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ABSTRACT Histopathology images exhibit considerable variability, which can make diagnosis prone to
uncertainty and errors. Using retrieval systems to locate similar images when a query image is given can
assist pathologists in making more reliable decisions when diagnosing, based on accurately diagnosed
past cases. Local binary patterns (LBP) have been successfully used as image descriptors for different
applications. However, using LBP on histopathology images is still under investigation from different
perspectives. The immense texture variability of these images and the lack of labeled training data are
among the challenges that must be addressed. In this paper, we propose a new extension of LBP that is
explicitly aware of the heterogeneity of local texture patterns through heterogeneity-based weighting.We use
both homogeneity and the second moment (variance) of local neighborhoods to extend LBP histograms
with heterogeneity information so that they better capture the polymorphism in histopathology images.
We applied all concepts at multiple scales and investigated the extensions through both separated and
concatenated extended histograms. We applied the proposed method on three publicly available datasets,
namely, KimiaPath24, invasive ductal carcinoma (IDC), and BreakHis. The experimental results revealed
that our features could retrieve and classify images with the highest accuracy. For KimiaPath24, we achieved
96.4% surpassing both LBP (91.0%) and deep features from VGG network (79.5%). For IDC, we reached
the highest F1 measure (0.7665). Only for BreakHis, the proposed method was slightly less accurate than a
customized convolutional neural network with rule fusion.

INDEX TERMS Content based image retrieval (CBIR), whole slide image (WSI) processing, heterogeneity
mask, local binary pattern (LBP).

I. INTRODUCTION
In recent years, research on histopathology images has
attracted a lot of interest. Histopathology is concerned with
the investigation and analysis of biological cells and tis-
sue structures by examining the thin slice of tissue under a
microscope with regard to the specific diseases of interest.
Histopathology slides (prepared tissue samples on a glass
slide) are used for education and diagnosis purposes. In the
educational domain, histopathology slides can help students
learn about biological tissues. For diagnostic purposes, tissue
samples (also called specimen) taken from the patient’s body
can be investigated to learn more about the morphological
characteristics indicating the patient’s condition. Generally,
these daily investigations verify the presence of diseases and
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determine their causes. Thus, they can help pathologists in
making proper treatment recommendations [1].

With the rapid increase in the availability of digital
image acquisition devices, glass slides with tissue samples
are captured by whole slide digital scanners and stored as
digital whole slide images (WSIs). These WSIs are gen-
erally very large; therefore, examining them manually is
very time-consuming and overwhelming for pathologists and
other laboratory experts. In recent decades, many computer-
aided systems have been proposed to analyze histopathol-
ogy images [2]–[4]. Improvements in image processing and
machine-learning algorithms with regard to big data process-
ing, in addition to the delivery of acceptable results by the
application of such algorithms to practical clinical datasets,
have demonstrated the applicability of computer-aided
algorithms as reliable tools enabling diagnostic accuracy
[2], [5], [6].
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Content-based image retrieval (CBIR) and image classifi-
cation can be considered as applications of computer-aided
systems. In a classification task, the objective is to classify
the WSIs as one of the disease categories or different lesion
types [7]–[9]. In a retrieval approach, images that reflect
the same visual attributes, such as color, texture, and shape,
with respect to a query image, are indexed and retrieved
from large image archives [10]–[12]. The assessment and
identification of similar images can assist pathologists in
performing diagnosis by providing a baseline for comparison
against accurately diagnosed past cases.

Feature extraction is typically considered as the main stage
in computer-aided systems. Texture is a low-level image
feature and an important property of histopathology images
that can be regarded as a similarity criterion to group images.
In texture-based image retrieval, the repeatability, locality,
quantity, and distinctiveness of texture patterns can improve
the performance of a CBIR system [13]. The scale invariant
feature transform (SIFT) [14], speeded up robust features
(SURF) [15], histograms of oriented gradients (HoG) [16],
and local binary patterns (LBP) [17] are all effective feature
extraction methods. However, LBP may qualify better as a
texture operator. Most of these methods, such as SIFT, SURF,
and HOG, perform well in applications such as object detec-
tion, face recognition, or tracking [18]–[20], but perform
poorly in comparison to LBP when applied to the retrieval
and classification of histopathology images [21]–[23].

Representing each image in the dataset with low dimen-
sion feature vectors, or reducing the dimensionality of each
feature vector with various methods such as principal compo-
nent analysis [24] or minimum description length [25], may
also be considered to reduce the memory requirements and
response time of computer-aided systems.

In this paper, we propose a heterogeneity-aware multi-
resolution LBP (hmLBP). By considering the power of
rotation-invariant uniform LBP in medical domain we used
that as our initial model. The intuition behind the proposed
method is that the measurement of heterogeneity in multi-
resolutions can leverage the texture recognition capability
of LBP when dealing with immense pattern variability in
histopathology scans. General (non-medical) texture patterns
are usually processed in low resolutions. The extreme vari-
ability and high resolution of tissue patterns are further
amplified by the different manifestations of malignancies
for different tissue types. This is called polymorphism and
poses a considerable challenge in diagnostic pathology that
existing versions of LBP appear to miss. For computers,
this is only manageable either through the preparation of
large labeled datasets encompassing all variations, which is
understandably impractical, or through the design of hand-
crafted descriptors that place more emphasis on variability,
i.e., heterogeneity.

We applied our method to the KimiaPath24, IDC, and
BreakHis public histopathology datasets. The experimental
results demonstrate the effectiveness of the proposed method,
particularly for KimiaPath24 and IDC. For KimiaPath24, our

method achieved an accuracy of 96.24%, which outperforms
all results reported in the literature, including deep features.

The rest of this paper is organized as follows: In Section II,
we review related studies. In section III, we introduce and
explain the proposed method in details. In Section IV,
we describe the datasets and their corresponding evaluation
criteria. In SectionV,we present and discuss the experimental
results. Finally, we present the conclusions drawn from this
study in the last section.

II. RELATED WORKS
A. IMAGE RETRIEVAL AND CLASSIFICATION
Feature extraction is considered as a key aspect of CBIR
systems. Generally, features can be assembled by combining
visual features (texture, color, shape, and segments). More-
over, features can be divided into general and domain-specific
features [26]. To narrow the gap between computer similar-
ity and human specialist similarity (semantic gap) in CBIR,
domain-specific features have been applied broadly in every
CBIR system, which is the most challanging problem [27].

Deep-network-based features are the main representative
of this class. Deep solutions have been extensively used in
histopathology image retrieval. In [28], a sparse autoencoder
was applied to extract features from histopathology images.
Kieffer et al. [29] used pre-trained deep networks to extract
feature vectors. In [30], a patch-based convolutional neural
network (CNN) was presented. The authors proposed an
expectation-maximization (EM) method for CNN training.
In another study [31], a nuclei-guided feature extraction
method based on a CNN was proposed for histopathology
images.

Other learning methods have also been applied to cre-
ate a domain-specific feature. Zheng et al. [32], [33] have
utilized the topic model of probabilistic latent semantic anal-
ysis (PLSA). First, block LBP, block Gabor, and nucleus-
based features were extracted. Then, the PLSA model was
applied to discover the high-level semantics of pathology
images. In [34], multiple clustered instance learning (MCIL)
was used to classify, segment, and cluster cancer cells in
colon histopathology images. The MCIL method performed
an image-level classification, pixel-level segmentation, and
patch-level clustering simultaneously by using the SURF
algorithm investigated in [35]. The discriminative feature-
oriented dictionary learning (DFDL) method for learning
class-specific features was used in [36] with the objective
of emphasizing inter-class differences while keeping the
intra-class differences small to enhance the classification
performance. Zhu et al. [37] proposed a variant of the bag-
of-visual-words with multiple dictionaries for histopathology
image classification. The features extracted from the patches
were clustered to form multiple cookbooks. This study used
histogram intersection and support vector machines (SVM)
to build multiple classifiers, and majority voting was applied
to the classification of each patch.

Texture features play an important role in medical
image retrieval [38]. Using visual features to retrieve
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similar histopathology images was first investigated by
Comaniciu et al. [39], who presented a content-based image
retrieval system that supports decision making in the field of
clinical pathology. A fast color segment method was used to
extract the features of interest, namely, the shape, area, and
texture of the nucleus.

Texture feature descriptors can be divided into key-point
based features and dense sampling methods. SIFT, SURF,
and ORB are the most well-known methods in this cate-
gory. Gheisari et al. [40] proposed the combination of SIFT
with a feature encoding algorithm to extract highly discrim-
inative features from neuroblastoma histology images, and
applied an SVM classifier to classify the images into five
subtypes. In [41], medical image classification based on the
PLSA-BOW model using SIFT features was proposed. The
experimental results indicated an improvement in the classi-
fication results in comparison with other classification meth-
ods. Wojnar and Pinheiro [42] used the SURF descriptor and
SVM classifier to classify lung images. The application of the
SURF descriptor led to an improvement in the classification
of lung images.

Although key-point based methods have been widely
applied to general image processing, it has been repeatedly
reported in the medical field that they might fail to detect
useful key-points [22], [43], [44]. However, dense sampling
methods (i.e. LBP) have solved this problem by sampling
all of the pixels in the image and creating a histogram.
Despite the fact that they may not detect the exact position
of an object, they can distinguish texture types more effi-
ciently comparing to key-point basedmethods. Reis et al. [45]
applied multiscale basic image features and LBP in com-
bination with a random decision classifier to categories,
and automatically classified stromal regions according to
their maturity. Camlica et al. [46] used an SVM classi-
fier trained with LBP features derived from saliency image
regions containing significant information to classify medical
x-ray images. Song et al. [47] proposed a bag-of-visual-
words method based on the histograms of oriented gradi-
ents (HOG) and the LBP to represent regions of interest
(ROIs) in lung CT images. They applied the Max-Min poste-
rior pseudo-probabilities (MMP) learning method to identify
the category of the imaging sign contained in each ROI.
The experimental results confirmed the effectiveness of their
approach.

Finally, various studies have investigated the combination
of high level features and domain-specific features by design-
ing new texture descriptors or modifying common texture
descriptors for a specific task. In [48], a model capable of
extracting high-level features was proposed to reflect the
semantic content of an image. This study mapped conven-
tional low-level features to high-level features by imple-
menting machine learning techniques. The Radon transform,
which is used in the medical field to create X-ray, CT,
and MR images, has recently attracted particular atten-
tion [49]. Tizhoosh and Babaie [22] introduced encoded local
projections (ELP), based on the Radon transform, as a new

dense-sampling descriptor for searching and classification in
the medical field.

B. LOCAL BINARY PATTERN
LBP is a simple but powerful local texture descriptor [50]
based on thresholding the neighborhood of each pixel against
the center value, and considering the result as a binary code.
The basic LBP values in a (P, R) neighborhood are computed
as follows:

LBPP,R =
P−1∑
p=0

s(gp − gc)2p, (1)

where

s(x) =

{
1 x > 0,
0 x < 0.

(2)

The intensity value gc corresponds to the intensity value of
the local neighborhood’s center pixel, and gp (=0,..., P-1)
corresponds to the gray values of the P equally-spaced pixels
on a circle with a radius R (R > 0 ) that form a circular
symmetric neighbor set [50].

In this study, we used another extension of LBP with a
shorter feature vector for the rotation of invariant uniform
patterns. The term uniform refers to the limited number of
bitwise transitions from 0 to 1 or 1 to 0 in the binary LBP
codes at the circular presentation. Ojala et al. [51] noticed
that uniform patterns comprise the vast majority of texture
patterns; that is, over 90% in (8, 1) neighborhoods. The rota-
tion invariant local binary pattern in the (P, R) neighborhood
is defined as follows:

LBPriP,R = min{ROR(LBPP,R, i)|i = 0, 1, ...,P− 1}, (3)

where ROR(x, i) performs a circular bit-wise right shift on
the P-bit number x for i times. The rotation-invariant uniform
patterns LBPriu2P,R in the (P, R) neighborhood can be computed
by the following operator:

LBPriu2P,R =

{∑P−1
p=0 s(gp − gc) if U (LBPriP,R) 6 2,

P+ 1 otherwise,
(4)

where s is a sign function, and U(LBPriP,R) refers to the uni-
form LBP pattern in (P, R), and can be computed as follows:

U (LBPriP,R) =
∣∣s(gp−1 − gc)− s(g0 − gc)∣∣
+

P−1∑
p=1

∣∣s(gp − gc)− s(gp−1 − gc)∣∣ . (5)

After calculating the LBP values of the input image, the dis-
crete occurrence histogram of the rotation invariant uniform
patterns is computed over an image. Because of its compu-
tational simplicity, LBP has been used in many applications
such as face detection and recognition [52], gender recogni-
tion [53], and image retrieval and classification [45], [46].
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C. SUPPORT VECTOR MACHINE (SVM)
SVM is a class of supervised machine-learning algorithm
which can be used for both classification or regression prob-
lems [54], [55]. SVM operates on an n-dimensional feature
space with the value of each feature being the value of
a particular coordinate. Subsequently, a margin-based opti-
mization will be applied to separate these points by finding
the optimal hyper-plane that maximizes the margin between
classes. However, SVM was originally designed for binary
classification but several algorithms such as ‘‘one-against-
one,’’ ‘‘one-against-all’’ and DAGSVM [56] have been pro-
posed to extend it to multi-class cases by combining several
binary classifiers

III. PROPOSED METHOD
Themain idea of this studymay be expressed as a simple rule:
If patterns exhibit high heterogeneity, then, the local binary
patterns are counted as usual; otherwise, their influence on
the construction of the histogram is reduced by considering
their weighted sum whereas the weights should quantify the
heterogeneity of the neighborhoods. Measuring the hetero-
geneity at multiple resolutions (manifested in using neighbor-
hoods of different sizes-radii of the operator window-in LBP)
ascertains to exploit the well-known benefits of a pyramid-
approach in local neighborhoods.

This process is equivalent to capturing the pixel variability.
Hence, we can use well-established statistical measures like
variance, and concepts like homogeneity.

We extracted the texture features from a circularly symmet-
ric pixel neighborhood withPmembers and radiusR, denoted
as (P,R). To exploit the benefits of multi-resolution analysis,
the LBP features and heterogeneity measures were extracted
for three different values of (P,R). Moreover, we investigated
two distinct, albeit similar, ways for capturing heterogeneity,
as follows:

1) Second moment (variance) of the neighborhood based
on its average µ:

V =
1
p

p∑
i=1

(gi − µ)2. (6)

The variance values are continuous and invariant to
rotation.

2) Local dissimilarity can be calculated based on any
notion of homogeneity that captures the uniformity of a
group of elements. If all elements have the same value,
then, the homogeneity of that set/neighborhood is equal
to one. The local homogeneity H of a region in an image
can be computed as follows [57]:

H = 1−
1
L

√∑
i

∑
j

(wij − m)2, (7)

where wij are pixels in the region, m is the
median or mean value of the pixels in the region,
and L is the size of the region. In the homogeneity
calculation of the neighborhood pixels in (P,R), we set

L = P. To capture the dissimilarity D of a local region,
we use D = 1 − H for (P,R). Similar to the variance
features, the dissimilarity features are also continuous
and invariant to rotation.

Binning the continuous features– To create a histogram
from the LBP features by heterogeneity map, we first use
the extracted LBPriu2P,R values in Eq. 4 (this matrix will here-
after be referred to as LBP). Subsequently, a weighted his-
togram is created by multiplying the heterogeneity weights
W with each bin of the LBP histogram. To formulate
the heterogeneity-aware histogram h̆, we define 9i(x, y) as
follows:

9i(x, y) =

{
1, if LBP(x, y) = i,
0, otherwise,

(8)

where the binary matrix 9i can be created for each arbitrary
i from 1 to n (number of LBP bins). The coordinates x and y
specify a position in the LBP and 9. By applying the Frobe-
nius inner product 〈·, ·〉F , each bin of the final histogram (h̆)
can be defined as follows:

h̆(i) = 〈W, 9i〉F . (9)

Thus, we can compute the heterogeneity matrix W based
on the variance (Eq. 6) or dissimilarity (Eq. 7). Figure 1
shows the feature extraction process for the thumbnail of
a histopathology image from the KimiaPath24 dataset. The
image was divided into square patches, and then sample LBP
values (with seven bins) were extracted for each block. Addi-
tionally, a sample heterogeneity matrix is shown under the
LBP values. The weighted histogram is presented as the final
outcome. For colored WSIs the feature extraction process is
applied to each color channel space separately and then these
channel histogram features are concatenated to form the final
feature vector.
To provide an intuitive understanding of the proposed

method, Fig. 2 shows the LBP and heterogeneity images in
the first row, based on the variance and dissimilarity con-
cepts. The corresponding heterogeneity-aware histograms
for various (P, R) values can be seen in the second rows.
It can be seen that the heterogeneity maps describe the non-
homogeneous regions of an image. The homogeneous regions
(low pixel variability regions) have low values, while the
non-homogeneous regions (high pixel variability regions)
have high values in the heterogeneity images (V and D
images). As the P and R values increase, more details of the
non-homogeneous and homogeneous regions in the original
image are clarified. By comparing the V and D images,
we can conclude that the heterogeneity image based on dis-
similarity contains more detailed information in comparison
with the image based on variance. As shown in the figure,
the shape of the LBP histogram generally approximates the
heterogeneity-aware histograms. However, the last LBP bin,
which contains non-uniform patterns, is damped in both of the
proposedmethods and a little less in various first and last bins.
Additionally, the height of the bins is reduced considerably by
reducing the effect of the flat regions.
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FIGURE 1. Feature extraction process for histopathology image thumbnail from KimiaPath24 dataset.

FIGURE 2. LBP and heterogeneity images based on variance and dissimilarity concepts and corresponding heterogeneity-aware histograms for sample
image (a) of (P, R) values for (b) P=16, R=2.

IV. DATASETS
In this study, we used three publicly available datasets
containing histopathology images: KimiaPath24, IDC, and
BreakHis. In all experiments, as a pre-processing step,
we normalized all patches in the [0, 1] interval.
KimiaPath24 dataset– This dataset contains 24greyscale

whole slide images, which were manually selected from a
larger pool of scans. The images show diverse body parts
with texture patterns that appear different to human opera-
tors [58]. The glass slides were captured by a digital scanner
(TissueScope LE 1.0) in a bright field using a 0.75 NA lens.
The dataset contains 1,325 test images (patches) with a size
of 1000× 1000 pixels (0.5 mm× 0.5 mm) from all 24 cases.
However, it is possible to extract a different number of train-
ing images based on the preference of the algorithm designer.
Figure 3(a) shows various thumbnails colored images of this
dataset.

TABLE 1. Image distribution by magnification factor and class [60].

The various patches selected for training may not con-
tain significant information because they may be primar-
ily background patches and devoid from any substantial
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FIGURE 3. Various samples from (a) KimiaPath24, (b) IDC, and (c) BreakHis datasets.
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TABLE 2. Accuracy {ηp, ηw , ηtotal } for different features and various combinations of these features in supervised and unsupervised approaches for
KimiaPath24 dataset.

tissue pattern. Therefore, we used a homogeneity criterion
to select only patches containing a considerable part of
the tissue. Patches with homogeneity over 99% were dis-
missed as training cases. Additionally, we extracted a total
of 26,596 patches with a size of 1000 × 1000 pixels as
training data. Despite the fact that KimiaPath24 ismulti-class,
the main limitation of this dataset is related to its classes
nature. Two same tissue type (i.e. fat tissue) test patchesmight
come from two different scans. As a result, two visually simi-
lar patches should classify in different classes.In addition, this
dataset comes grayscale witch make it hard for color based
approaches.

IDC dataset– This dataset contains breast cancer
histopathology slides belonging to 162 patients diagnosed
with invasive ductal carcinoma (IDC) at the University of
Pennsylvania Hospital and The Cancer Institute of New Jer-
sey [59]. All slides were digitized at 40x magnification. Each
WSI was downsampled by a factor of 16:1 to a resolution
of 4 µm/pixel. The dataset contains patches of size 50 × 50
in 3-channel RGB (Red-Green-Blue) color space and was
randomly split into three different subsets by data supplier,
comprising 84 training (DS1), 29 validation (DS2) cases
for parameter exploration, 49 test cases as final instances

(DS3), 114,235 instances for full training (DS1 and DS2),
and 51,171 instances for testing (DS3). Each patient’s file
name was formatted as u_xX_yY_classC .png, where u is the
patient ID, X and Y are the x-coordinate and y-coordinate of
the location from where this patch was cropped, and C indi-
cates the class where 0 is non-IDC and 1 is IDC. Examples of
this dataset are shown in Fig. 3(b). Small patch size (50×50)
and binary classification are the main limitations of IDC
dataset which may limit its performance.

BreakHis dataset– This dataset contains biopsy images
of different benign and malignant breast tumors. The images
were collected through a clinical study from January 2014 to
December 2014 [60]. The samples were generated from
breast tissue biopsy slides and stained with hematoxylin and
eosin (H&E). This dataset contains 7,909 images of size
700 × 460 in 3-channel RGB, categorized into benign and
malignant tumors, which were collected at four different
magnification factors: 40x, 100x, 200x, and 400x. Table 1
summarizes the image distribution of this dataset, and var-
ious samples are shown in Fig. 3(c). However, BreakHis
offers multi-magnification patches but but providing just
two classes labels (malignant versus benign) decrease its
applicability.
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FIGURE 4. Confusion matrix for KimiaPath24 dataset.

FIGURE 5. Image retrieval results based on LBP , V , D, and LBP+V +D features: left image is query image; right images are retrieved images. Images
with borders are incorrect retrievals (KimiaPath24 dataset).

A. ACCURACY CALCULATION
In order to generate comparable results, we used the same
evaluation metrics that have been put forward by these
datasets.

KimiaPath24 accuracy measurement – There are
ηtot = 1, 325 testing patches Pjs belonging to 24 sets 0s =
{Pjs|s ∈ S, j = 1, 2, ..., n0s} with s = 0, 1, ..., 23 (n0s being
the number of tests per each WSI). Considering the set of
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TABLE 3. Accuracy of various methods for KimiaPath24 dataset. Results for the proposed approach are given in bold.

TABLE 4. Accuracy {F 1,BAC} for IDC dataset.

retrieved images Rt for an experiment, the patch-to-scan
accuracy ηp can be defined as follows [58]:

ηp =
1
ηtot

∑
s∈S

|Rt ∩ 0s| . (10)

The whole-scan accuracy ηw can be defined as follows:

ηw =
1
24

∑
s∈S

|Rt ∩ 0s|
n0s

, (11)

where the total accuracy is defined as ηtotal = ηp × ηw.
IDC accuracy measurement – For the IDC dataset,

we used the F-measure (F1) and balanced accuracy (BAC),
which are defined as follows [59]:

F1 =
2× Pr × Rc
Pr + Rc

, (12)

BAC =
Sensitivity+ Specificity

2
, (13)

where Rc and Pr are the recall and precision, respectively.
These numbers are obtained by calculating the true posi-
tive (TP), false positive (FP), false negative (FN ), and true
negative (TN ) as follows:

Pr =
TP

TP+ FP
, (14)

Sensitivity =
TP

TP+ FN
= Rc, (15)

Specificity =
TN

TN + FP
. (16)

BreakHis accuracy measurement – For the BreakHis
dataset, we used the patient score and global recognition rate
according to [60], as follows:

PatientScore =
Nrec
NPa

, (17)

Recognition Rate =

∑
patient scores

total number of patients
, (18)
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FIGURE 6. Confusion matrix for IDC dataset.

where NPa is the number of cancer images for patient Pa,
and Nrec is the number of images classified correctly for each
patient.

V. EXPERIMENTS
A. PREPROCESSING
To balance the images, all images were rescaled to [0 1]
interval. The rescaled image Ī can be computed as follows:

Ī =
I − Imin

Imax − Imin
(19)

where Imin and Imax are the minimum and maximum values
of the image. For multichannel images, each channel was
normalized separately.

B. EXPERIMENT SETTINGS
The IDC,Kimiapath24, andBreakHis datasets have been split
into test and train sets through the guidelines of the dataset
providers. We extracted the LBPP,R, variance V , and hetero-
geneity D features from the circularly symmetric neighbor-
hoods with (P, R) values of (8, 1), (16, 2), and (24, 3). Both
the retrieval and classification approaches were examined.
In the retrieval approach, three different distance measures,
including the L1 and L2 norms, and the χ2 distance were
used to retrieve the most similar patch with respect to a
given test patch (query image). In the classification approach,
we applied SVM to clasiffy extracted features. In this study,
we used binary-class SVM for IDC and BreakHis datasets
and multi-class SVM with one-against-all strategy for Kimi-
aPath24 dataset. Kernel function was set to radial basis func-
tion and the penalization coefficient C and factor γ in the
kernel function have been obtained through exhaustive exper-
iments for each case dataset which have been provided in the
results subsection. In our experiments, we used the LIBSVM
package [61].

TABLE 5. F1 and BAC measures for various methods for IDC dataset
(results for our approach are given in bold).

FIGURE 7. Confusion matrices for BreakHis dataset at magnification
factors of (a) 40x, (b) 100x, (c) 200x and (d) 400x.

C. RESULTS AND COMPARISONS
Results for KimiaPath24 dataset– Table 2 presents the
effect of combining heterogeneity information and LBP fea-
tures on the performance in the retrieval and classification
approaches. This table reports the results for extracted fea-
tures from different values of (P,R) and various combinations
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TABLE 6. Global recognition rate for different extracted features and various combinations of these features in classification and retrieval approaches for
BreakHis dataset.

of these features. In this table, |h| is the dimension of
the feature vector, XP,R refers to the concatenation of all
three histograms for the features with (P, R) values of
(8, 1), (16, 2), and (24, 3). For example, LBPP,R =

[LBP8,1,LBP16,2,LBP24,3]. This style was used for all three
methods: LBPP,R, VP,R, and DP,R. The best results are shown
in bold fonts or gray color. As can be seen in the Table 2,
by increasing the (P, R) values, the accuracy of the retrieval
(search) and classification increased for all methods. The
image searching using the χ2 distance had higher accuracy
than the L1 and L2 norms. The addition of LBP24,3 or LBP16,2
to LBP8,1 increased the accuracy, owing to the rich infor-
mation provided by the combination of features. This was
also observed for the V and D features. From the com-
binations of individual cases, the heterogeneity-aware his-
togram DP,R = [D8,1D16,2D24,3] had an accuracy of 94.72%
in classification, while the heterogeneity-aware histogram
VP,R = [V8,1V16,2V24,3] had an accuracy of 81.36% in the
retrieval approaches. From the combinations, an accuracy
of 96.36% was achieved for classification by combining the
heterogeneity-aware histograms of variance and homogene-
ity. The penalization coefficient C and factor γ were set to
400 and 2, respectively. Moreover, an accuracy of 85.06%
was achieved for the retrieval approaches by combining the
heterogeneity-aware histograms of variance and homogene-
ity, and the LBP histogram. Fig. 4 shows the confusion
matrix. Based on this matrix, the most important source of
error is associated with the false negative of scan 16 which
misclassified in class 19 and 20 with the same probability
of %10 each. These slides come from the same body organ
(kidney) but in different staining i.e. H&E and immunohis-
tochemistry (IHC). By considering the grayscale problem of
KimiaPath24, it seems hard to separate themwithout the color
information, just based on texture.

As an example, Fig. 5 shows three retrieved images based
on LBP, V , D, and the concatenation of the LBP+ V + D
features. The query image is shown on the left, while
the retrieved and ranked images are shown on the right.
The images with borders are incorrectly retrieved images.
As can be seen, all of the images based on the V , D, and
LBP+ V + D features were retrieved correctly. However,
the images based on the LBP features were retrieved incor-
rectly. The two wrongly retrieved images appear to repre-
sent the same texture, although the sharpness of the textures
is completely different. However, the heterogeneity based
methods surpassed this problem considerably.

TABLE 7. Global recognition rate of various methods for BreakHis
dataset. Results for our approach are given in bold.

Comparison for KimiaPath24 dataset- The results
obtained by the proposed method were compared with the
results obtained by previous studies. Table 3 presents the
accuracy measurements for various methods, and also lists
the numbers of extracted training patches. In comparisonwith
existing methods, the proposed method has lower dimension-
ality and higher image retrieval accuracy. As can be seen,
the accuracy of different histograms would be ranked as
D > V > LBP. These accuracy results are also higher than
the accuracies reported in the literature.Moreover, the highest
accuracy was achieved for the concatenated heterogeneity-
aware histograms classified by the SVM method. However
deep networks are extremely powerful tools for machine
learning but no good results were achieved for KimiaP-
ath24 dataset. Kieffer et al. [29] mentioned some of the rea-
sons such as lack of color information, intra-class variability
and scaling down a patch for use within a deep network and
that’s the reason of why using deep networks provide poor
results on KimiaPath24 dataset.

Results for IDC dataset- We set the SVM parameters to
C = 40 and γ = 0.4. A Python implementation of SVM was
used for this dataset. We applied the proposed method to each
color channel. All possible combinations of the extracted fea-
tures were considered, and the accuracy of the combinations
was calculated. The main results are presented in Table 4.
As can be seen in Table 4, the performance improved by
combining the VP,R and DP,R features with the LBPP,R fea-
tures. The best performance, both in terms of F-measure
and BAC, in the search mode was achieved by combining
VP,R with LBPP,R and amounted to (0.6439, 0.7587). In the
classificationmode of the LBPP,R+VP,R+DP,R combination,
we achieved (0.7665, 0.8613). Fig. 6 shows the confusion
matrix. As we can see sensitivity, specificity and accuracy
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TABLE 8. Major symbols used in this paper.

are in the same range (between 84% to 88.4%). However,
the specificity is the highest one by 88.4%. As a result,
the probability of misclassifying a normal patch to the can-
cerous one is higher than to misclassify the cancerous patch
to normal one.

Comparison for IDC dataset- We compared the per-
formance of the proposed method with the performance of
existing methods. Table 5 presents the comparison results.
As can be seen, the proposed method has the best accuracy.

Results for BreakHis dataset- We concatenated the
extracted features from each color channel for each resolution
analysis. The SVM parameters are set to {C = 200, γ = 2},
{C = 200, γ = 1}, {C = 200, γ = 1}, and {C = 120,
γ = 0.5} for the 40x, 100x, 200x and 400x magnifica-
tion factors, respectively. The global recognition rate was
used as the evaluation criterion. Some of the main results
are presented in Table 6, and the best results are printed in
bold fonts. Amongst all feature vectors, for the 40x dataset,
LBPP,R+DP,R andVP,R+DP,R achieved the best performance
in the search and classification approaches with recognition
rates of 79.15% and 88.32%. For the 100× dataset, DP,R
and LBPP,R + VP,R+ DP,R achieved the best performance in
the search and classification approaches with a recognition
rate of 79.95% and 88.30%. For the 200x dataset, DP,R and
LBPP,R + VP,R achieved the best performance in the search
and classification approaches with the recognition rate of
80.80% and 87.14%. For the 400x dataset, VP,R and DP,R
achieved the best performance in the search and classification
approaches with a recognition rate of 78.65% and 83.40%.
Fig. 7 shows the confusion matrices at each magnification
factor. The interesting point is, even though in 40x and 100x
the global recognition rate are same, their accuracy is differ-
ent around 2.1%. In addition, our method’s specificity range
between 63.8% in 400x to 75.5% in 40x is not satisfactory.

Comparison for BreakHis dataset- We compared our
best results with the results obtained by previous studies.
The comparisons are presented in Table 7. As can be seen,
the proposed method could classify the dataset with higher
accuracy than most reported methods.

VI. DISCUSSION
It seems our simple and compact method performs well
in histology image search mainly based on the following
reasons: 1- Multi-resolution analysis: texture features are
extracted from different resolutions from histology images
and then concatenated to form the final feature vector.

The multi-resolution analysis provides rich texture infor-
mation. 2- Extracting compact binary codes: using rotation
invariant binary codes not only reduce the dimension of the
feature vector which is important in multi-resolution analysis
but also, comprises the vast majority of texture patterns that
can describe the texture properties of the histology images
well. 3- Weighting the histogram bins: LBP codes combine
heterogeneity information by weighting the bins of the his-
togram through the counting of LBP codes. Heterogeneity
highlights the non-homogeneous regions of the histology
images and capturing heterogeneous information into the
histogram bins of LBP codes will cause more texture infor-
mation to be preserved.

VII. SUMMARY AND CONCLUSIONS
In this paper, we proposed a novel method of extending LBP
histograms so that they are more aware of pattern heterogene-
ity. Thiswould be a particular interest to applications with
highly variable texture patterns, such as applications in the
field of histopathology. Additionally, we investigated hetero-
geneity at multiple scales to capture the pattern variability
more robustly. As, in contrast to natural patterns images,
histology patterns are processed at very high resolutions,
hence, a multiscale approach exploits both low and high
resolutional patterns. Existing LBP versions do not account
for both heterogeneity and scale at the same time.
Moreover, we investigated the discrimination power of

the developed descriptors with regards to search and clas-
sification, and tested them on three publicly available
datasets, namely, the KimiaPath24, IDC, and BreakHis
datasets. The results revealed that the extracted features
could retrieve and classify the images with high accuracy.
Furthermore, we tested various concatenating configurations
of the extracted features. The results revealed that the con-
catenated features achieved better performance in modeling
the histopathology texture patterns. In comparison with other
proposed methods, our method has a lower dimension fea-
ture vector and higher accuracy. In future works, we need
to investigate the possibility to equip the heterogeneity-
awareness with learning capability to ascertain generalization
for any concept drift due to introduction of new (unseen)
patterns.
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