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ABSTRACT We develop a general singularity expansion method (SEM) focused on the spatial structure of
electromagnetic fields and currents. In contrast to the traditional temporal SEM, where complex analytical
continuation is performed on the forward Green’s function of free space, we propose applying the SEM to
the reverse Green’s function of the electromagnetic device, the recently introduced antenna current Green’s
function, leading to the discovery of new current and radiation modes. The new spatial SEM turns out to
depend only on single-frequency field/current measurement besides completely avoiding the problem of
separating early- and late-time responses that have been hindering the traditional approach. The theory is first
developed at a very general level and then applied in detail to 1-D wire antennas. We manage to express the
far field in terms of the spatial-SEM modes in a closed analytical form. The theory is confirmed by directly
comparing with the full-wave method of moment solutions, and excellent agreement between theory and
numerical analysis was obtained for generic wire array configurations. The resulting spatial-SEM is expected
to stimulate researches into a new generation of frequency-domain RCS target identification technologies
and electromagnetic sensing by developing special algorithms relying mainly on the spatial structure of the
fields and currents fed by measurements at single frequency instead of the time-domain data usually required
in traditional SEM.

INDEX TERMS Singularity expansion method (SEM), Green ’s functions, numerical methods.

I. INTRODUCTION
Since its proposal many decades ago, the Singularity
Expansion Method (SEM) [1]–[7], [10]–[12] has enjoyed
a tremendous popularity in both computational and applied
electromagnetics due to its very generic character and numer-
ical robustness. For example, it was applied to target iden-
tification [5] and numerous other antennas and scattering
scenarios (see the recent survey [7] for more references
and discussion.) For antenna systems, SEM also found its
way into non-radar applications like current distribution syn-
thesis and the efficient computation of multi-layer Green’s
functions, e.g., see [15]–[18]. The method continues to be
very popular in the field of RCS measurement and charac-
terization and various improvements and modifications in
the main algorithm have been gradually introduced by the
research community [21]–[33]. We note that the SEM can be
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applied to both antenna and scattering problems as the list
of papers quoted above may suggest. Since this is a general
spectral approach to the analysis of electromagnetic signals,
the specific manner in which the field or data, i.e., whether
in antenna or scattering mode, does not matter much. That
explains why SEM has been generally one of the post pow-
erful analytical, computational, and synthesis methods in
applied electromagnetics.

However, the existing SEM is essentially a time-domain
approach, where a temporal signal, say the measured radar
echo, is probed in order to determine its deeper spectral com-
position, namely the time signal’s poles and their residues.
Although some information about the spatial distribution
of the current enters into the traditional SEM expression
through the theory of characteristic modes, e.g., see [12],
[16], the SEM still extracts and is based on what amounts
to essentially temporal electromagnetic information as indi-
cated by the fact that the classical SEM expansion (reviewed
below) is based on the Laplace transform. However, there is
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a need to investigate the natural and obvious generalization
of the SEM to embrace spatial electromagnetics as well. The
reason is that electromagnetic fields are spacetime processes
in which the spatial and temporal degrees of freedom are
subtly interwoven into each other. While a purely temporal
SEM is readily available (the traditional multi-decade long
approach cited above), to our best knowledge an explicit and
systematic purely spatial SEM has never been developed in
the applied electromagnetic literature.

The authors believe that a construction of a spatial SEM
formalism is desirable for both theoretical and applied rea-
sons. From the purely theoretical point of view, the spatial
SEM is the next natural step needed before moving to the
fully-fledged spatio-temporal formulation of SEM in elec-
tromagnetics (not available yet), so building a specific for-
mulation focusing mainly on the spatial degrees of freedom,
i.e., what we refer to here as the spatial SEM (S-SEM), can be
considered a highly motivated attempt for fundamental rea-
sons. On the other hand, the vast majority of applied electro-
magnetic problems, e.g., radar detection, target identification,
antennas, etc, appear to directly involve spatial information,
like the scatterer’s geometrical shape, the radiated field focus,
beamwidth, angle of incidence, and so on. Therefore, having
at hand a deeper understanding of how electromagnetics and
geometry interact through a spectral analysis conducted in
the spatio-frequency domain can provide a rich framework
for new generations of applications and algorithms. In fact,
it seems that the proposed S-SEM algorithm does provide
such indication since the authors were able to use simpli-
fied version of it to devise new electromagnetic machine
learning algorithms for several types of applications, e.g.,
see [44]–[46].

The present paper provides three new contributions to
the topic. First, we supply, to our best knowledge, the first
integrated and focused formulation of the spatial-SEM as
such. Second, we present the first formulation of the relation
between radiation fields and the spatial-SEM poles. Indeed,
it turns out that the far field is analytically expressible in
terms of a linear superposition of basic radiation functions,
which we call here spatial-SEM radiation modes. We also
show how to obtain special spatial-SEM current modes. The
relation between these spatial-SEM field and current modes
is captured by a functional form reminiscent of an angu-
lar sinc function centered at the spatial-SEM pole location,
an observation that is currently being exploited by the authors
to design machine learning algorithms for inverse model-
ing applications of the theory. Third, we provide extensive
numerical validation of the method for various wire antenna
structures, involving bent wires and array configurations,
including comparison with MoM.

The present work is organized as follows. Because of the
complexity of the background needed in order to properly
understand the proposed spatial SEM and in order tomake the
work available to the largest number of readers, we provide in
Sec. II a special review of the background needed in order to
understand the need to transition from temporal to spatial type

SEM. In particular, Sec. II-A first reviews the Green’s func-
tion of electromagnetics that forms the convenient setting for
a correct foundational treatment of the subject. In Sec. II-A.1,
we outline the familiar forward Green’s function in free
space, followed in Sec. II-A.2 by the inverse Green’s function
(ACGF). Indeed, we show that it is the latter what provides the
natural stage for exhibiting and developing the spatial version
of the SEM algorithm. Next, in order to motivate the new
S-SEM method, we first review its forerunner, the temporal
SEM (T-SEM) in Sec. III, where the theoretical foundations
of the SEM are briefly highlighted in order to prepare for the
transition to the spatio-frequency domain. This transition is
initiated in Sec. IV, where the key ideas of the S-SEM are
introduced for the simple case of scalar radiation. The com-
parison with the temporal SEM is then made visible there.
In the next step, we move from the fully generic algorithm
to a very concrete implementation for an actual electromag-
netic scenario, in this case wire antennas. This example is
chosen for its simplicity in implementation and mathematical
analysis. Generalization to non-wire scatterers will be taken
up in future papers but does not introduce essential new
ideas in terms of general formulation. A core dimension
of the S-SEM method is then presented in Sec. VI, which
introduces a novel connection between the S-SEM data and
the far field, leading to the discovery of new set of far-field
radiation modes. The radiation field will then be expressed
analytically in terms of the S-SEM data, with implications for
gains on both the numerical and physical aspects. The S-SEM
method is then verified by conducting extensive analysis of
various wire structures. Selected examples are presented in
Sec. VII, involving straight wires (symmetric and asymmetric
excitation), two- and three- element wire arrays. Comparison
was made with commercial MoM. Finally, we end up with
conclusions mentioning some potential applications of the
S-SEM method.

II. MOTIVATIONS AND BACKGROUND
Since the singularity expansion method is closely related to
the Green’s functions of electromagnetic problems, we need
to first provide a quick review of the various types of such
quantities in order to prepare for the transition to spatial SEM
and also to understand the latter’s relation to the traditional
temporal SEM. This is because, as will be explained shortly,
SEM is fundamentally connected with the Green’s functions
of electromagnetics. However, while the traditional temporal
SEM is linked to the forward Green’s function, the spatial
SEM turns out to be related to the inverse Green’s func-
tions (the ACGF). Both types will be briefly reviewed in
the next few paragraphs before moving to their connection
with the SEM.

A. REVIEW OF FORWARD AND INVERSE GREEN’S
FUNCTIONS IN ELECTROMAGNETICS
1) FORWARD GREEN’S FUNCTIONS
Consider a radiating current J (r, t) (on an antenna, scatterer,
combination of both) with support region Vs and enclosing
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surface S := ∂Vs. We are interested in the electromagnetic
fields produced by this source. The radiated electric field can
be expressed in terms of the source current in operator form
as [49], [59]

E(r, t) = Lrad {J (r, t)} , (1)

where Lrad is the radiation operator of the problem. This
operator is linear, and hence one would expect that a Green’s
function of this operator can be found such that

Ḡ(r, t) · a = Lrad
{
a δ(r, r ′; t, t ′)

}
, (2)

where δ is Dirac delta function, in general a 4-dimensional
version. Here, the generic vector a provides the direction
of the source current, while b = Ḡ · a gives information
about how the response of the system (radiation field) is
oriented in space. One can think of the quantity Ḡ as a direct
juxtaposition of two vectors in the form b a, which is referred
to as a dyadic quantity.1 Consequently, the Green’s functions
of electromagnetics are always dyadic.

It is well known that a Green’s function satisfying (2)
can be used to compute the radiated field due to any source
through an equation of the form [35], [62], [63]

E (r, t) =
∫
R

∫
Vs

Ḡ
(
r, r′; t, t ′

)
· J
(
r′, t ′

)
d3r ′dt ′, (3)

where the t ′-integral is performed over the entire real line R
but is effectively restricted by causality to a lower limit (see
for example [35].) Equation (3) is the familiar ‘‘convolution-
type’’ expression of the principle of superposition in radiation
problems: the total radiated field at any point in space-
time is given by the sum of contributions emanating from
infinitesimal dipoles located at volume element d3r ′ and
radiating within the time interval dt ′, summed over the entire
source region Vs and all relativistically allowed time instants.
Furthermore, because of the spatio-temporal shift-invariance
of free space as an electromagnetic medium, the radiation
response is insensitive to origins of space and time coordi-
nates. For that reason, (1) and (2) can be replaced by

Ḡ(r, t) · a = Lrad
{
a δ(r − r ′; t − t ′)

}
, (4)

and

E (r, t) =
∫
R

∫
Vs

Ḡ
(
r− r′; t − t ′

)
· J
(
r′, t ′

)
d3r ′dt ′. (5)

In other words, the response depends only on the spatial and
temporal intervals r − r ′ and t − t ′.

In the frequency domain, a time harmonic excitation
exp(jωt) is imposed (but not explicitly written). The angular
frequency ω corresponds to the Fourier transform performed
with respect to the temporal variation of the fields and cur-
rents. In this case, relation (4) and (5) become

Ḡ(r − r ′;ω) · a = L
{
a δ(r − r ′;ω)

}
, (6)

E (r;ω) =
∫
Vs

Ḡ
(
r− r′;ω

)
· J
(
r′;ω

)
d3r ′, (7)

1For background in dyadic algebra and calculus, see [53].

where here the frequency-domain quantities are given by

G
(
r− r′;ω

)
=

∫
R
G
(
r− r′; τ

)
e−jωτdτ,

δ
(
r− r′;ω

)
=

∫
R
δ
(
r− r′; τ

)
e−jωτdτ,

J (r;ω) =
∫
R
J (r; τ) e−jωτdτ,

E (r;ω) =
∫
R
E (r; τ) e−jωτdτ. (8)

For simplicity, in this paper we focus on radiating objects
composed of materials supporting only the Perfect Electric
Conductor (PEC) boundary condition.2 In that case, only the
electric field is relevant. Moreover, the radiating volume Vs
can be replaced by the surface S enclosing this volume, after
which equation (7) can be re-expressed more compactly as a
surface integral in the form [54], [55]

E (r;ω) =
∫
S
Ḡ
(
r− r′;ω

)
· J
(
r′;ω

)
ds′, (9)

Note that equations like (9) involving only surface integrals
can still be written for radiation problems using the surface
equivalence theorem [57], [59], [61]. Consequently, with-
out loss of generality, in this paper all current distributions
J (r) can be assumed to be surface current density measured
by A/m.

It is possible to explicitly solve the operator equation (4).
Indeed, the free-space forward Green’s function turns out to
be [35], [49], [54], [62], [63]

Ḡ
(
r, r′;ω

)
=

(
Ī+

1
ω2∇

2
)
g
(
r, r′;ω

)
, (10)

where g
(
r, r′;ω

)
is the frequency-domain scalar Green’s

function

g
(
r, r′;ω

)
:=

eik|r−r
′
|

|r − r ′|
, (11)

with the free-space wavenumber

k = ω/c, (12)

where c is the speed of light. For brevity, we sometimes write
r := |r − r ′| .

2) INVERSE GREEN’S FUNCTIONS
The previous discussion belongs to the forward Green’s
function formulation of electromagnetic radiation problems.
There is, however, an equally important distinctGreen’s func-
tion essential for antenna (and scattering) problems, and that
involves how known or given excitation externally applied
electromagnetic fields induce a current distribution on the

2It is possible to generalize the proposed ACGF-SEMmethod to deal with
non-PEC boundary conditions. However, the mathematical details of such
extension appears to be quite complex and tedious though without essentially
altering the main ideas of the method itself as presented in this paper. The
authors will take up this generalization elsewhere.
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antenna (or scatterer), which in turn will radiate according to
the forward Green’s function as in (9) and (10). The Green’s
function prescribing the transition from field excitation to
current is called the inverse Green s function. On the other
hand, the traditional Green’s function of radiation physics
in classical electrodynamics connecting current source with
radiated fields is named (as before) the forward Green’s
function. To our best knowledge, the first proposal to clas-
sify electromagnetic problems to forward and inverse prob-
lems as described above was given by Schelkunoff [50] and
Schelkunoff and Friis [51] in writings dating back to late
1940s, early 1950s. However, he did not actually formulate
the idea of an inverse Green’s function. Instead, Schelkunoff
introduced the concept of transfer admittance, an ad hoc
circuit approximation of continuous antenna structure, which
was latter taken up by Harrington [58] in his early work on
the Method of Moment (MoM) in the 1960s. The transfer
admittance concept, however, remains an essentially discrete
approximation of what is basically a continuous antenna
problem. As initially given, there is no clear guarantee that the
ever shrinking circuit segments into which the total antenna
surface has been divided will lead to convergent results.
Moreover, there was no exact derivation of the transfer admit-
tance concept based on continuous electromagnetic operator
theory. Finally, Schelkunoff’s work does not seem to have
attracted attention in the ensuing decades, and only examples
involving wire antennas seem to have been published.

Nevertheless, such slow progress of research on the inverse
electromagnetic (antenna) Green’s function is not surprising
given that the rigorousmathematical tools needed to construct
an inverse Green’s function of this type became widely avail-
able only after Schwartz’s s pioneering work on distribution
theory published in the early 1950s. Moreover, because of the
rise of full-wave numerical electromagnetic solvers (MoM,
FDTD, FEM, et), the general attention has gradually shifted
toward direct discretization methods of boundary-value prob-
lems, rather than indirect techniques such as the Green’s
function method.3

This open research problem, i.e., broadly speaking, con-
structing a general inverse Green’s function formalism
valid or generic radiating structures, was taken up recently
in a series of papers and monographs [36]–[40], [42]–[43].
In particular, it was shown that a special tensor-like distri-
bution (generalized function), the antenna current Green’s
function, hereafter will be denoted by F̄

(
r, r′

)
, exists such

that the surface current distribution generated on an antenna
with arbitrary surface S in response to an equally arbitrary
illumination field E can given by [38], [43]

J (r;ω) =
∫
S
F̄
(
r, r′;ω

)
· E
(
r′
)
ds′, (13)

3In theoretical physics, the situation is exactly the opposite. Since the
1950s, the Green’s function method has become a very prominent solution
technique in fields like quantum field theory, condensed-matter physics, and
material science.

where the integration is now performed on a the entire gen-
eral antenna surface S. The proof of (13) required a special
treatment involving ideas borrowed from functional analy-
sis, distribution theory, differential geometry, all applied to
integro-differential operator formulation of radiation prob-
lems [43].

Formally, theACGF F̄
(
r, r′;ω

)
is defined by the following

operator equation

F̄
(
r, r′;ω

)
· a = L−1

{
aδL

(
r, r′

)}
, (14)

where δL
(
r, r′

)
is a special surface delta function tangential

to the antenna surface L whose precise construction can be
found in [43].L is the electromagnetic operator of the antenna
connecting the (tangential) radiated field E to the surface
current J through the integro-differential operator equation

E = LJ . (15)

Explicit formulas and derivations of (15) can be readily found
in literature, e.g., see [49], [57]–[61], [70].

The operator inversion (14) leading to the ACGF was
shown to be possible in general by actually constructing the
ACGF through a sufficiently generic sequential distributional
series [43]. It was also shown in [37], [39], and [43] that
a generalized reciprocity theorem exists, which relates the
ACGF of the Tx antenna to the ACGF of the Rx antenna.
In other words, if the same antenna is used to receive and
transmit signals, then its Tx mode ACGF can be used to
predict the Rx signal using the relation

JRx (rRx;ω) =
∫
S
F̄Rx

(
rRx , r′;ω

)
· E
(
r′
)
ds′, (16)

where

F̄Rx
(
rRx , r′;ω

)
= F̄TTx

(
r′, rRx;ω

)
. (17)

In other words, the only operation needed to obtain the Rx
mode ACGF from the Tx ACGF is merely switching the
source and observation position variables and applying a
dyadic transpose operation. This leads to considerable sim-
plification of electromagnetic analysis since now only one
type of inverse Green’s function needs to be computed, that
corresponding to a test Tx mode analysis.

The ACGF method has been also generalized to arbitrary
multiple-antenna systems and was shown to include all infor-
mation needed to compute the Rx signal withmutual coupling
effects taken into consideration [43]. In general, for N -port
Rx antenna, a total of N ACGFs is required, where the nth
ACGF must have the following general form for arbitrary
2-dimensional antenna structures

F̄n
(
rn, r′

)
=

2∑
l1=1

2∑
l2=1

α̂l1 (rn) α̂l2
(
r′
)
F l1 l2n

(
rn, r′

)
, (18)

for n = 1, 2, ...,N . Here, α̂l1 (r1) and α̂l2 (r2) are two orthonor-
mal vectors tangential to the antenna surface at positions
r1 and r2. Therefore, the dyadic ACGF has a restricted
3-dimensional dyadic form since all dyadic combinations
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appearing in the 3 × 3 matrix must come from the 2 × 2
dyadic form conforming to the expression (18). This funda-
mental general fact about ACGF dyadic forms, which sets
them in direct contrast to the traditional Green’s functions of
electromagnetics, has been discussed in more details in [43]
together with implications for theory and computations.

In this paper, we focus for simplicity on 1-dimensional
antennas to illustrate the proposed ACGF-SEM method.
More specifically, the implementation and actual numerical
examples illustrating the spatial SEM will involve thin-wire
antenna types as will be shown in Sec. V-A. In that case,
the full restricted 3-dimensional dyadic form of the ACGF
will not be needed since the problem can be effectively
reduced to a single dyadic component in the form α̂α̂ because
the tangent to the wire is always directed along the wire
itself and is the same at every point (we focus on linear 1-
dimensional antennas and avoid curved wires for simplicity.
However, the ACGF formalism can deal with any curved
radiating surface or wire, see [43].)

B. SEM AND GREEN’S FUNCTIONS
The SEM is a general method in computational and funda-
mental electromagnetics concerned with the temporal repre-
sentation of various electromagnetic and source quantities via
expansions of the form ∑

n

αnesnt , (19)

where both αn and sn are complex, usually duped residues
and poles, respectively, and collectively will be referred
to in this paper as the temporal SEM data. These data,
i.e., residues and poles of time-domain currents or radiated
fields, can provide valuable information about the geometric
and material structure of the objects supporting or produc-
ing them, and hence their extreme importance in applied
electromagnetics [1]–[33].

Early in its history, it was shown that the fundamental
resonances unearthed by the SEM originate from pole sin-
gularities in the complex plane representation of the Green’s
function4 g(r, r ′;ω) encountered when attempting to solve
the wave equation

utt −∇2u = 0 (20)

using integral equation methods [12]. There, the main idea
is to perform an analytic continuation of the well-known
forward Green’s function g(r, r ′;ω) in order to extend it into
a meromorphic function defined over the entire complex ω-
plane. The finite number of poles of this extended function
(in the lower half of complex plane) were found to constitute
the SEM poles, while their residues correspond to the SEM
residues.

Such classical understanding of the temporal SEM, how-
ever, had resulted in forcefully entangling the entire temporal

4That is, the Green’s function of the scalar Helmholtz equation ∇2 u +
ω2 u = 0.

SEM with the forward Green’s function of electromagnet-
ics Ḡ

(
r, r′;ω

)
. Indeed, the classical SEM approach deals

with the temporal frequency ω-dependence of the forward
Green’s function (10). Traditionally, this SEM technique
uncovers singularities (and their coefficients) emerging from
the temporal representation of the field attained via an inverse
Fourier transform operations applied to frequency-domain
data like (10). Consequently, only one-dimensional functions,
most commonly time signals, can be analyzed through the
traditional, i.e., temporal, SEM.
Because this classical SEM has been historically devel-

oped with an eye on its applications to radar and inverse
modeling in electromagnetics, a physical interpretation of the
SEM poles and residues was readily developed to explain the
significance of the method in terms of the target’s geometric
data, e.g., size, shape, orientation, and so on [8]. Most suc-
cessfully, what made temporal SEM very intuitively appeal-
ing was the association of natural frequencies corresponding
to the SEM poles with internal multiple resonances caused
by infinite back-and-forth-type wave reflections between
two or more geometric singularities (corners, sharp edges,
holes, etc) in the physical target’s body. In that case, the tem-
poral characteristics of the return echo would then reveal
precious information about the geometric structure of the
target, which may then be exploited later in order to develop
novel applications such as high-fidelity target identification
technologies.

Based on this indirect connection between the time-
domain electromagnetic structure and the geometric struc-
ture, the authors believe it is now timely to inquire whether a
direct connection between electromagnetics and the target’s
geometry exists. The most obvious possible connection is
to consider the common factor between the two: the spa-
tial degrees of freedom. Indeed, both electromagnetic fields
and geometry share in the spatial structure of the problem,
and hence it is very likely that a new SEM, a spatial-SEM
approach, could provide direct and more enlightening infor-
mation about the target’s geometric composition. As will be
shown in this paper, such approach turns out to be indeed fea-
sible, with the key enabling theoretical concept the Antenna
Current Green’s Function that was introduced recently [38].
Indeed, in light of the reverse fundamental Green’s functions
of the antenna operator itself, the antenna current Green’s
function (ACGF) F̄

(
r, r′;ω

)
, it is very natural to inquire into

whether the basic intuition behind the conventional SEM,
i.e., that applied originally to the forward Green’s function
g(r, r ′;ω), can now be extended to the reverse electromag-
netic Green’s function F̄

(
r, r′;ω

)
. This idea was first pro-

posed in tentative form in [36] but had to wait to [39] until
the details of ACGF formalism itself were carefully worked
out in [38].

Therefore, instead of studying the temporal spectral struc-
ture of the forward Green’s function Ḡ

(
r, r′;ω

)
, the idea

is to focus on the spatial Green’s function of the antenna
F̄
(
r, r′;ω

)
, where the latter links arbitrary (not necessar-

ily plane wave) illumination field to the response current
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excited on the antenna. Next, instead of studying the
temporal frequency structure of the function F̄

(
r, r′;ω

)
,

we propose focusing on the spatial spectral content of the
ACGF F̄

(
r, r′;ω

)
with respect to its r-dependence. That is,

the resulting spatial-SEM can also be considered a ‘‘spa-
tial ACGF’’. It can be shown that the spatial-SEM pro-
vides a natural complement to the conventional SEM in
the spatial domain, rather than being exclusively devoted to
the time domain. In other words, the spatial-SEM can be
viewed as a single-frequency analog of the traditional multi-
frequency temporal SEM in which the spatial SEM manifests
itself as inherently multi-dimensional (because it applies to
three spatial dimensions, while conventional SEM is only
one-dimensional). In the remaining parts of this paper, this
research program will be developed in details, where we
first give a generic outline of the method using a simplified
scalar mode, then provide detailed implementation for 1-
dimensional structures. However, we first provide in Sec. III
a quick comparison between the two distinct formulations of
SEM in terms of space and time.

III. TRANSIENT SEM VERSUS SPATIAL SEM: THE
GENERAL OUTLOOK
Before moving to the technical details of how to construct the
proposed spatial SEM (hereafter, S-SEM) method, we first
provide a general review of the classical transient (temporal)
SEM (hereafter, T-SEM) with focuses on how the concept of
the new S-SEM approach has been motivated by considera-
tions arising from the classical SEM approach itself.

A. THE ORIGINAL FOUNDATIONS OF THE TRANSIENT SEM
In order to understand the origin of the spatial-SEM, we first
present a very condensed review of the foundations of the
classical transient-SEM. As was already shown by Ramm
[11], [12], the SEM arises from attempts to solve the radia-
tion problem in the time domain. This boundary/initial value
problem involves solving the 3-dimensional wave equation.
For simplicity, we restrict our discussion in this section to the
scalar problem since the essential ideas are the same as in the
full vectorial case.

The boundary/initial value problem boils down to finding
a spacetime field 8(r, t) satisfying

∂29 (r, t)
∂t2

−∇
29 (r, t) = 0; r ∈ ∂V ,

9 (r, t)|t=0 = 0, 9 (r, t)|r∈∂V = E(r), (21)

where V ⊂ R3 is the solution region and ∂V is its boundary
surface. In this scalar model, the function E(r), r ∈ ∂V , plays
the role of ‘‘input excitation,’’ while the scalar field 9 is the
spacetime response in the entire 3-dimensional regionV . This
model covers both antennas and scatterers.

Moving to the frequency domain, one obtains the
Helmholtz equation boundary-value problem(
−∇

2
+ ω2

)
G
(
r− r′;−ω2

)
= δ

(
r− r′

)
, r ∈ V ,

(22)

whereG
(
r− r′;−ω2

)
is the 3-dimensional Green’s function

in the frequency domain. By transforming the problem to the
Laplace domain via s = iω, the solution to (21) may be given
by [11]

9 (r, t) =
1
i2π

∫ c+i∞

c−i∞
9 (r, s) estds, (23)

where

9 (r, s) :=
∫
V
G
(
r− r′;−s2

)
E
(
r′
)
d3r . (24)

Here, the relation (23) is the (temporal) inverse Laplace trans-
form of the ‘‘frequency-domain response’’9 (r, s). Note that
this latter response is itself expressed as a ‘‘convolution-type’’
(linear superposition) integral (24) through the fundamental
property of the Green’s function method. The real frequency
ω was transformed into the imaginary variable s = iω in
order to facilitate the method deployed in [12] for the purpose
of proving the SEM expansion in the time domain. Indeed,
the inverse Laplace transformation (23) is now treated as a
contour integration in the complex s-plane. Using analytic
continuation and residue theorem, it turns out that the general
solution of (21) can be expanded as

9 (r, t) =
N∑
n=1

cn (r) epnt + eN (r, t) (25)

in the time domain, and

9(r; s) =
N∑
n=1

cn(r)(s− sn)−1 + eN (r; s) (26)

in the frequency domain. Here, the complex numbers pn, n =
1, 2, ..,N , are the poles of G

(
r− r′;−s2

)
. The function

eN (r, t) in (25) is an error function measuring the deviation
of the sum over n from the true field 9. In the frequency
domain, the quantity eN (r; s) is an entire function in the
complex s-plane. Ramm [12] provided sufficient conditions
ensuring that

‖eN (r, t)‖ → 0 (27)

for some proper function norm || · ||. In this case, the result
(25) can be interpreted as the SEM expansion with pn playing
the role of poles and cn their coefficients (residues.) The real
challenge in theoretical SEM research is to show that the
convergence (27) holds in general for sufficiently small SEM
model order N and very generic antenna/scatterer geometry.
A major difficulty in applying the transient-SEM expan-

sions (25) and (26) is the error function eN , which cannot be
equated to zero in general. It was shown early in the history of
transient-SEM research that eN (r, t) can be interpreted as the
‘‘early time response’’ of the target, e.g., see [8]. Although
that indeed does help in applying the T-SEM formula to
practical settings, one still needs to distinguish and separate
the early- and late-time responses in order to explicitly deploy
the complex exponentials sum approximation of the basic
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SEM (25). Lack of an adequate fundamental theoretical crite-
rion through which such separation can be enacted a priori is
one of the major difficulties in the traditional T-SEM formal-
ism. As we will show shortly, the proposed single-frequency
(spatial) SEM does not suffer from this problem since its time-
harmonic dependence exp(iωt) is factored out, motivated by
the irrelevance of early and late time in steady state analysis
in such single-frequency spatial (S-SEM) framework. Indeed,
all known spatial-SEM expressions found by the authors so
far involve only the complex exponentials sum series and no
error function is needed.

We may summarize the most important features of tran-
sient SEM (T-SEM) as follows:

1) The T-SEM involves Laplace transformation in the time
domain. The inverse Laplace integral is then deformed
into the complex plane by a process of analytic contin-
uation.

2) The T-SEM is fundamentally based on the electro-
magnetic 3-dimensional Green’s function of the scat-
terer/antenna problem.

3) The T-SEM uses analytic continuation and residue the-
orem to build the complex exponentials expansion of
the field/current in the frequency domain. This is a
theory of complex analysis in one complex variable.

4) T-SEM poles arise from the poles of the s-analytically
continued complex Green’s function G

(
r− r′;−s2

)
.

5) The T-SEM poles coefficients are the residues of this
complex function (extended into the entire complex
plane) associated with those poles.

Note that all these features remain essentially unchanged
when we move from scalar to full-electromagnetic vectorial
formulation of the T-SEM and therefore will be taken as our
main comparison points in the motivation for constructing a
spatial SEM approach.

B. FUNDAMENTAL MOTIVATION AND TRANSITION
TO THE SPATIAL-SEM METHOD
From Sec. III-A, we can clearly see that the transient SEM
is fundamentally a time-domain approach to electromagnetic
signals. However, since the main goal is discovering useful
correlations between the signal (field, current, charge) and the
geometrical structure of the object supporting or producing
these signals (antennas, scatterers), then it is very natural to
explore the potential of constructing a purely spatial SEM
formalism. The intention would be finding out how rich
information buried in the spatial structure of electromag-
netic signals like radiation fields or current distributions are
connected to the spatio-geometric structure of the targets,
devices, or antennas. In particular, we ask:

1) Fundamental Electromagnetic Theory: Can we expand
the spatial field/current function into complex poles? If
so, what physical significance and engineering poten-
tial do they possess?

2) Electromagnetic Machine Learning: Can substantial
geometrical information about the antenna/scatterer

structure be efficiently extracted from those spatial-
SEM poles? Most importantly, Can geometrical
information be found by processing measured electro-
magnetic data like near- or far- fields?

The answers to these two questions is both YES, as will
be demonstrated throughout what follows. Note, however,
that the proposed spatial-SEM diverges completely from the
transient SEM in most of the main features listed at the
end of Sec. III-A: the spatial SEM turns out to be a very
different SEM approach with its own method of derivation
and physical interpretation of its results and expressions. The
precise manner in which this difference with the classical
transient SEM is manifested will be emphasized below.

IV. SPATIAL SEM: THE KEY IDEAS
Before we investigate how a spatial SEM can be constructed,
a good preliminary starting point can be retracing the original
formulation presented in Sec. III-A to see if certain aspects
of that now classical derivation can be salvaged in a purely
spatial formulation. To do this, we need a Green’s function in
the spatial domain to replace the s-domain G

(
r− r′;−s2

)
employed in deriving the T-SEM relation (26). A proper
spatial Green’s function structure was introduced only very
recently and reviewed in Sec. II, where one may readily see
that the situation in regard to the electromagnetic Green’s
functions in space is considerably more complex than the cor-
responding case in the time domain case. Indeed, as was dis-
cussed in Sec. II, there are two fundamentally distinct types of
Green’s function in applied electromagnetics, the forward and
inverse functions discussed in Sec. II-A.1 and II-A.2, respec-
tively. It will be shown that doing SEM in time requires work-
ing with the forward Green’s function (free-space dyadic
Green’s function), while working with SEM in space is pos-
sible through the inverse Green’s function (ACGF).

A. THE GENERIC APPROACH: A SIMPLIFIED
SCALAR MODEL
In order to present a simplified introduction to the complex
subject of how the spatial electromagnetic Green’s functions
interact with the spatial SEM, we develop in what follows a
scalar (acoustic) electromagnetic model of the ACGF. Note
that strictly speaking all electromagnetic radiation problems
must involve a tensor-type or dyadic Green’s functions. How-
ever, for the purpose of presenting the main ideas, the follow-
ing scalar formulation is sufficient. A generalization to 3D
tensors for one-dimensional antennas will be given in Sec. V,
while the formulation for two-dimensional antennas will be
tackled elsewhere.

First, we recall from Sec. II there exists two Green’s, one
function connecting input field excitation E(r;ω) with the
radiation field 9(r;ω), i.e., via the ACGF. Let a ‘‘scalar
ACGF’’ be denoted (for scalar problems) by F(r, r ′). Strictly
speaking, every component of the full dyadic ACGF form,
namely once of the functions F l1l2 (r, r ′), can be referred to
generically by this ‘‘scalar ACGF’’F(r, r ′). From now on and
until the end of the present section, we implicit understand
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by the scalar problem nothing other working with only one
of the nine dyadic components of the full ACGF dyad 18.
The electromagnetic problem will always by vectorial and
hence the Green’s function (and the spatial-SEM) will require
a dyadic treatment. Therefore, the S-SEM expansion to be
described below will have to be repeated for every inde-
pendent dyadic component. Consequently, and in order to
simplify the presentation, only a generic ‘‘scalar ACGF’’ case
is presented in this section.

The next step is to replace the original ACGFmain relation
(13) by the following ‘‘scalar ACGF’’ formula

J (r;ω) =
∫
∂V

F
(
r, r′;ω

)
E
(
r′;ω

)
ds, (28)

which connects the scalar excitation field E(r;ω) with the
scalar source J (r;ω) induced on the antenna/scatterer. Here,
the integration is 2-dimensional and is performed over ∂V ,
the antenna/scatterer’s surface. The scalar quantity J (r;ω) is
interpreted as a surface density source distribution.

For the purpose of introducing the generic S-SEM, we will
use (28) in this section to explain the method. However,
the reader should recall that (28) is not obtained from (13)
as one component of the latter at a time. Indeed, the dyadic
product in the integrated of (13) means that every individual
component of the surface current J induced on the antenna
by the excitation field E will involve a linear superposition
combination of several scalar equations like (28). However,
the key ideas to be introduced shortly will remain unaffected
by that since each component of (13) can still be expanded
using the S-SEM series of (28) given below.

For completeness, we also mention the second Green’s
function, i.e., the standard forward radiationGreen’s function
of free space, here denoted by Grad (r, r ′), where we have

9 (r;ω) =
∫
∂V

Grad
(
r, r′;ω

)
J
(
r′;ω

)
ds, (29)

through which the final radiation field 9 (r) , r ∈ R3
− V ,

is obtained from its source J (r) , r ∈ ∂V .5 The relation (29)
can be thought of as the scalar version of (9) in the same way
in which (28) is the scalar version of (13).

Most importantly for the spatial-SEM proposed here,
it turns out that there is no need to operate with the full spatial
Green’s function connecting the input field excitation E(r, t)
with the radiation field 9(r, t). Indeed, the problem can be
considerably simplified if the following two directives are
adopted:

1) To build a spatial SEM, focus only on the spatial
degrees of freedom. More specifically, we operate
with time-harmonic fields and obtain single-frequency
results where all spacetime sources and fields effec-
tively reduce into 3-dimensional spatial functions.

5One can view the complete transfer function connecting the input exci-
tation to the produced field as the cascade connection of two distinct, fully
independent Green’s function, one characterizing the device or the scattering
object, i.e., the ACGF F(r, r ′;ω), while the other is the free-space radiation
Green’s functionGrad (r, r ′;ω), a universal property of the radiationmedium
shared by all devices or objects.

2) We decompose the spatial Green’s function (the elec-
tromagnetic response function) into two parts, the for-
ward and inverse Green’s functions (see Sec. II.) The
basic spatial-SEM will be applied to the first compo-
nent only, i.e., the device/object Green’s function.

Directive (1) implies that the spatial SEM approach pro-
posed here will lose temporal information. In spite of this,
the advantages in our opinion are considerable since the
structure of the method will acquire greater simplicity if we
focus only on space, i.e., work with a space-frequency formu-
lation of the electromagnetic problem. It is possible, though,
to combine spatial and transient SEM in the future, leading
to a kind of ‘‘spacetime SEM,’’ even though the connection
between time and space here is still not well understood.
Directive (2) implies that the spatial-SEM’s focus is on

the spatial degrees of freedom of the source, i.e., the current
producing radiated or scattered fields. The spatial-SEM poles
and their coefficients to be introduced below will all char-
acterize the spatial current produced on the object. Later in
this paper (Sec. VI) we will show that a very direct relation
between the fields and the current exist. In fact, we show that
every spatial-SEM pole will excite a special far-field ‘‘nat-
ural radiation mode’’ with a closed form analytical formula
connecting the radiation pattern with the spatial-SEM data.

B. DIRECT CONSTRUCTION OF THE SPATIAL SEM: AN
INITIAL GENERIC APPROACH
Based on this general analysis, we expand the functional
dependence of the ACGF F(r, r;ω) on r into a finite number
of complex exponentials. To achieve this, we restrict the
region over which the ACGF or the current is defined to a set
of M compact nonoveralpping domains Um,m = 1, 2, ..,M ,
hereafter duped spatial-SEM patches, covering the entire
antenna’s surface ∂V . These patches exhibit rough similarity
to the coordinate patches deployed in the exact construction
of the ACGF found in [43], which in turn was ultimately
founded on the fact that ∂V is a 2-dimensional Euclidean
manifold. However, the difference between the coordinate
patches there and the SEM patches Um introduced here – in
addition to the fact that Um are nonoveralpping while coordi-
nate patches are – is that inUm we explicitly take into account
that the manifold ∂V has boundary (‘‘edges’’ or ‘‘sharp
sides.’’) There are, however, more fundamental difference
between the SEM parch division here proposed and others
found in literature like MoM and the original ACGF method.
Few of these issues will be discussed below but more details
will be given elsewhere.
First we note that the current distribution normal to a

physical edge is known to be zero [57] (we assume zero
thickness layer and ignore effects like singular charge accu-
mulation at nonsmooth corners and current flow over caps
and round edges). Hence, we may assume that for the S-SEM
consideration, a given current component under consideration
decays to zero if part of the boundary of ∂V is included inUm.
(This fact will be crucial for ensuring that the spatial-SEM
series, e.g., equation (35) below, will always converge with
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negligible error function.) However, we note that in contrast
to MoM and ACGF, we need in general to use different mesh
divisions for different current component.

To see this, consider a division of the antenna surface
into a partition where every patch includes an edge. As a
basic example, consider the rectangular patch of Fig. 1. Every
surface current can be expanded locally into the sum of two
linearly independent current components (usually orthonor-
mal) [57]. Let us call these components the ‘‘vertical’’ and
‘‘horizantal’’ components, respectively.Moving to theACGF,
we can assume that every component of the ACGF dyadic
F l1l2 (r, r ′) in (18) can be expanded over different mesh,
depending on how the corresponding current components

FIGURE 1. An example of a division of an arbitrary antenna surface into a
collection of nonoverlapping patches, each including one physical edge
(here, physical edge means either an edge segment on either the
inner or our circumference.) The current component on each patch is zero
in the direction to the patch’s physical edge. In general, the total current
distribution on the antenna will also include components parallel to the
edge, and those can be non-vanishing. In that case, another set of patch
divisions can be introduced such that those current components also
decay to zero along perpendicular edges. The spatial SEM expansion will
be comprised then of two sub-expansions, each corresponding to one
current component. Since an arbitrary surface current on a 2-manifold
can always be decomposed into two local linearly independent current
components, this spatial SEM patch division scheme can always be
implemented for arbitrary antennas. Here, we assume that the current
can be expanded into two orthonormal components, referred to as
‘‘vertical’’ and ‘‘horizantal’’ components, with corresponding S-SEM mesh
subdivisions given by (a) and (b), respectively. Note that the
beginning or each patch cell Um is chosen such that the current tend to
be maximal at that internal edge (solid line). In this figure, curved patches
will require curvilinear coordinates, so the x, y labels mentioned here
should in general be understood as local coordinate systems. For the case
of flat patches, local and global frames coincide.

are behaving with respect to the physical edge (i.e, whether
we effectively have a ‘‘vertical’’ or ‘‘horizantal’’ current
component.)

We may then expand every ACGF component on the SEM
patch Um (or also directly the scalar surface source J , see
below) into a series of complex exponentials as follows

Fm
(
r, r′;ω

)
=

N∑
n=1

αnm
(
r′
)
eknm(r

′)·r + em,N
(
r′;ω

)
, (30)

where r ∈ Um,m = 1, 2, ...,M while kmn, n = 1, 2, ..,N are
tangential toUm. For simplicity, we have dropped out explicit
superscripts like l1 and l2 in (18) since for 2D problems we
are interested in the main ideas mainly.

From the numerical viewpoint, the expansion (30) can be
computed using Prony’s method [67] or the matrix-pencil
algorithm [68], [69]. Here, similar to T-SEM, N is the order
of the S-SEMmodel. Again, eN represents the ‘‘error’’ of this
complex exponentials representation. The complex vectors
kmn(r ′) and the complex numbers αmn(r ′) are spatial-SEM
poles and their coefficients, respectively, obtained when a
delta source excitation is applied at the location r = r ′

(because we are dealing with the current Green’s function
which requires this special excitation type, see Sec. II-A.2
and [43].)

We emphasize again that the expansion (30) can also
be applied directly to the total surface source distribution,
i.e., not only to the ACGF. The main formal difference
between working with current or ACGF in the S-SEM is that
in the former case neither kmn nor αmn will depend on r ′. The
disadvantage of working with currents instead of ACGF is
that the spatial SEM based on the former becomes completely
dependent on how the antenna or the target were originally
excited. On the other hand, and as will become increasingly
clearer below, by formulating the spatial SEM using the
ACGF, the obtained SEM pole/coefficient data become truly
general since they are independent of how the object under
consideration was energized. Such generality and indepen-
dence could lead to improved results in applications like radar
target identification and inverse modeling since in various
real-life scenarios it is not known what field excitation did
interact with the object in the first place.

Now, by utilizing a proper mesh for each current/ACGF
component as explained above and illustrated in Fig. 1,
we may assume that both the current/ACGF decays to zero at
the proper physical edge associated with Um. Consequently,
we can always find a direct numerical procedure to select kmn
and αmn such that the error function em,N gets as small as
possible for sufficiently large N . For example, the popular
matrix pencil method [68], [69], Prony’s method [67], or even
just brute-force optimization, can all be used to find a set of
complex poles kmn and coefficientsαmn ensuring that the error
em,N in (30) is small. Consequently, (30) will be rewritten as

Fm
(
r, r′;ω

)
=

N∑
n=1

αnm
(
r′
)
eknm(r

′)·r, r ∈ Um, (31)
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at which the error function em,N is explicitly dropped out.
The relation (31) is our main generic spatial-SEM formula
and should always be considered as an approximation of the
otherwise exact ACGF. A relation similar to (31) can also be
constructed for a generic current component.

For completeness, we give the total ACGF expansion on
the entire antenna’s surface as follows:

F l1l2
(
r, r′;ω

)
=

M∑
m=1

N∑
n=1

αl1l2nm
(
r′
)
ek

l1l2
nm (r′)·r. (32)

That is, we here include the full component information
(l1, l2) as described in (18) and also make the S-SEM data
(α, k) explicitly dependent on those indices. Like (31), this
expansion neglects the error functions in (30) but is more-
over based on the fact that the SEM patches Um are non-
overlapping.6

If the current normal to the edge does not go to zero,
e. g. because the edge is not well defined or not sharp
enough, or because some special treatment of the transition
between two sides on the same object is needed (e.g., the need
for special ‘‘junction basis functions’’ as in FEM andMOM),
it is still possible to apply the proposed spatial-SEM method
but after somemodification. Indeed, we first expand a generic
current (or ACGF) component into a suitable set of basis
functions as follows

fm(r), r ∈ Um, ∀m = 1, 2, ...,M , (33)

where in each patch the basis function fm(r) goes to zero at its
associated edge. In this case, there is no need for the spatial-
SEM patches to actually contain the real physical edge of the
structure, but each patch, including interior ones, possesses
its own fictitious edges enclosing the basis function’s own
domain of definition. In such situation, we write the total
current/ACGF component as

J (r) =
N∑
m=1

amfm (r), (34)

where we still assume that the basis functions’ domains Um
are nonoveralpping. Afterwords, the mth basis function is
expanded using the spatial-SEM expansion (31) in the fol-
lowing manner:

fm (r) =
N∑
n=1

αnm
(
r′
)
eknm(r

′)·r, r ∈ Um, (35)

after which an equation similar to (31) can be written. In
this paper, a basis-dependent formulation like (35) will not
be necessary since we work mainly with 1-dimensional prob-
lems whose Um are trivially the entire wire segment itself.
Generalizations to 2-dimensional objects will be taken up
somewhere else.

6Even, if there is an overlap, it is still possible to obtain a general expansion
using partition of unity techniques borrowed from differential topology.
For simplicity, we assume that such non-overlapping partition is always
possible. For 1-dimensional problems, this is indeed the case, while for
higher dimensions achieving this requires some additional work.

Finally, note that the SEM data kmn(r ′) and the complex
numbers αmn(r ′) in the generic spatial-SEM expansion (30)
depend on the subdivision of the antenna surface into patches.
This is not surprising since the pole kmn(r ′) measures the
internal (spatial) resonances associated with the particular
patch Um. While the antenna’s surface can be divided in infi-
nite number of ways, it can be shown that global geometrical
and topological information, like the shape, genus, and size of
the antenna or target, can be recovered from measured elec-
tromagnetic data using special machine learning algorithm to
be introduced by the authors elsewhere.

C. THE SPATIAL-SEM ALGORITHM
We provide a summary of the general spatial-SEM approach
before moving into the more technically detailed part of our
work. The generic S-SEM algorithm is shown in Algorithm 1.
The 1-dimensional version of this algorithm will be devel-
oped in full in Sec. V-B.

Algorithm 1 The Generic S-SEM Algorithm for Antennas
1: Find the ACGF F(r, r ′) of the antenna whose total sur-

face is S. (This step is not effectively part of the S-SEM
algorithm itself but is included here for convenience.)

2: Divide the entire antenna surface S into a set of nonover-
lapping compact regions Um,m = 1, 2, ...,M , such that
each patch Um contains a portion of the edges of S.

3: Assign to each patchUm the current or ACGF component
that vanishes normally at the antenna edge contained
in Um. (In other words, all current/ACGF patches have
values of currents equal to zero at the edge, see Fig. 1.)

4: If needed, obtain another set of patch divisions U ′m for
other current/ACGF components (since in general at
most two linearly independent current components are
needed to represent an arbitrary current distribution on a
2-dimensional surface.)

5: Expand the r-function of the current (or the ACGF) into
a series of finite complex exponentials using (31)

Fm
(
r, r′;ω

)
=

N∑
n=1

αnm
(
r′
)
eknm(r

′)·r, r ∈ Um.

From this expansion collect the S-SEM data: the com-
plex poles kmn(r ′) and the complex coefficients αmn(r ′),
for r ′ and all patches Um, using a proper method, e.g.,
Prony’s or matrix pencil methods.

6: Change r ′ and repeat the steps above to update the SEM
data kmn(r ′) and αmn(r ′).

7: Stop when the entire port region Up (the region on S
where the input antenna excitation field is applied) has
been already scanned by r ′ ∈ Up.

So far, the proposed spatial SEM has been intentionally
generic and still not fully electromagnetic since all quantities
dealt with so far are scalar, a choice deliberately made in
order to ensure simplicity in presentation. Using the surface
equivalence theorem, one can show that the ACGF and the
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general spatial-SEM have dimensions at most equal to 2.
Therefore, the full electromagnetic case will correspond to
the 2-dimensional spatial-SEM, which is beyond the scope
of the present paper but does not require any fundamentally
new idea and will be reported elsewhere. Also, though the
generalization to scattering is tedious, it is relatively transpar-
ent and will be treated in the future. In the remaining sections
of this paper, we develop the spatial SEM algorithm in full
details for the special case of 1-dimensional radiating antenna
structures.

D. SUMMARY OF DIFFERENCES BETWEEN THE
SPATIAL-SEM VERSUS THE TRANSIENT-SEM
Our main observations on how the spatial and transient SEMs
differ are:

1) The T-SEM is fundamentally a time-domain approach,
while the proposed S-SEM is a single-frequency
method. This makes the later easier to apply to exper-
imental scenarios since time-domain measurement
methods are more expensive and difficult than their
frequency-domain counterpart.

2) In contrast to the T-SEM, here no Laplace or spectral
transformation is needed. The S-SEM is not based on
performing inverse Fourier or Laplace transforms.

3) The S-SEM is fundamentally based on the Antenna
Current Green’s Function, which is defined only on the
device or object’s surface. In contrast, the T-SEM is
based on the radiation 3-dimensional Green’s function
defined on the entire exterior region.

4) The S-SEM does not use complex analysis (analytical
continuation and residue theorem) in order to derive the
S-SEM singularities and their coefficients, while this is
the case with T-SEM. This will equip the S-SEM with
greater flexibility since now the physical interpretation
of the S-SEMpoles would not necessary be tied upwith
the concept of a pole of meromorphic function in the
complex plane as is the case in T-SEM.

5) The S-SEM does not suffer from the problem of iden-
tifying the late time response essential in T-SEM. The
error function (proportional to the early-time response
in T-SEM) can be dropped out if the bases functions
over the S-SEM patches are chosen carefully as per
Sec. IV-B.

6) The classical T-SEM expansion requires combining a
theory of characteristic current modes with a theory of
poles/residues. To see this, note that in (25), the total
spacetime dependence of the field/current is written
as multiplication of cn(r) and exp(isnt). Although the
quantities cn(r) came into being as residues resulting
from evaluating a contour integration in the complex
plane, they also possess a second meaning – stressed
here by being functions of r – whereby they play
the role of characteristic modes of the radiating cur-
rent [14]. On the other hand, S-SEM, being a single-
frequency approach, does not require any theory of
characteristic modes. In fact, as will be advocated later,

the S-SEM terms exp (ikm · r) themselves can be inter-
preted as a new characteristic current mode on their
own in independence from the conventional modes
usually linked with SEM in the classical time-domain
formulation.

V. FUNDAMENTAL FORMULATION OF THE SPATIAL-SEM
METHOD FOR LINEAR WIRE STRUCTURES
A. THE 1-DIMENSIONAL ACGF FORMALISM
We consider a thin-wire antenna supporting a current J (r, t)
radiating in infinite and homogeneous free space medium
with dielectric permitivity ε0 and magnetic permeability µ0.
The antenna is oriented along the direction of the vector
L where L is the total length. A time harmonic excitation
exp(−iωt) is assumed but not explicitly written for simplic-
ity. Based on the general dyadic form of the ACGF (18),
the frequency-domain ACGF of this antenna can be imme-
diately written in the form

L̂L̂ F
(
r, r′;ω

)
, (36)

where L̂ := L
/
L is a unit length vector in the direction

of the antenna. In other words, the ACGF of a linear wire
antenna/scatterer acquires a very simple form: The entire
ACGF dyad can be factorized in the form ab, something that
cannot be true in general. For that reason, it is enough for our
purposes here to work with the scalar function F

(
r, r′;ω

)
in (36).
Using (13) it is possible to deduce that an arbitrary tangen-

tial field excitation

Eex
(
r′
)
= L̂Eex

(
r′
)
, (37)

interacting with the antenna L produces an excited current
given by

J (r) = L̂
∫
L
F
(
r, r′

)
Eex

(
r′
)
dl ′, (38)

where l ′ serves here as a local length parametrization of
r′ = r′

(
l ′
)
along the wire L. The expression (38) is valid

for arbitrary tangential field excitation Eex
(
r′
)
.7

B. THE ACGF SINGULARITY EXPANSION METHOD
(SPATIAL SEM)
a concrete example of SEM-type approximation of the ACGF
is given as follows. For any linear-wire ACGF of the form

7There is a fundamental difference between using the indirect ACGF
technique to compute the Rx current J (r) and other direct numerical meth-
ods, say the Method of Moment (MoM). Indeed, in the latter, one has to
create a special mesh dependent on the (spectral) wavelength-structure of
the excitation field. The ACGF formula (38), however, is valid for arbitrary
input fields with any wavelength composition whatsoever as was shown
both mathematically and numerically in [43]. It remains true, though, that
obtaining such ACGF could be a challenging computational or lab pro-
cess. To our knowledge, only MoM-approximations of the ACGF has been
reported so far although there are ongoing efforts to develop alternative
numerical methods [70]. For simplicity, we focus in this paper on ACGFs
obtained using a delta-source excitation through an accurate higher-order
MoM [34]. An improved numerical approximation of the ACGF via the
MoM can be found by the way of a special sequential distributional technique
developed in [43].
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(36), one can seek an expansion

F
(
r, r′;ω

)
=

N∑
n=1

αn (ω) esn(ω)l + eN , (39)

where here αn, sn, n = 1, 2, ..,N , stand for the SEM poles
coefficients and poles locations, respectively. Equation (39)
may now appear as a mere special case of the more general
result (30) obtained above.

Because of the 1-dimensional nature of the ACGF of wire
antennas, the expression (39) looks rather similar to the tran-
sient SEM formula. However, this similarity is superficial.
Indeed, in the familiar temporal SEM [5], the quantities αn are
often denoted residues, reflecting their mathematical origin
in complex integration theory [12]. We avoid doing so here
because, in contrast to the temporal SEM, the quantities αn
defined by (39) can be generalized to 2-dimensional current
distribution functions, leading to doubly-indexed coefficients
αmn, while the latter can not be traced back to the complex
integration theory rooted in 1-dimensional functions (time
signals.)

The quantity eN appearing in (39) represents the spatial-
SEM error resulting from truncating the series to only N
terms. No exact analysis of the behavior of eN is reported
here. Instead, we use brute-force numerical algorithms to
obtain the expansion (39) with the smallest possible number
of singularities N .8

C. APPLICATIONS TO TX AND RX ANTENNA ANALYSIS
It should be mentioned that the SEM data in (39) are not
only frequency functions, but also depend on the source field
excitation’s location r ′. That is, one needs to write

αn = αn
(
ω; r′

)
, sn = sn

(
ω; r′

)
, (40)

but for simplicity we drop outω and r ′ whenever no confusion
is expected. In order to put this observation into perspective,
we develop the expressions of both Tx and Rx signal using
the spatial-SEM formula (39) stated above for wire antennas.
For the Tx antenna case, from (38), (39), and (40), we find

JTx (r) = L̂
N∑
n=1

∫
L
αn
(
ω; l ′

)
Eex

(
l ′
)
esn(ω;l

′)ldl ′, (41)

where we truncated the SEM expansion (39) into N terms.
Here, l ′ is the local source excitation position on the antenna,
while l stands for the induced current position on the same
antenna. As we can see from (41), the explicit dependence of
the SEM data αn and sn on the source position r ′ or l ′ has to
be taken into account in computing the total induced current.

Application of the spatial SEM to receiving antennas is a
little different. In order to see the complete expression of a Rx
signal at a port located at rp (lp in local coordinates), we use

8Rigorous analysis of the intrinsic 1-dimensional (i.e., temporal) SEM can
be found in [12]. To our best knowledge, since its recent proposal in [39],
the alternative spatial SEM has not received a rigorous error analysis in the
mathematical literature.

(39) in (38) and then apply the inverse reciprocity theorem
(17) in order to deduce

JRx
(
rp
)
= L̂

N∑
n=1

αn
(
ω; lp

) ∫
L
Eex

(
l ′
)
esn(ω;lp)l

′

dl ′. (42)

Comparing (41) with (42), we immediately notice that
although both are rooted in the same fundamental ACGF the-
orem (38) and the spatial-SEM (39), the respective manners
in which the Tx and Rx currents are generated are different in
the two fundamental operationalmodes. Indeed, in the Rx for-
mula (42), one needs to compute the SEM data αn and sn only
at position rp, i.e., the port location. This is done bymeasuring
the Tx mode current when a delta source is applied at rp,
followed by invoking the inverse reciprocity theorem in order
to obtain the Rx ACGF from the just measured Tx ACGF.
On the other hand, in computing the Tx current via (41),
we notice that one must know the SEM data αn and sn over
the entire source excitation domain (the support of the field
Eex .) That is, one needs the global spatial functions αn(ω; l ′)
and sn(ω; l ′), where l ′ ranges over the full spatial support of
Eex(l ′), in order to compute the value of the induced current
at one antenna location l.

D. THE SPATIAL-SEM CURRENT MODES
We provide here a new interpretation of the spatial SEM cur-
rent. In contrast to the classical time-domain SEM solution,
the spatial-SEM is a single-frequency spatial approach that
expands the fundamental Green’s function of the antenna, its
ACGF, into fundamental spatial current modes αn exp (snl).
Indeed, by substituting (39) into (38), we find

J (l) =
N∑
n=1

Jn (l) , (43)

where

Jn (l) := L̂
∫
L
αn
(
l ′
)
Eex

(
l ′
)
esn(l

′)ldl ′ (44)

are the spatial-SEM current modes. Therefore, under any
excitation field Eex , the current induced on the wire can
always be written as a superposition of fundamental current
modes Jn(l) given by (44). The same expression (44) also
suggests that only knowledge of the SEM data (40) is needed
in order to evaluate those currents for a given excitation
field Eex . In other words, the spatial-SEM holds a consider-
able advantage over the temporal SEM in being not tied up
with a fixed type of excitation field like, for instance, plane
waves or specific port wave. Regardless to the details of how
the antenna is excited, i.e., for any functional form Eex(l ′)
whatsoever, the induced current can be written in terms of
modes Jn(l) that themselves are computable by (44) via only
one set of measured SEM data, the functions αn(l ′) and sn(l ′).

On another hand, the now popular ‘‘theory of characteristic
modes,’’ [48] which – as mentioned above – is already closely
connected with the classical (transient) SEM, is strongly
sensitive to the antenna excitation method. This is because
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it applies to the current, not the ACGF of the antenna. The
spatial-SEMmodes αn exp (snl), however, are not eigenfunc-
tions of the exact antenna impedance operator as is the case
with classical characteristic modes [47]. Instead, the modes
αn exp (snl) are Laplace modes of the ACGF. The ACGF
itself is the Green’s function of the inverse of the antenna’s
impedance operator. Being a Green’s function, the input exci-
tation is completely decoupled from the induced current, and
hence modes like αn exp (snl) become free of the local details
of how the antenna was energized, resulting in stronger con-
nection between the global geometrical details of the antenna
with the SEM data.9

VI. THE SPATIAL-SEM RADIATION MODES
The next major step in the spatial SEM is to show how the
SEM data buried in the radiator’s current distribution are con-
nected with its corresponding radiation field. It will be shown
here that the far field can be expressed analytically in terms
of the SEM data (40). Moreover, it turns out that the spatial-
SEM leads naturally to the discovery of a new set of far-field
basis functions, what we call here the spatial SEM radiation
modes. Explicit expressions for these modes will be derived
below for the case of linear wire antennas with arbitrary
length and orientation. The machine learning approach to
target identification and inverse modeling based on the spatial
SEM depends crucially on the organic connection between
the field and the current since we can easily measure the
field or RCS. The training data set for the ML algorithm will
then be based on the far field, while the analytical relation
between this field and the SEM data to be given below will
form the basis of the construction of the algorithm predicting
the geometry of the target from measured field data.

A. DERIVATION OF THE RADIATION MODES:
SINGLE ANTENNA CASE
For simplicity, we develop the SEM radiation field theory
in terms of the current distribution instead of the ACGF.
However, in order to establish a connection with the previous
formulation in terms of the ACGF, we consider here only
currents excited by the delta-gap source excitation

Eex (l) = L̂δ
(
l − lp

)
, (45)

where rp = L̂lp is the port location. Those are very close to
the exact ACGF of wire antennas. Expression (43) can then
be reduced to

J (l) = L̂
N∑
n=1

αn
(
lp
)
esn(lp)l . (46)

9Nevertheless, one may still expect some connection between the two
types of modes though this is no direct or immediate relationship. In fact,
classical characteristic modes are closer to the current functions Jn(l) than
αn exp (snl), the reason being that the former already contain the method of
the antenna excitation within it as exemplified by Eex in (44).

We next deploy the (scaled) far-field radiation for-
mula [35], [43]

Erad
(
r̂
)
=

∫
L
J
(
r′
)
·
[
Ī− r̂ r̂

]
eikr̂ ·r

′

dr, (47)

where

r̂ (θ, ϕ) := x̂ cosϕ sin θ + ŷ sinϕ sin θ + ẑ cos θ (48)

is the radial unit vector r
/
‖r‖, Ī is the unit dyad, and k = ω/c,

where c is the speed of light.
The goal now is to establish a deeper insight into the nature

of the radiation field by adopting the viewpoint of the spatial-
SEM current. Use of the current (46) in (47) leads to

Erad
(
r̂
)
= L̂ ·

[
Ī− r̂ r̂

] N∑
n=1

∫
L
αneikr̂ ·r

′

esnl
′

dl ′, (49)

which after inserting r′ = L̂l ′ reduces to

Erad
(
r̂
)
= L̂ ·

[
Ī− r̂ r̂

] N∑
n=1

αnfn (θ, φ;L, sn), (50)

where

fn (θ, φ;L; sn) :=
e

(
ikr̂ ·L̂+sn

)
L/2
− e

(
−ikr̂ ·L̂−sn

)
L/2(

ikr̂ · L̂ + sn
) . (51)

In writing (51), we assume that the entire range of l in the
local parametrization of the antenna vector L is the interval
−L/2 < l < L/2. Note also that the SEM poles locations
sn and their coefficients αn are both functions of rp, which
explains the explicit mention of rp in the LHS of (51). Such
dependence in the RHS was dropped for simplicity but it
must always be recalled: the SEM data and the far-field SEM
radiation modes are all strongly dependent on the location
at which the antenna delta-source field excitation is applied.
Later numerical results will confirm this prediction.

B. DERIVATION OF THE RADIATION MODES:
MULTIPLE ANTENNA CASE
Finally, we need to generalize the results (50) and (51) to
handle the general scenario when multiple wire elements are
present. This is essential for the transition to the machine
learning approach based on the spatial SEM formalism since
the geometrical information of the target will be captured by
finding the best wire grid that fits the geometrical form of the
target based on field training data.

Fig. 2 shows the basic model we use. An arbitrary distri-
bution of M thin wires is assumed, where for the mth wire
the end position is given by r0m, while the orientation is along
the unit vector L̂m. On each wire, a local position vector is
given by

lm := L̂ml, (52)

where again l plays the role of a local length parameter on the
wire. An arbitrary position on the mth wire can then be give
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FIGURE 2. The geometrical model of an array of wires each locally traced
by a position vector lm.

by an expression of the form

r′ = r0m + lm = r0m + L̂ml. (53)

Based on this geometrical model, the total current on the wire
grid can be expanded as

J
(
r′
)
=

M∑
m=1

L̂m
N∑
n=1

αmn
(
rp,m

)
esmn(lp,m)l, (54)

where the spatial SEM data smn and αmn belong to the nth
SEM pole of the current on the mth wire, while rp,m is the
position where the delta source excitation is applied on the
mth antenna.

The current (54) is now inserted into the radiation field
formula (47), resulting in

Erad
(
r̂
)
=

M∑
m=1

L̂m ·
[
Ī− r̂ r̂

] N∑
n=1

∫
Lm
αmneikr̂ ·r

′

esmnl
′

dr ′.

(55)

By performing a change of variables using (53), the integrals
in (55) can be transformed into

Erad
(
r̂
)
=

M∑
m=1

L̂m ·
[
Ī− r̂ r̂

]
eikr̂ ·r

0
m

×

N∑
n=1

∫
Lm
αmneikr̂ ·l

′

esmnl
′

dl ′. (56)

We now note that the integrals in (56) possess the same
structure as (49), i.e., an integration performed locally on each
wire. Therefore, we can immediately use the evaluations (50)
and (51) to compute (56) as

Erad
(
r̂
)
=

M∑
m=1

L̂m ·
[
Ī− r̂ r̂

]
eikr̂ ·rm

×

N∑
n=1

αmnfmn (θ, ϕ;Lm; smn) , (57)

where

fmn (θ, ϕ;Lm; smn)

:=
e

(
ikr̂ ·L̂m+smn

)
Lm/2
− e
−

(
ikr̂ ·L̂m+smn

)
Lm/2(

ikr̂ · L̂m + smn
) (58)

The expressions (57) and (51) provide the most general form
of the radiation field induced by a grid or array of radiating
wires.

C. REMARKS ON THE RESULTS
The expansion (50) shows that the radiation field of a wire
antenna can be always approximated by a superposition of
basic radiation modes fn where the expansion coefficients are
precisely the spatial-SEMpole coefficients αn. Each radiation
mode fn (θ, φ;L) depends on the excitation port location
lp, although we omitted this explicit dependence here for
simplicity.

More remarkable is the manner in which each radiation
mode shape is controlled by the pole’s location sn. Indeed,
the radiation mode is a kind of ‘‘two-dimensional sinc’’ filter
centered at the Re {sn} and Im {sn}. (This can be readily seen
if we plot |fn(θ, φ)|.)
The spatial-SEM radiation modes (51) are not always

orthogonal. By defining the intermodal correlation coeffi-
cient bnm as

bnm
(
rp,L

)
:=

∫
4π
fn (θ, φ;L) fm (θ, φ;L) d�, (59)

In general, it turns out that bnm 6= 0, although the modes
tend to become orthogonal when |sn − sm| is large enough.
This is an important distinction between the spatial-SEM
modes introduced in this paper and the familiar eigenmode
expansion method discussed in [12].

VII. VALIDATION OF THE DIRECT SPATIAL
SEM ALGORITHM
In this section, we work toward providing a direct validation
of the basic spatial SEM algorithm introduced above for
1-dimensional radiating structures. For simplicity, we work
with the current distribution induced on thin wires by a delta-
gap source. For our present purposes, this current is a good
approximation of the wire’s ACGF. Fig. 3 provides a simple
schematic representation of a typical thin-wire model in elec-
tromagnetics. The wire antenna is modeled as a cylinder but

FIGURE 3. A schematic representation of thin-wire model of antennas in
the Tx and Rx modes.
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azimuthal variations in the current are ignored since these are
essentially weak with the ratio of the wire length to radius is
very large.

For the sake of establishing an independent reference
to compare our results with, the spatial-SEM analytical
expressions derived above were verified by direct compar-
ison with full-wave simulation through the commercially-
available Method of Moment (MOM) code WIPL-D [34].
Note that since commercial EM solvers don’t usually offer
non-standard excitation, the ACGF of the wire (if available)
provides a more general approach to computing antenna char-
acteristics going beyond existing commercial codes. Such
non-standard methods of exciting antennas, however, will not
be examined in what follows since here we are more inter-
ested in proof of concept of the basic spatial SEM approach.

As a first example, direct verification of the S-SEM algo-
rithmwill be given for two types of wire antennas, one excited
with a delta-source gap applied at the middle of the thin-
wire antenna system, while the second is energized by a
source located off the midpoint. Both antennas are shown
in Fig. 4. Each thin-wire antenna system has a total length
of 0.5λ, where in the symmetric case (on the left) the two
0.25λ-half-wires can be connected with a load or voltage
source, while the asymmetric case (on the right) involves a
0.45λ-wire connected to another 0.05λ-wire, also through a
load or voltage source. The operating frequency of the desig-
nated systems is 1 GHz, which lies within a typical wireless
antenna, radar or sensor frequency range. In conformity with
the thin-wire approximation, the radius of the wire is very
small compared with length, which allows us to ignore the
circumferential component of the current distribution.

FIGURE 4. A schematic plot of two thin-wire antennas; it shows
symmetric and asymmetric excitation of the wire.

Each single antenna is defined as two wires connected
through a load or source. In other words, the spatial SEM
expansion will be developed for each wire individually. The
SEM surface partition Um in our case consists then of two
patches only for each antenna: one for wire#1 and another
for wire#2. The current distribution will consequently always
approach zero as we go toward the free end of thewire. In case
multiple wires are used to build a more complex wire antenna
structure, then there will be as many SEMpatchesUm as there
are wires. Each wire/patch will be joined to another through

a junction consisting of either a source or load (we consider
point junctions a special type of load.)

The MoM estimation of the antenna’s current distribution
induced by a delta source applied on the two antennas in Fig. 4
was analyzed using Prony’s method in order to obtain S-SEM
poles locations and coefficients. The S-SEM data obtained
in this case are shown in Table 1 for the the symmetrically-
excited antenna. As expected, only two complex conjugate
pole pairs are needed to capture the current on the entire
wire because it is known that resonant wires have current
distributions that can be approximated by sinusoidal forms.
In other words, the half-wavelength dipole represents a trivial
example from the S-SEM viewpoint. In order to consider a
more challenging example, the asymmetric wire in Fig. 4 is
analyzed into its S-SEM data, shown in Table 2.

TABLE 1. Direct modeling S-SEM data for symmetric wire.

TABLE 2. Direct modeling S-SEM data for asymmetric wire.

The mean-square error (MSE) between the SEM current
and the actual (MoM) currents is denoted by eJ and is also
included in our analysis. The definition of eJ is

eJ :=
1
L

∫
L
|JMoM (l)− JS-SEM (l)|2dl, (60)

where integration is performed over the entire antenna (mul-
tiple wires.) Both current components JMoM and JS-SEM in
(60) are tangential to their support wire. The two current
distributions themselves are shown in Fig. 5, where excellent
agreement can be observed.

It is worth stressing again that this entire analysis makes
no use whatsoever of the distinction between late- and early-
time response familiar in conventional, i.e., temporal, SEM.
Indeed, all currents and fields oscillate harmonically in time
with the same frequency. The spatial SEM method applies
directly to the entire current distribution belonging to every
patch, including an edge at which the normal component
of the current vanishes. The key reason behind the lack of
problems similar to early/late time response in S-SEM is
that, contrary to the case of t → ∞, we know all currents
must become zero when their spatial arguments l goes to
infinity. This can always be the case if the Algorithm 1 recipe
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FIGURE 5. The plot shows a comparison between the EM solver, WIPL-D
[34], currents and spatial-SEM currents given in [46]. The comparison is
made for the symmetric and the asymmetric wire, where each element is
assumed to be two-wires linked through the excitation source.

was followed by which the antenna’s subdivision into non-
overlapping regions Um is enacted to ensure all tangential
currents at the patches’ edges are treated properly.

Note that the SEM data strongly depend on the loca-
tion of the delta-source excitation, i.e., the position r ′ in
the expressions (40) exactly as predicted by theory. This
is why an asymmetrically-excited case was included here.
In general, with nonsymmetric currents, the number of SEM
poles needed to capture its spatial distribution increases com-
pared with the symmetric case. For straight thin-wires, this is
expected since the symmetric current is known to be close
to a (spatial) sinusoid, which means that its SEM poles are
trivial. This, however, is only a highly special case. In general,
the spatial resonance structure of the current captured by its
SEM data is highly complex and may require a large number
of SEM poles to accurately capture subtle spatial current
variations. Complicated geometrical shapes approximated by
a large number of joined wires belong to cases of this type.

To now validate the spatial SEMfield theory, the SEM data
just obtained were inserted into the formula (50) in order
to compute the far field without recourse to the radiation
formula of classical antenna theory. The MoM code, on the
other hand, uses precisely this classical radiation law in order
to compute the field using the current distribution and the
free space dyadic function [34]. A comparison between the
far fields obtained using these two different methods are
shown in Figs. 9(a),(b) for both the symmetric and asym-
metric excitation. The very good agreement between the two
confirms that the SEM radiation modes given in (51) does
indeed capture the far field of an arbitrarily-excited straight
wire antenna systems.

We next consider more complex antenna shapes. Fig. 6
shows an L-shaped antenna example designed in order to test
whether the S-SEM current and fields can model changes
in the direction of the current distribution described by the
geometric length vector L. The L-shaped antenna is modeled
by two equal-length arms joined at right angle. The system
is excited by a delta-source concentrated at the corner of
the antenna. The S-SEM model chosen here assigns differ-
ent poles and coefficients to each wire in order to capture
possible variations in the current at different parts of the

FIGURE 6. A schematic plot of an L-shape antenna.

FIGURE 7. A schematic plot of a two-element antenna array with
inter-element spacing of 0.5λ.

FIGURE 8. A schematic plot of a three-element antenna array with
inter-element spacing of 0.25λ to act as a Yagi-Uda antenna.

TABLE 3. Direct modeling S-SEM data for L-shape wire.

system undergoing varying relative inclinations with respect
to each other. As expected because of the symmetry of this
special case, the currents are identical, but in general, more
complex current distributions could be observed in more
generic configurations. Table 3 shows the S-SEMdata needed
to represent the current in this case. Very good accuracy is
observed.

To verify the S-SEM far-field theory, we use the formula
(57), where the L-shaped is treated as an array of two ele-
ments coupled to each other at the corner. The previously
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TABLE 4. Direct modeling S-SEM data for two-element array.

TABLE 5. Direct modeling S-SEM data for three-element array.

TABLE 6. Inclination angle variation for L-shape wire.

obtained S-SEM data in Table 3 are then used to compute the
far field and the results compared with MoM. Fig. 9(c) shows
excellent agreement between theory andMoM, indicating the
ability of the S-SEMmethod to handle bent and complex wire
antenna systems.

In order to investigate how the method works with sepa-
rate elements, a simple two-element wire array is considered
next. Fig. 7 illustrates the geometry of this case, where two
symmetrically-excited half-wavelength dipoles are placed at
distance 0.5λ of each other. The array is excited by two
independent delta-gap voltage sources at the middle of each
wire. Again, each antenna is treated as two separate wires,
giving a total of four independent wires to represent the
array system. The S-SEM data of this example are given
in Table 4. Only two poles on each wire were needed. For
asymmetrically-excited dipoles or more complex geometries,
the number of poles in general increases and the S-SEM data
become different on each wire. The far-field formula (57) is
used to predict the far field analytically based on the data
in Table 4. The comparison with MoM is given in Fig. 9(d)
and again excellent agreement is observed.

Finally, we consider a three-element Yagi-Uda antenna
system as shown in Fig. 8, with 0.25λ inter-element sep-
aration. For simplicity, the three element have equal length

FIGURE 9. A comparison of far field polar plot in transmitting mode setup
with respect to elevation angle θ between WIPL-D MoM code and the
spatial-SEM approach. (a) Symmetric wire. (b) Asymmetric wire.
(c) L-shaped wire. (d) Two-element array. (e) Three-element array.

of half wavelength each. The total number of S-SEM wires
needed to model the system is six and the obtained S-SEM
data are shown in Table 5. The general far-field array for-
mula (57) was used then to predict the array field, and the
results reported in Fig. 9. The agreement with MoM found
there confirms that the S-SEM far-field theory allows direct
and simple analytical predicting of the far-field for general
wire array structures. For simplicity, in both two- and three-
elements arrays, the excitation signals are all equated to 1V.

VIII. CONCLUSION
We presented a general formulation of the Singularity Expan-
sion Method (SEM) applied to frequency-domain spatial
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electromagnetic signals (via the Antenna Current Green’s
Function or ACGF) in contrast to the conventional time-
domain formulation. The resulting spatial-SEM theory was
extended to include the far field and exact analytical expres-
sion of the radiation pattern in terms of the SEM data were
found, leading to the discovery of new sets of radiation and
current modes through this method, which can be deployed
as bases to expand any current/radiation pattern. The method
has been confirmed by direct comparison between the newly
derived analytical expressions and accurate full-wave MoM
solution. It was found that the new S-SEM radiation modes
computed by theory and theMoMpredictions are in complete
agreement. The examples include single wires, with both
symmetric and asymmetric excitation, and also bent wires
and wire arrays. Although the numerical examples involved
wire structures, the proposed S-SEM algorithm is devel-
oped for the full-generic case of three-dimensional radiating
objects. Moreover, the method can be extended to scattering
problems.

The S-SEM method possesses the major advantage of
being a frequency-domain approach, leading to the ability
to work with only single-frequency data. Moreover, it was
found that the notorious problem of how to separate the
early- and late- time responses, which usually hinders tem-
poral SEM applications, is completely absent in the spatial
SEM algorithm. Based on the new connection between the
S-SEM current distribution and the far-field, this can lead to
new applications given that frequency-domain measurement
is much easier than time time-domain measurements. The
analytically-expressed current/radiation modal connection
unearthed via the spatial-SEM can be harnessed to develop
new generations of new inverse modeling algorithms suitable
for radar target identification and sensor inverse modeling.
Moreover, the simple analytical relation between the S-SEM
data of the radiating current and the corresponding radiated
fields allows efficient calculations of fields in complex array
configurations, which could be used, for instance, to speed
up simulations involving statistical analysis and optimization
that requires extensive numerical computations of the far
fields.

Finally, and most importantly, the spatial SEM formalism
closes a gap in the current electromagnetic literature, which
tends to focus heavily on the temporal (ω-type spectral anal-
ysis) composition of electromagnetic signals, by shedding
more light this time on the spatio-frequency structure of elec-
tromagnetic fields and currents as a step toward a complete
spatio-temporal spectral SEM theory. We believe that the
proposed theory and its computational implementation for
wire problems (fully developed here) and 2D patches (given
in outline form here) will play a role in the next generation of
fundamental and applied electromagnetic research.
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