree of structure in (the generally non-
linear) weak flip codes, it is an interesting problem to develop
encoders and decoders implemented via biological circuits.
This would lead to an end-to-end communication system
analogous to the recent work in [6], which focused on the
class of linear block codes.

C. ON IMPLEMENTATION
While we have developed a general structure for receivers
with a MoSK modulation scheme, there remain issues that
need to be addressed to obtain a working implementation.
We briefly highlight three key issues that we believe form
important future work:
Issue 1 (Receptor Design):Wehave seen the important role

that the choice of o1, o2 plays in the error probability. In par-
ticular, when o1 = a and o2 = 1, choosing a large a leads
to significant improvements in the probability of error. It is
therefore desirable to design the receptors on the surface of
the receiver such that a is as large as possible. Another option
is to adjust the choice of information-carrying molecules.
However, there is a tradeoff between the resulting affinities
to the receptor, the ease of production and the probability
that a given molecule can be successfully transported to the
receiver.
Issue 2 (Leakage): A challenge when designing biological

circuits with a number of chemical species is ensuring that
there are no couplings. That is, there are no unintended chem-
ical reactions. The presence of this kind of leakage depends
on the particular chemical species in the design of the system.
In general, there will be different times scales and quantities
of molecules involved in the reactions for Stage 1 and Stage 2.
Therefore, some kinds of leakage will have a significantly
higher impact than others.
Issue 3 (Sampling Limitations): In both Stage 1 and

Stage 2, sampling was implemented using transcription acti-
vation networks. As also noted in Section IV, these reac-
tions do not occur instanteneously and therefore if there are

changes in concentrations, the sampler may behave erro-
neously. It is therefore a key question to develop sampling
schemes that account for the reaction rates in stochastic
chemical reaction networks, as well as the rate of reactions
in transcript activation networks.

VII. CONCLUSION
A key difficulty in developing practical molecular communi-
cation systems, particularly targeted at nanoscale networking,
is designing transmitter and receiver architectures. In this
paper, we have explored solutions to this problem using
biological circuits based on chemical reaction networks and
DNA transcription.

In particular, we considered demodulation of a signal
obtained from a class of molecular shift keying schemes.
An important feature of our approach is that only a single
kind of receptor on the surface of the receiver is required to
which both signaling molecules can bind. By analyzing the
probability of error, we obtain insights into effective choices
of the parameters and comparisons with the optimal detection
strategy.

We also discuss how the error probability can be used with
channel coding strategies recently introduced for communi-
cation systems with a small number of messages. An interest-
ing research direction is therefore to also develop a biological
circuit for encoding and decoding, similar to recent work by
Marcone et al. in [6] for a different class of channel codes
with provable optimality.

A further direction is to investigate the behavior of our pro-
posed communication strategy in the presence of an external
biological system. This leads to the problem of coexistence,
which we have recently investigated in [26] and [27]. In par-
ticular, the choice of modulation scheme should be adjusted
to satisfy a divergence constraint [27] or the species corre-
sponding to the information-carrying molecules should fall
in a restricted class [26]. Minimizing the probability of error
subject to these additional constraints in the MoSK-based
scheme proposed in this paper currently remains an open
problem.
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