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ABSTRACT Recently outstanding object detection results are achieved by the faster region-based
convolutional network (faster R-CNN). Particularly, high-quality detection proposals are obtained by the
region proposal network (RPN). Nevertheless, part of the parameters in RPN is assigned by prior knowledge.
Therefore the underfitting problem is likely to appear on the training model of RPN. In other words,
the generalization ability of RPN is not enough. Increasing parameters is an effective solution to this problem.
Thereupon a strengthened RPN (SRPN) is designed to expand the exploring space of RPN. Acquiring the
optimal parameter values of SRPN is a non-deterministic polynomial-time hard problem, which can be
solved by swarm intelligence algorithms. Thereafter a particle swarm optimization (PSO) and bacterial
foraging optimization (BFO)-based learning strategy (PBLS) is introduced to optimize the classifier and
loss function of SRPN. In SRPN, a novel multi-level extracting network is created to improve the feature
sampling ability. Moreover, the mathematical model of the smooth L1 loss function is improved to boost
the fitting ability. Additionally, support vector machine (SVM) method is applied to enhance the classifier
learning capability. PBLS is applied to SRPN (PBLS_SRPN). The parameters of SVM and the improved
loss function are optimized by the BFO and PSO methods, respectively. Then, the performance of SRPN is
further promoted. The excellent results are obtained by our proposed methods on PASCALVOC 2007, 2012,
MS COCO, and KITTI data sets. Consequently, PBLS_SRPN is effective for object detection in autonomous
driving.

INDEX TERMS Deep learning, object detection, region proposal, learning strategy, autonomous driving.

I. INTRODUCTION
Nowadays autonomous driving is a key technique in the
automotive industry. Many major car manufacturers and
IT companies are working on building autonomous driving
systems. The tasks of autonomous driving can be divided
into 4 categories which are perception, location, planning
and controlling. In other words, the driving scenes are cap-
tured by autonomous driving system through the sensors
(LiDar, Radar, camera, etc.) to control the driving behaviors.
Autonomous driving technique has evolved rapidly. The per-
ception task realizes the detection of the surrounding objects
[1], [2]. For example, the pedestrian, bike, car and bus are
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the important detection contents. Because the surrounding
objects can be captured by the camera, therefore the object
detection methods for images [3], [4] are the focuses of the
current research.

In machine vision field, two kinds of methods are devel-
oped for processing the object detection problems. These
two categories are hand-engineered feature based methods
[5]–[7] and deep learning network based methods [8]–[11].
The famous hand-engineered feature based methods include
Scale-Invariant Feature Transform (SIFT) [12], Histograms
of Oriented Gradient (HOG) [13] and Deformable Part Mod-
els (DPM) [14]. Distinctive invariant features are achieved
from images based on the SIFT method. A reliable matching
between different views of an object or scene can be per-
formed through SIFT features. Even the gradients or edge
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positions of local object are not known, the appearance and
shape of local object still can be characterized rather well via
the distribution of local intensity gradients or edge directions
in HOG. The HOG or SIFT features are used as image
descriptors to search the regions through a class-specific
maximum response in DPM.

In recent years, a great success has been got through
the deep learning network based methods. Object detec-
tion methods Multi-column deep neural networks [15] and
Over-Feat [16] have obtained superior improvements in speed
and accuracy compared with traditional object detection
methods. Because the traditional methods such as DPM and
HOG mainly depend on the prior knowledge to design the
model, then generalization of these methods is not good.
However, deep learning network based methods with the
same model can be suitable for various objects detection.
Moreover, the deep learningmethods with high quality region
proposals [17], [18] have achieved excellent localization and
classification accuracy. The main stream object detection
methods with region proposals are presented as follows.

Recently, Region-based Convolutional Neural Network
(R-CNN) [19] has got outstanding detection results. Further-
more the Fast Region-based Convolutional Network (Fast
R-CNN) [20] is improved to strengthen the ability of object
detection based on R-CNN. The extracting ability is strength-
ened by using the region of interest (RoI) pooling method
on the output features. Moreover, the performance of Fast
R-CNN region proposals is promoted by Faster R-CNN [21].
The generation speed of region proposals is accelerated by
replacing the Selective Search (SS) [22] with RPN. The RPN
is a kind of fully convolutional network (FCN) [23]. RPN
can be trained end-to-end for generating detection region
proposals.

At present, excellent results are achieved by the deep learn-
ing network based methods. Most of the parameters in these
methods are defined by the prior knowledge. The parameters
can be divided into 2 categories. The first category is deep
learning network related parameters. The training process
of the deep learning network is mainly controlled by these
parameters. The second category is object detection method
related parameters. The processing results are decided by
these parameters. In order to promote the performance of
processing results, these parameters need to be learned.

Four problems are not settled in the mentioned above
object detection methods. Firstly, the output feature maps
of convolutional network are used to generate region pro-
posals in RPN. Nevertheless, the multi-level convolutional
information is not contained in the output feature maps.
Consequently, the performance of small object detection for
Faster R-CNN is seriously affected. Secondly, the mathe-
matical model of smooth L1 loss function is not reasonably
developed. Therefore, the fitting capability of smooth L1 loss
function is poor. Thirdly, the probability of each class is
calculated by the softmax method to classify the objects. The
softmax method is suitable for solving multiple classification
problems. However, the classifier is applied to distinguish the

positive and negative anchor boxes in RPN. Obviously, these
are binary classification problems. Additionally, the learning
ability of softmax is poor. Thereupon, softmax method is not
our optimal choice. Fourthly, the parameters of RPN network
are designed by the prior knowledge. However, the parame-
ters of model should be adaptive to the training samples in
the machine learning filed. Thereafter underfitting problem
is likely to appear on the training model of RPN. That is to
say, the generalization ability of RPN is not enough.

In this paper, a novel learning strategy is developed. Five
improvements are designed in PBLS_SRPN. Firstly, a novel
multi-level extracting network (MLEN) is created in this
work. The lower feature maps and the higher feature maps
are integrated with the output features in MLEN. In this
way, the effect of feature sampling method in our MLEN
is enhanced. Secondly, the mathematical model of smooth
L1 loss function is improved in PBLS_SRPN. Therefore,
the fitting ability of smooth L1 is strengthened. Thirdly,
because support vector machine (SVM) [24] method is more
suitable for solving binary classification problems. Besides,
the parameter number of SVM is more than softmax. There-
upon the learning ability of SVM is better. As a result the
softmax method is replaced by SVM method to accom-
plish the classification task. Fourthly, BFO is applied to
optimize the parameters of the SVM, termed BFO-SVM.
Specially, the improved swarming equation is proposed
to promote the optimization effect of BFO. Consequently,
the classification performance of PBLS_SRPN is enhanced
by using BFO-SVM. Fifthly, the parameters of RPN network
and the improved loss function are optimized by the PSO
method. Thereupon, the generalization ability of RPN is
boosted.

Section 2 shows the related work to our PBLS_SRPN.
Section 3 presents the basic concept of Faster R-CNN.
Section 4 describes the improvements of PBLS_SRPN
method. Section 5 shows the experiment results and dis-
cussions. Finally, section 6 draws some conclusions for this
paper.

II. RELATED WORK
Several state of the art deep leaning based methods [25]–[27]
are introduced in this chapter. R-CNN is developed to
improve the object detection mean average precision (mAP).
The relationship between image classification and object
detection is created by R-CNN which contains three stages
for object detection. Firstly, SS method is used to generate
around 2k region proposals. Secondly, convoluntional fea-
tures of each region proposal are extracted based on pre-
trained CNN [28], [29]. Thirdly, SVM is applied to classify
the convoluntional features. However, computation time is
increased by using these steps.

A bounding box regression scheme is applied to improve
the object detection results in Multi-region CNN (MR-CNN)
[30]. In order to strengthen the detection results, the bound-
ing boxes are evaluated twice. In addition, the seman-
tic segmentation-aware features are extracted through
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multi-region deep CNN. However, the region proposals gen-
eration method is not optimal. Therefore, the calculation
speed is the computing bottle neck of MR-CNN method.
Both inside and outside the region of interest informa-
tion is exploited in the object detector Inside-Outside Net
(ION) [31]. The information of features is extracted based
on skip pooling [32] at multiple levels of abstraction and
scales. The region proposals generation effect is need to be
upgraded.

The object detection and handling region proposal gen-
eration tasks are jointly developed in HyperNet [33].
The object detection results are good on PASCAL VOC
2007 and 2012 based on HyperNet. However, the loss func-
tion of HyperNet is not optimal. A vision-based method
FRCNN+Or [34] is proposed by building upon a deep convo-
lutional neural network that can reason simultaneously about
the location of objects in the image and their orientations
on the ground plane. The same set of convolutional layers is
used for the different tasks involved, avoiding the repetition of
computations over the same image. The goal ofMono3D [35]
is to perform 3D object detection from a single monocular
image in the domain of autonomous driving. The focus of this
method is on proposal generation. The results of Mono3D
are significantly better than other monocular approaches.
A regionlet [36] is a base feature extraction region defined
proportionally to a detection window at an arbitrary resolu-
tion. These regionlets are organized in small groups with sta-
ble relative positions to delineate fine-grained spatial layouts
inside objects. The worlds of 3D and 2D object is connected
in DPM-VOC + VP [37] by building an object detector
which leverages the expressive power of 3D object repre-
sentations while at the same time can be robustly matched
to image evidence. This method provides consistently better
joint object localization and viewpoint estimation than the
state-of-the-art multi-view and 3D object detectors on various
benchmarks. Our novel PBLS_SRPN is compared with the
methods mentioned above. We can find that the performance
of our proposed PBLS_SRPN is excellent in the experiment
results.

III. LITERATURE REVIEW
A. FASTER R-CNN
Faster R-CNN method is a state of the art object detection
method. The basic knowledge is introduced in this section.
The convolutional features of image are processed by RPN.
Next, the region proposals are generated as output of the
RPN. Moreover, the object score is computed for each region
proposal. A sliding window [38] is applied to the output
features of top-level convolutional layer to generate ref-
erence region proposals. Therefore, the quality of region
proposals is decided by the top-level features. Specially,
these features are sent to the box-regression layer (reg) and
the box-classification layer (cls) for information processing.
In other words, the framework of RPN is accomplished by
a n × n convolutional layer and two 1×1 convolutional
layers.

FIGURE 1. The structure of anchor boxes.

Multiple region proposals are predicted at each sliding-
window location simultaneously. We assume that the maxi-
mum possible proposals for each location are k . Therefore
the 4k outputs of reg layer encode the coordinates of k rectan-
gular proposals, and the 2k scores of cls layer are outputted.
Particularly, the probability of object or not object for each
proposal is estimated by every score. Moreover, an anchor is
adjusted by the scale and aspect ratio. The anchor is centered
at the sliding window (Figure 1). We presume that the size
of a convolutional feature map is W × H , and then the total
number of anchors is WHk. In order to diminish the cost of
computation, the anchor-based method is built on a pyramid
of anchors. Multiple scales and aspect ratios are applied to
classification and bounding box regression.

The expression for the loss function in RPN is pre-
sented in (1).

L ({pi} , {ti}) =
1
Ncls

∑
i

Lcls
(
pi, p∗i

)
+λ

1
Nreg

∑
i

p∗i Lreg
(
ti, t∗i

)
(1)

where i represents the number for an anchor box and pi means
the predicted probability for the ith anchor box. The value of
p∗i is 0 if the label of anchor box is negative, while if the label
of anchor box is positive when the value of p∗i is 1. Variable ti
represents the computation results for the predicted bounding
box. Item t∗i means the ground-truth box for a positive anchor
box. The variable Ncls is the mini-batch size. The parameter
Nreg is the number of anchor boxes. The term λ represents
a balancing factor. The loss function Lcls is a log loss for
classifying object or not object. The formulation of Lcls is
showed as follows:

Lcls
(
pi, p∗i

)
=

{
− log pi if p∗i = 1
− log(1− pi) if p∗i = 0

(2)

The loss function Lreg is described as follows:

Lreg
(
ti,t∗i

)
= R

(
ti − t∗i

)
(3)

where R represents the robust loss function (smooth L1).
Variable p∗i Lreg represents that the expression λ

1
Nreg

∑
i
p∗i Lreg

18842 VOLUME 7, 2019



G. Wang et al.: PSO and BFO-Based Learning Strategy Applied to Faster R-CNN for Object Detection

(
ti, t∗i

)
is valid when the anchor boxes are positive

(
p∗i = 1

)
.

The outputs of the reg and cls layers contain {ti} and {pi}. The
parameters of regression expression are showed as follows:

tx = (x − xa) /wa, ty = (y− ya) /ha
tw = log (w/wa) , th = log (h/ha)

t∗x =
(
x∗ − xa

)
/wa, t∗y =

(
y∗ − ya

)
/ha

t∗w = log
(
w∗/wa

)
, t∗h = log

(
h∗/ha

)
(4)

where x, y,w and h represent center coordinates, width and
height for region proposals. Parameters xa, x and x∗ are
defined as the anchor box, predicted box and groundtruth box.

The main methods for training the RPN are back prop-
agation (BP) and stochastic gradient descent (SGD). The
‘‘image-centric’’ is used as the training sampling strategy
in the RPN. In each mini-batch of a single image, a lot of
positive and negative anchor boxes are generated.

The number of negative samples is more than the number
of positive samples, thus part of the anchor boxes is not
used to train the network. The loss function is computed by
256 anchor boxes from a mini-batch. Moreover, the number
of positive samples is the same as that of negative samples.
If the number of positive anchor boxes is less than 128,
then the negative anchor boxes are used as the positive ones.
The layers of RPN are initialized by using the pre-trained
ImageNet [29], [39] model.

B. SOFTMAX CLASSIFIER
In convolutional neural network, the softmax classifier [40]
is used frequently. The general expression for logistic regres-
sion is softmax which can solve multi-class classification
problems. For each value of j = 1, . . . , k , the probability
P (y = j|x) is estimated based on our hypothesis for a test
input x.Therefore a k dimensional vector is calculated through
our hypothesis with k estimated probabilities. The formula-
tion of hθ (x) is showed as follows:

hθ (x(i)) =


p(y(j) = 1

∣∣x(i); θ )
p(y(j) = 2

∣∣x(i); θ )
.

.

.

p(y(j) = k
∣∣x(i); θ )

 (5)

The above equation is transformed as follows:

hθ (x(i)) =
1∑k

j=1 e
θTj x

(i)



eθ
T
1 x

(i)

eθ
T
2 x

(i)

.

.

.

eθ
T
k x

(i)


(6)

where θ1, θ2, . . . , θk ∈ Rn+1 are the factors of our model.
Because the each item is multiplied by 1∑k

j=1 e
θTj x

(i) , thus each

item is normalized.

C. INTERSECTION-OVER-UNION
If an anchor box is a positive example, then this anchor
box overlaps an object a lot. Contrarily an anchor box is a
negative example, thus this anchor box covers an object a
little. Nevertheless if an anchor box partially covers an object,
thereupon it is hard to evaluate an anchor box. Intersection-
over-Union (IoU) [41] measure is developed to settle this
problem. The definition of IoU is (w ∩ b)/(w ∪ b). The w
and b present the anchor boxes and ground truth boxes. The
grid search method is applied to set the value of IoU for
distinguishing the positive and negative samples.

D. PARTICLE SWARM OPTIMIZATION
The PSO method is one of the optimization methods [42].
This method simulates the social behavior of birds. The
mathematical formulation of PSO is presented as fol-
lows. In a N -dimensional region, the ith particle is xi =
(xi1, . . . , xin, . . . , xiN ). The best position for the ith particle
is pi = (pi1, . . . , pin, . . . , piN ), which obtains the optimal
fitness result and is named as pbest. In particles, the symbol
gbestrepresents the global best results among all searching
particles. The expression vi = (vi1, . . . , vin, . . . , viN ) rep-
resents the velocity of the ith particle. The update strategy
for the velocity and position of t + 1 iteration particle are
illustrated in (7).

vin(t + 1) = wvin(t)+ c1r1(pin − xin(t))

+ c2r2(pgn − xin(t))

xin(t + 1) = xin(t)+ vin(t + 1) (7)

where t means the iteration number; the vin(t) represents the
velocity of the ith particle on the nth dimension in tth itera-
tion; factors r1 and r2 are randomvalues in [0, 1]; theweightw
is the inertia coefficient; the variables c1 and c2 are learning
rates. When the fitness threshold or the maximum iteration
number is satisfied, then the iterations of PSO method stop.

E. SUPPORT VECTOR MACHINE
The SVM method is a famous classifier in machine learning
filed. Moreover, a deeply theoretical basis is contained in
SVM. Simultaneously, global optimal solutions can be found
by SVM with a small amount of training samples. SVM
method is widely used in object detection, object classifica-
tion, non-linear regression and pattern recognition.

A linear model is applied to generate the non-linear class
boundaries by taking some non-linear mapping input vec-
tors into a multi-dimensional space. In the multi-dimensional
space, an optimal separating hyper plane is created. Therefore
the advantage of SVM is to search a maximum hyper plane
which separates the decision classes. Consequently, a non-
linear relationship is discovered by SVM between the inputs
and outputs in multi-dimensional space.

Linear kernel function (8), sigmoid kernel function (9),
the RBF kernel function (10) and polynomial kernel function
(11) are showed as follows:

K
(
xi, xj

)
= xTi xj (8)
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K
(
xi, xj

)
= tanh

(
γ xTi xj + r

)
(9)

K
(
xi, xj

)
= exp

(
−γ ‖ xi − xj ‖2

)
, γ > 0 (10)

K
(
xi, xj

)
=

(
γ xTi xj + r

)d
, γ > 0 (11)

where d , r and γ are kernel parameters. In order to pro-
mote the performance of anchor boxes, the SVM classifier
is applied to replace the softmax classifier in RPN.

F. BFO ALGORITHM
The E.coli foraging process is simulated by BFO [43] algo-
rithm which contains chemotaxis, swarming, reproduction
and elimination-dispersal 4 step operations. The E.coli bac-
teria are showed in Figure 2 by using microscope.

FIGURE 2. E.coli bacteria.

Bacterial foraging strategy is simulated by this phase.
Firstly, the direction for bacteria is changed for a period of
time based on tumbling. Next, a short distance is moved by
bacteria. The bacteria will keep swimming when the bacteria
find rich nutrients.We suppose θ is the position of a bacterium
and θ i(j, k, l) means the ith bacterium in the jth chemotaxis,
kth reproduction, lth elimination-dispersal procedure. The
expression for tumbling is presented as follows:

ϕ (i) =
1(i)√

1(i)T 1(i)
(12)

where 1(i), i = 1, 2, . . . , S is a random variable. The
range for the element 1m (i) ,m = 1, 2, . . . , p in 1(i) is
[−1, 1]. The parameterS means the amount of bacteria. The
formulation for bacterial position updating is described as
follows:

θ i (j+ 1, k, l) = θ i (j, k, l)+ C (i) ϕ (i) (13)

where C(i), i = 1, 2, . . . , S is a distance for moving during
the swimming phase.

The communication between bacteria is simulated by
swarming process. The chemical substances are released
by bacteria to attract other bacteria when they find high
amounts of nutrients. The bacteria will repel each other

when they are in danger. The swarming action is described
as follows:

Jcc(θ, θ i(j, k, l))

=

S∑
i=1

−dattract exp
−wattract

p∑
f=1

(θf − θ if )
2


+

S∑
i=1

hrepellant exp
−wrepellant

p∑
f=1

(θf − θ if )
2


(14)

where θ = [θ1, . . . , θp]T is a bacterium in the swarm-
ing stage. The variable θ if is the f th component of
the ith bacterium position θ i. The communication value
Jcc(θ, θ i(j, k, l)) between bacteria is added to the fitness
function result in the chemotaxis phase j; Variable p repre-
sents the amount of problem dimension; Parameter S means
the number of bacteria; Factors dattract , wattract , hrepellant and
wrepellant are the attraction or repulsion force. The fitness
result for ith bacterium is presented as follows:

J (i, j, k, l) = J (i, j, k, l)+ Jcc(θ, θ i(j, k, l)) (15)

The reproduction process is executed after Nc chemotac-
tic operations. The variable S is assumed as a positive
even integer. The number of bacteria population with suffi-
cient nutrients is Sr . These bacteria are reproduced with no
mutations.

Sr =
S
2

(16)

The accumulated cost is described by the health of a bac-
terium. If the nutrients of a bacterium are decreased, then the
value of accumulated cost is increased. In other words the
bacterium cannot reproduce if the bacterium is not health.
The bacteria are sorted through descending order based on
their health in this phase. The Sr least healthy bacteria are
eliminated. In addition, the other Sr healthiest bacteria are
reproduced.

The rising temperature may kill a lot of bacteria. In other
words, the adverse environment can cause the death of bac-
teria. This process is expressed through dispersing some bac-
teria with a small probability Ped . Moreover, some randomly
generated bacteria are applied to replace the death ones.

IV. OUR APPROACH
A. OVERVIEW
In this paper, the convolutional layers of VGG-16 [44] are
represented as Conv1, Conv2, Conv3, Conv4 and Conv5. The
features of input image are extracted by using the pre-trained
VGG-16 model.

Five improvements are presented in this section.
In section B, a novel multi-level extracting network is
proposed to strengthen the output features of VGG-16.
In section C, the mathematical model of smooth L1 loss
function is improved. In section D, the softmax method is
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FIGURE 3. The framework of PBLS_SRPN network.

FIGURE 4. The framework of multi-level extracting network.

replaced by SVM method to accomplish the classification
task. In section E, BFO is applied to optimize the parameters
of the SVM, termed BFO-SVM. In section F, the parameters
of RPN network and the improved loss function are optimized
by the PSO method.

B. A NOVEL MULTI-LEVEL EXTRACTING NETWORK
In RPN, the output feature maps of the VGG-16 are used to
generate region proposals. Nevertheless, the semantic infor-
mation of output feature maps is poor. The reason is that the
highly semantic information is not contained in the output
feature maps of the VGG-16. Particularly, the rich infor-
mation of small objects is kept in the lower level feature
maps. Consequently, the performance of small object detec-
tion for Faster R-CNN is seriously affected. A novel multi-
level extracting network (MLEN) is proposed in this paper
to solve the problems mentioned above. The framework of
MLEN is illustrated in Figure 4.

From Figure 4 we can see that the features of multi-level
are extracted in our MLEN. Because the size of feature maps
in lower level is large and the semantic information of feature
maps in higher level is rich, then the output features com-
bining with lower and higher level features are strengthened
in our MLEN. Additionally, different strategies are applied
to different level convolutional layers. Deconvolutional layer,
3×3 convolutional layer, batch normalization layer and con-
catenation layer are used to sample different level features.
At the end, the lower feature maps and the higher feature
maps are compressed into a uniform space. In this way, the
effect of feature sampling method of our MLEN is enhanced.
Because the features of Conv1 are large, then these features
are not contained in our MLEN.

C. IMPROVED LOSS FUNCTION
From (3) we can see that the regression loss function is
R
(
ti − t∗i

)
. The definition of robust loss function (smooth L1)

is presented as follows:

smoothL1 (x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise,

(17)

The smooth L1 loss function is designed through the integra-
tion of L1 loss and L2 loss. The equations of L1 loss and L2
loss are showed as follows:

L1(x) = α |x|

L2(x) = βx2 (18)

where α and β are the influence factors. The graph of L1 loss
and L2 loss is presented as follows:

FIGURE 5. The graph of L1loss.

For convenience, the value of α and β is set to 1
in Figure 5 and Figure 6. We can see that the descending
speed of L1 loss is faster than that of L2 loss. In other words,
the ability of convergence for L1 loss is better than L2 loss.
However the complexity of L1 loss is less than L2 loss.
Therefore, L1 loss that is less sensitive to outliers than the
L2 loss.

VOLUME 7, 2019 18845



G. Wang et al.: PSO and BFO-Based Learning Strategy Applied to Faster R-CNN for Object Detection

FIGURE 6. The graph of L2loss.

FIGURE 7. The graph of smooth L1loss.

From Figure 7 we can see that smooth L1 is the L2 loss
in the range (−1, 1), while smooth L1 is the L1 loss in the
rest of range. In other words, the smooth L1 contains both the
advantage of L1 loss and L2 loss. Specially, the smooth L1 is
the special case of Huber loss. The definition of Huber loss
is presented as follows:

H (x) =

{
0.5x2 if |x| < α

α(|x| − 0.5α) otherwise,
(19)

From (19) we can find that if the value of x is in the range
[−α, α], then the L2 loss plays a major role. In other words,
the fitting ability of Huber loss is strengthened. But the Huber
loss is more sensitive to outliers than before. In contrary, L1
loss occupies a leading position in Huber loss. The descend-
ing speed of Huber loss is enhanced. Nevertheless, the under
fitting problems are prone to occur. Because the (19) only
contains the linear function and quadratic function, thus the
fitting ability is not enough. Specially, the bounding box
regression problems are complexity in RPN, therefore (19)

need to be improved.

H (x) =

{
0.5(x2 + x4) if |x| < α

α(|x| − 0.5α) otherwise,
(20)

In (20), the square of L2 loss is added to promote the ability of
fitting. In this way, the performance of L2 loss is strengthened
in range (−α, α). In addition, the L1 loss is kept in (20).

H (x) =

{
βx2 + θx4 if |x| < α

α(|x| − βα) otherwise,
(21)

Moreover, the value 0.5 is replaced by variable β. The reason
is that the 0.5 may not be the optimal value. Additionally,
variable θ is set as the influence factor of x4. As a result, our
improved (21) includes the advantage of L1 loss and L2 loss.
Specially, the fitting ability is improved by introducing the
variable x4. The variablex4 is introduced to the smooth L1 loss
function according to our experience. From the experimental
results we can see this improvement is effective. Simultane-
ously, variables α, β and θ can be set by the optimization
method. In other words, the fitting ability of smooth L1 loss
function is promoted.

D. SOFTMAX CLASSIFIER IS REPLACED
BY SVM CLASSIFIER
Softmax classifier is applied to RPN of Faster R-CNN
method. The expression of softmax classifier hθ (x) is pre-
sented in (6). Each probability of class label is achieved based
on corresponding estimated value. The diagram of softmax
classifier is presented in Figure 8.

FIGURE 8. The diagram of softmax classifier.

From (6) we can see that the softmax classifier is mainly
used for multi-class classification problems. However, RPN
is applied to distinguish the foreground region boxes and the
background region boxes. In other words, the classification
task of RPN is a binary classification problem. In order to
solve binary classification problem, the (6) is transformed
to keep two items. The modified expression is presented
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as follows:

hθ (x(i)) =
[
p(y(i) = 1

∣∣x(i); θ )
p(y(i) = 2

∣∣x(i); θ )
]

(22)

=> hθ (x(i)) =
1∑2

j=1 e
θTj x

(i)

[
eθ

T
1 x

(i)

eθ
T
2 x

(i)

]
(23)

The item
∑2

j=1 e
θTj x

(i)
equals to eθ

T
1 x

(i)
+ eθ

T
2 x

(i)
, then the (23)

is changed as follows:

hθ (x(i)) =
[
p(y(i) = 1

∣∣x(i); θ )
p(y(i) = 2

∣∣x(i); θ )
]

(24)

=> hθ (x(i)) =


eθ

T
1 x

(i)

eθ
T
1 x

(i)
+ eθ

T
2 x

(i)

eθ
T
2 x

(i)

eθ
T
1 x

(i)
+ eθ

T
2 x

(i)

 (25)

Furthermore, the (25) is modified as follows:

hθ (x(i)) =
[
p(y(i) = 1

∣∣x(i); θ )
p(y(i) = 2

∣∣x(i); θ )
]

(26)

=> hθ (x(i)) =


1

1+ e−(θ
T
1 −θ

T
2 )x

(i)

1−
1

1+ e−(θ
T
1 −θ

T
2 )x

(i)

 (27)

Moreover, variable θT is used to represent θT1 −θ
T
2 . Therefore

the following expression is achieved.

hθ (x(i)) =
[
p(y(i) = 1

∣∣x(i); θ )
p(y(i) = 2

∣∣x(i); θ )
]

(28)

=> hθ (x(i)) =


1

1+ e−θT x(i)

1−
1

1+ e−θT x(i)

 (29)

We can see that the (29) is the formulation of classic logistic
regression classifier. In other words, the softmax classifier
is the extension of logistic regression classifier in the area
of multi-class classification. However, the fitting ability of
logistic regression classifier is not optimal. This issue can
lead to poor classification results. In order to solve this prob-
lem, SVM classifier with RBF kernel function is introduced
to RPN for classifying the foreground region boxes and the
background region boxes in this paper. Because RBF kernel
function can map samples to a higher dimensional space,
therefore the fitting ability of RBF kernel function is better
than logistic regression classifier. The parameters of RBF
kernel function are C and γ . Thereafter the classifying time
and training time of SVM with RBF kernel function is not
large. Specially, the classifying time is very important for
autonomous driving system. Consequently, RBF kernel func-
tion is a good choice for our proposed method.

E. A NOVEL BFO-SVM CLASSIFIER
In order to achieve the outstanding classifying ability,
the parameters C and γ of RBF kernel function need to

be trained. The penalty parameters C and γ can influence
the classification effect of SVM. The classification accuracy
is strengthened with the increase of parameters C and γ .
However if the parameters C and γ are too large, the overfit-
ting problemmay appear in SVM.Vice versa, the underfitting
problem can occur if the values of C and γ are too small. In a
word, the appropriate values of parameters C and γ are very
important.

Conventionally, the values of parameters C and γ are
found through the grid search method. However, the length
of searching step is difficult to define. On the one hand if
the length of searching step is large, then the classifying
results are not stable. In other words, the exploitation ability
is not good. On the other hand if the length of searching
step is small, thus the classifying results may fall into local
optima easily. In this situation, the exploring ability of SVM
is insufficient.

In this paper, the BFO method is applied to optimize the
parameters of C and γ . BFO algorithm is a kind of swarm-
ing intelligent method which has a satisfactory performance
in solving the optimization problem based on the design
of chemotaxis, swarming, reproduction and elimination-
dispersal operations. The structure of each bacterium is
designed for applying BFO to optimize SVM. First, each
bacteriummeans a set of solution forC and γ . In other words,
the searching of best bacterium is to find the best C and γ .
Second, the bacterium has two dimensions which represent
two parameters C and γ . Third, the capability of each bac-
terium is evaluated by the fitness function. The values of C
and γ are updated based on the fitness results.

Additionally, the swarming characteristic of E.coli bacte-
ria is described in the BFO. However, the original swarm-
ing equation cannot describe cell to cell attraction-repulsion
relationship accurately when bacteria gathered at the same
point. The improved swarming equation (30) is proposed
in ISEDBFO [29] to overcome the above problems. This
formula is not only more suitable for describing the behavior
of bacteria, but also to improve the efficiency of searching
optimal value.

Jcc
(
θ, θ i (j, k, l)

)
=

S∑
i=1

[
dattract tanh

(
wattract ||θ − θ i||2

)]
−

S∑
i=1

[
hrepellant exp

(
−wrepellant ||θ − θ i||2

)]
(30)

where Jcc(θ, θ i(j, k, l)) is the cell to cell communication
value which is added to the result of fitness function in the
chemotaxis phase j; S is the number of bacteria; dattract ,
wattract , hrepellant , wrepellant are different factors which rep-
resent the strength of attraction and repulsion. In order to
limit the swarming effect in a reasonable range, the original

equation
p∑

f=1
(θf − θ if )

2 is replaced by formula ||θ − θ i||2.
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FIGURE 9. The process of SVM parameters optimization through BFO.

At the same time, hyperbolic function tanh(x) is intro-
duced to express attraction part more accurately. In this
paper, this improved swarming equation is applied to our
BFO-SVM classifier. Therefore, the optimization effect is
further enhanced. The process of SVM parameters optimiza-
tion through BFO is showed in Figure 9.

From Figure 9 we can see that the parameters of BFO and
SVM are initialized at the start of SRPN. The anchor boxes
are randomly selected from the input image to train the model
of SVM. Simultaneously, the proportion of positive samples
and negative samples is close to 1:1. Because the number of
negative samples is always more than the number of positive
samples, thereafter part of positive samples is padded with
some negative samples. Moreover, the chemotaxis, swarm-
ing, reproduction and elimination-dispersal operations are
performed separately. As a result, the bacterium with poor
fitness would be changed. If the fitness value satisfies our
requirement or the iteration number of BFO is reached, then
the optimal parameters C and γ are achieved. The range
of parameters C and γ is [0.01, 35000] and [0.0001, 32]
respectively.

At the beginning of SVM optimization, the values of C
and γ are randomly initialized. Thereafter the iteration times

of BFO should be relatively large. After many optimization
steps, the value of parameters C and γ tend to be stable.
Therefore, the number of iterations should be reduced at
this time. In other words, iteration times of SRPN should
be gradually reduced. The following expression shows the
iteration times of BFO.

niteration_BFO = Niteration_BFO_total

× sin(
Miteration_SRPN_total − miteration_SRPN

Miteration_SRPN_total
×
π

2
) (31)

where niteration_BFO is the BFO iteration times for one cycle of
computation of SRPN; variable Niteration_BFO_total is the total
iteration times of BFO; variable miteration_SRPN is the current
iteration times of SRPN; variable Niteration_SRPN_total is the
total iteration times of SRPN. The curve of (31) is presented
in Figure 10.

FIGURE 10. The BFO iteration number.

From (31) and Figure 10, we can find that the
miteration_SRPN = 1 at the start of SRPN. Then the
value of Miteration_SRPN_total−miteration_SRPN

Miteration_SRPN_total
×

π
2 is closed to π

2 .

In other words, the variable niteration_BFO approximately
equals toNiteration_BFO_total. The value of niteration_BFO is grad-
ually decreased while the value of miteration_SRPN increases.
As a result, the calculation training time of BFO-SVM
is effectively diminished. Therefore the (31) satisfies our
requirements.

F. A NOVEL PARAMETERS OPTIMIZATION
METHOD WITH PSO
A lot of parameters are contained in RPN network. These
parameters can be divided into two categories. One part is
convolutional layers related parameters. The other part is the
parameters in the improved loss function. The parameters
of Faster R-CNN are listed in the Table 1. The variables
base_lr, lr_policy, gamma and stepsize are the parameters of
learning rate. The definition of learning rate can be described
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TABLE 1. Parameters of faster R-CNN.

as follows:

wi = wi − η
∂E(w)
∂wi

(32)

where wi represents the convolutional weights, the item E(w)
means the loss function, variable η is the learning rate.
From (32) we can see that the update speed of convolu-

tional weights are decided by the learning rate η. If the value
of η is small, then the update speed of convolutional weights
is slow. In other words, the training time is relative long.
However if the value of η is large, thus the update speed
of convolutional weights is fast. Nevertheless, the optimal
weights may not be found. We can see that the setting of η
is very important. In Faster R-CNN, the expression for η is
showed as follows:

η = η × γ (33)

where η is the learning rate and the initial value of η is
base_lr, variable γ is the factor of dropped learning rate. The
(33) is executed after each stepsize iteration. The value of η
is relative large at the beginning of training, and the value of
η is gradually decreased as the iteration increases. However,
the value of γ is selected by the prior knowledge. Therefore
these values may not be the best.

In the other side, the α and β factors in smooth L1 loss
function are set as 1 and 0.5 based on the experiments. How-
ever these values are not the optimal. Specially, the additional
factor θ is added to the improved loss function. Therefore,
the complexity of experiment for finding the best values of
influence factors α, β and θ are increased.

In general, the principle for finding the best values of γ , α,
β and θ is the same as grid search method. However, the defi-
nition of searching step is hard to find by grid search method.
If the value of searching step is large, then the processing

results are not stable. In other words, the exploitation ability
is not good. In contrary, if the value of searching step is small,
thus the processing results may be the local optimal value.

In order to optimize these influence factors, the optimiza-
tionmethod PSO is introduced in our proposed PBLS_SRPN.
The optimization of influence factors is determined by two
important aspects. First, each particle is constructed by four
parameters γ , α, β and θ . Thereupon, the flying of particles
represents the changes in parameters γ , α, β and θ . Secondly,
the performance of each particle is evaluated by the fitness
function. In this paper, the fitness function is our improved
loss function. Therefore the local and global optima are
updated based on the fitness value.

FIGURE 11. The flowchart of parameters optimization process with PSO.

From Figure 11 we can see the flowchart of the
PBLS_SRPN parameters optimization with PSO. At first,
the PSO related variables and the parameters γ , α, β and θ are
initialized. The change of learning rate is mainly decided by
the parameters γ . The initial values of γ is 0.001. If the range
of random change value is large, then the convergence speed
is slow. Therefore, the range of random change value is lim-
ited in the PBLS_SRPN. In addition, the initial values of α, β
and θ in loss function are 1,0.5 and 0.5. The range of random
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TABLE 2. Date set information.

change for these parameters is also limited. In PSO, the local
best and global best of particles are generated and updated.
The local best and global best values are calculated through
fitness function. Then, the velocity and position of particles
are updated. Furthermore, if the iteration stop condition of
PSO is reached, then the optimization process is finished.

G. PSEUDO CODE OF PBLS_SRPN
The main target of our PBLS_SRPN is to calculate region
proposals. In order to introduce the process clearly, pseudo
code of PBLS_SRPN is presented. The pseudo code for the
training process of PBLS_SRPN is showed as follows:

[Step One] The parameters of PSO are initialized and
the process of PSO optimization is started.

For i = 1 to PSO_iter Do
[Step Two] The VGG-16 network is initialized by the

pre-trained model.
For i = 1 to maxiter Do

[Step Three] A resized image is sent to VGG-16 net-
work for forward propagation calculation.

[Step Four] The lower feature maps and the higher
featuremaps are integratedwith the output features inMLEN.

[Step Five] The anchor boxes are generated based on
the output features.

[Step Six] The classification and improved regression
loss function is calculated based on the top-level features.

[Step Seven]The back propagation for PBLS_SRPN
is executed.

[Step Eight]The local best and global best values are
updated.

End
End

The pseudo code for the testing process of PBLS_SRPN is
described as follows:

[Step One] The VGG-16 network is initialized by the
pre-trained model.

For i = 1 to maxiter Do
[Step Two] A resized image is sent to VGG-16 net-

work for forward propagation calculation.
[Step Three] The lower feature maps and the higher

featuremaps are integratedwith the output features inMLEN.
[Step Four] The anchor boxes are generated based on

the output features.
[Step Five] The region proposals are generated by the

classification and improved regression operations.
End

H. COMPARING PBLS_SRPN TO FASTER R-CNN
The object detection performance is affected by the fea-
ture sampling quality. Therefore the feature sampling abil-
ity is strengthened by introducing the MLEN method in
PBLS_SRPN. In order to increase the optimizability of RPN,
the improved smooth L1 loss function and SVM classifier is
applied to RPN. However, acquiring the optimal parameter
values of SRPN is a NP-hard problem. Thereupon, the learn-
ing strategywith PSO and BFO is used to optimize the param-
eters of SRPN. In other words, the parameters of SVM and
the improved smooth L1 loss function are optimized by the
BFO and PSOmethods respectively. Thereafter, the exploring
space of RPN is expanded by our proposedmethod. Specially,
the global optimal solution can be achieved by using our
learning strategy. Consequently, the object detection ability
of PBLS_SRPN is much better than Faster R-CNN.

I. IMPLEMENTATION DETAILS
Firstly, the short side of the input image is changed to 600.
In addition, the aspect ratio of the input image is not modified.
Secondly, the adjusted image is processed by the pre-trained
VGG-16 model of PBLS_SRPN. Thirdly, the multi-level fea-
tures are sampled based on our proposed MLEN. Fourthly,
the anchor boxes that do not satisfy our condition are ignored.
In addition, the NMS method is applied to reduce the
overlapped region proposals. In PBLS_SRPN, the value of
NMS_IoUis set to 0.7. In the experiment chapter, the results
are showed the performance of our improved PBLS_SRPN
based on the optimized parameters.

V. EXPERIMENTS
A. DATA SETS INTRODUCTION
The training and testing data sets of our proposed
PBLS_SRPN are PASCAL VOC 2007, 2012 [45],
MS COCO [46] and KITTI [47]. The information of our
experimental data sets is listed in Table 2. The comparison
between PBLS_SRPN and the state-of-the art object detec-
tion methods is presented in this chapter. Furthermore, the
advantages of PBLS_SRPN on object detection are analyzed
deeply.

Our improved PBLS_SRPN is programmed through the
Caffe [48] framework. VGG-16model is pre-trained to set the
convolutional parameters. In addition, 13 convolutional lay-
ers and 3 fully-connected layers are included in the VGG-16
model. In this paper, 3 fully-connected layers are not used for
RPN. The mAP and recall are the mainly evaluation standard
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TABLE 3. Parameters of fast R-CNN.

TABLE 4. Parameters of MR-CNN.

TABLE 5. Parameters of ION.

for our proposed PBLS_SRPN based on the experimental
data sets.

B. PARAMETER SETTING
In this experimental part, the values for parameters of Fast
R-CNN, MR-CNN, ION, HyperNet, PBLS_SRPN, BFO and
PSO are presented in Tables 3-9. The multi-level extracting
network, improved smooth L1 loss function and SVM classi-
fier are contained in SRPN. In addition, the all improvements
are included in PBLS_SRPN.

TABLE 6. Parameters of HyperNet.

TABLE 7. Parameters of PBLS_SRPN.

TABLE 8. Parameters of BFO.

C. EXPERIMENTS ON PASCAL VOC 2007
The advantages of PBLS_SRPN are presented based on
the experiments. PASCAL VOC 2007 data set is applied
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TABLE 9. Parameters of PSO.

to evaluate the ability of PBLS_SRPN. Around 5k trainval
images and 5k test images of 20 categories are included in
the PASCAL VOC 2007 data set. In order to enhance the
quality of training, the trainval datasets of VOC 2007 and
VOC 2012 are integrated into one experimental training data
set. The average precision (AP) value is calculated based
on the object detection method for a kind of object in data
set. In addition, if the highest AP value is achieved by an
object detection method for a kind of object, then this AP
value is bold-faced in the experiment results. Additionally, all
algorithms are trained on PASCAL VOC 2007 and 2012 data
sets in section B and C.

From Table 10 we can find that the mAP of SRPN is
74.6% which is higher than Fast R-CNN and Faster R-CNN.
Because the MLEN is included in SRPN, thus the lower
feature maps and the higher feature maps are integrated with
the output feature maps. In other words, the capability of
feature sampling method of our SRPN is enhanced. More-
over, the square of L2 loss is added to the loss function to
promote the ability of fitting. In this way, the performance
of L2 loss is strengthened in range of (−α, α). As a result,
the performance of smooth L1 loss function is promoted.
Thereafter, good results are obtained by SRPN based on our
improvements. Particularly, the mAP 78.9% of PBLS_SRPN
is the best. The outstanding results are got by PBLS_SRPN
on the bike, bird, boat, bottle, bus, car, chair, table, horse,
mbike, person, plant, train and tv. The reason is that the PBLS
is applied to SRPN. The BFO method is applied to opti-
mize the parameters of C and γ . Consequently, the perfor-
mance of classification is promoted by BFO-SVM classifier.
In addition, the optimization method PSO is introduced in
our proposed PBLS_SRPN. Therefore, the exploring space of
PBLS_SRPN is strengthened.

D. EXPERIMENTS ON PASCAL VOC 2012
The PASCAL VOC 2012 data set is applied to train and test
by our proposed SRPN[ ]and PBLS_SRPN. Specially, the
training data is comprised of the VOC 2007 and VOC 2012
dataset. From Table 11 we can see that the highest AP 89.3%
is achieved by Fast R-CNN on cat. Moreover, the highest
APs 85.5% and 65.8% are got by MR-CNN. Particularly,
the highest APs are acquired by PBLS_SRPN on the rest
objects. Furthermore, the 72.8% mAP is achieved by SRPN.
This result is higher than Fast R-CNN, Faster R-CNN, ION,
MR-CNN and HyperNet. Additionally, PBLS_SRPN obtains
74.8% mAP which is 2.0 point higher than SRPN method.
Consequently, the excellent object detection results are

acquired by our proposed PBLS_SRPN method on more
challenging PASCAL VOC 2012 data set. In other words,
the object detection ability of PBLS_SRPN is stable in
different data sets. Therefore, the generalization ability of
PBLS_SRPN is boosted.

E. SMALL OBJECTS DETECTION
The small object detection task is very challenging. Because
few pixels are kept in the small objects, so the small object
detection is really difficult. Detection results for bird, bottle
and potted plant on VOC 2007 and 2012 are presented in this
section. From Table 12 we can see that that the AP of SRPN
on detecting bottle, bird and potted plant is higher than Fast
R-CNN, Faster R-CNN. Specially, the AP of PBLS_SRPN
on detecting bird, bottle and potted plant is the best.

Because the size of feature maps in lower level is large,
then the output features combining with lower level features
are strengthened in our MLEN. Moreover, the lower feature
maps and the higher feature maps are compressed into a
uniform space. In this way, the effect of small object fea-
ture sampling is strengthened. Simultaneously, the convolu-
tional layers related parameters are optimized through PSO
method. Therefore, the training effect of our PBLS_SRPN is
enhanced. As a result, our PBLS_SRPN can handle the small
object detection problem effectively.

F. ANALYSIS OF RECALL-TO-IoU
Our proposed PBLS_SRPN is compared with the current
state-of-the-art object detection method. The number of
region proposals for PBLS_SRPN is assigned to 200, 400 and
800 respectively. The selected region proposals are the top
ranked ones according to the scores from high to low.
On PASCAL VOC 2007 data set, the recall of region pro-
posals is calculated based on the different IoU values. From
Figure 12 we can see that as the number of region proposals
drops, the recall of MR-CNN, ION, HyperNet, Fast R-CNN
and Faster R-CNN is decreased significantly. In other words,
these object detectionmethods need to increase the number of
candidate boxes to promote recall at the same IoU value. The
reason is that the quality of region proposals in these object
detection methods is poor. In addition, the computation speed
is affected by using too many region proposals. In our pro-
posed PBLS_SRPN, the lower feature maps and the higher
featuremaps are integratedwith the output features inMLEN.
Thereupon, the quality of region proposals in PBLS_SRPN is
enhanced. Moreover, the BFO-SVM classifier is introduced
to distinguish the foreground and the background region
proposals. Thus the valid region proposals are kept. There-
upon the number of region proposals for PBLS_SRPN is
assigned to 200. From the object detection results we can
see that the recall of our proposed PBLS_SRPN is stable
when the number of region proposals is reduced from 800 to
200. Furthermore, the recall of PBLS_SRPN is higher than
other methods when the IoU threshold is over 0.6. When the
value of IoU equals to 0.7, the recall of our PBLS_SRPN
is high and the number of region proposals is not
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TABLE 10. Detection results on PASCAL VOC 2007 test set. The best AP of each object category and mAP are bold-faced.

TABLE 11. Detection results on PASCAL VOC 2012 test set. The best AP of each object category and mAP are bold-faced.

TABLE 12. Small objects detection results on PASCAL VOC 2007 and VOC 2012 test set. The best AP of each object category is bold-faced.

FIGURE 12. Recall versus IoU threshold on the PASCAL VOC 2007 data set. Left: 200 region proposals. Middle: 400 region proposals. Right: 800 region
proposals.

seriously filtered. Thereafter, the value of IoU threshold is
assigned to 0.7 for our PBLS_SRPN. Consequently, around
0.9k region proposals are generated. This number of region

proposal is seriously less than other comparison methods.
Thereupon, the advantages of our PBLS_SRPN are presented
through the experiment results in this section.
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TABLE 13. Experiment results over different loss functions.

TABLE 14. Comparison between softmax, SVM and BFO-SVM classifiers.

G. ANALYSIS OF IMPROVED LOSS FUNCTION
In this section, the advantages of our proposed loss function
are presented on VOC 2007, VOC 2012 and MS COCO data
sets. Four different situations are showed in Table 13. The
first column of each group means that only the classification
loss (λ = 0) is contained in loss function. In other words,
the bounding box regression function is not available. There-
fore the worst results are got by the RPN with only classi-
fication loss. The second column of each group represents
the RPN loss function. Clearly, the results of second column
for each group are better than that of first column. Thereafter,
the bounding-box regression function is very effective for loss
function. Moreover, the third column of each group shows the
RPN with improved loss function. However, the parameters
are the initialized values. From the results we can see that
the performance of the third column is higher than that of
RPN loss function. Thereupon, the novel loss function is
available. Finally, the results of fourth column are the best.
Consequently, the performance of PBLS_SRPN through PSO
based learning strategy is excellent. Thus our novel loss func-
tion and learning strategy are effective. Because the factors of
the Lcls and Lreg are the same as that of RPN, thus the value
λ is assigned to 10.

H. THE EFFECT OF BFO OPTIMIZATION METHOD
In order to present the optimization ability of BFO, the
BFO-SVM classifier is applied to compare with the SVM
and softmax classifiers in this section. The comparing results
are illustrated in the following table on PASCAL VOC
2007 test set.

From Table 14 we can see that the mAP for SRPN with
softmax is 74.9%. In addition the mAP for SRPN with SVM
is 74.6% which is 0.3 point lower than that of SRPN with
softmax. The grid search method is applied to select the
suitable parameters for the RBF kernel function of SVM.

However the global optimization ability for grid search is
poor. Therefore the solutions are easily to fall into local
optima. In other words the exploring ability for grid search
cannot satisfy our requirements.

The capability of SVM is significantly affected by the
parameters C and γ . In order to strengthen the performance
of SVM, the BFO method is used to optimize the parameters
C and γ of SVM. From Table 14 we can find that the mAP
of SRPN with BFO-SVM is 76.8% which is higher than
other methods. Thereupon the classification ability of SRPN
is enhanced by introducing BFO-SVM. In other words, our
proposed improvement BFO-SVM is effective.

I. THE EFFECT OF PSO OPTIMIZATION METHOD
The optimization parameters are divided into two categories.
The first type of parameter is the convolutional network
related parameter. Learning rate γ represents this type of
parameter. This parameter is reduced by increasing the iter-
ation. The initial value of γ is 0.1. Because the training of
PBLS_SRPN takes some time, thus the range of variation
for γ is limited in [0.05, 0.15] to save time. The second type
of parameter is the improved loss function related parameter.
Parameters α, β and θ need to be optimized by our proposed
PSO method. Simultaneously, the initial values for α, β and
θ are 1, 0.5 and 0.5 respectively. Moreover, the range of vari-
ation for these parameters is defined in [0.02, 1.8], [0.1, 0.9]
and [0.1, 0.9]. In this part, the experiments are executed by
our proposed PBSL_SRPN on PASCAL VOC 2007 data set.

Ten particles are constructed to search the optimal value
for γ , α, β and θ . In order to present the variation process
for the values of γ , α, β and θ clearly, one particle is sam-
pled to illustrate the variation process for the values of γ ,
α, β and θ in Figure 13. Four parameters γ , α, β and θ
are initialized by 0.1, 1, 0.5 and 0.5 respectively. Moreover
these parameters are affected by the random value from our
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FIGURE 13. The variation process for optimization parameters.

defined range. Thereupon we can find that the values for γ , α,
β and θ change drastically before 10 iteration steps. Specially,
the exploring ability of PSO is presented by this phenomenon.
Variation value can be selected by the particles. Furthermore
through the update of speed and location, local optimal values
and global optimal value are obtained. The optimization of
γ , α, β and θ is affected by local optimal values and global
optimal value which promote the exploitation ability of the
PSOmethod. From the experiment results we can see that the
values for γ , α, β and θ tend to be stable at the last 10 iter-
ation steps. The values of γ and θ are gradually decreased.
In addition, the values of α and β are progressively increased.
Finally, the best value for parameters of γ , α, β and θ can be
achieved by our proposed method.

J. EXPERIMENTS ON MS COCO
In this part, our experiment is executed over the MS COCO
data set. Around 80k training images and 40k validation
images are included in the MS COCO data set. These images
are divided into 80 categories. The experiment results are

presented on the standard test set (test-std). The experiment
results are calculated from different aspects based on the MS
COCO data set. The IoU threshold is fixed on the PASCAL
VOC dataset. Therefore, the coverage for the experiment
results is not enough. Nevertheless, different IoU thresh-
olds are applied to execute the experiments. Thereafter, MS
COCO dataset can reflect the ability of the object detection
methods better. In SRPN, the lower feature maps and the
higher feature maps are integrated with the output features
in MLEN. From Table 15, we can find that the average
experiment result of SRPN is higher than that of Fast R-CNN
and Faster R-CNN. Therefore, our MLEN improvement is
available. Additionally the fitting ability of loss function for
SRPN is promoted. Furthermore, the capability for distin-
guishing the foreground and the background region boxes is
strengthened through BFO-SVM classifier.

Consequently, the parameters of covolutional layers and
the improved loss function are optimized by PSO method.
As a result, the best experiments are obtained by the
PBLS_SRPN with all improvements. Thereupon, excellent
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TABLE 15. Detection results on MS COCO test-std. The best result is bold-faced.

TABLE 16. Detection results on KITTI data set. The best result is bold-faced.

experiments are achieved by our proposed PBLS_SRPN
object detection method.

K. EXPERIMENTS ON KITTI
In order to test the effect of our proposed methods on
autonomous driving dataset, SRPN, PBLS_SRPN and other
five comparing algorithms are tested on the KITTI data set
in this section. Around 7481 training images and 7518 test
images are contained on the KITTI data set. A total
of 80256 objects are labeled in this data set. The images are
captured based on the autonomous driving vehicles. Three
object categories: car, pedestrian and cyclist are included in
KITTI. Additionally, three levels of evaluation: easy, moder-
ate and hard are provided. The most frequently used level is
moderate. Specially, 70% overlap for cars is required. Simul-
taneously, 50% overlap is needed for pedestrians and cyclists.
The ability of object detection method is evaluated by the
AP value. The comparing experiment results are presented
in the Table 16. We can see that the moderate values of
SRPN are better than that of FRCNN+Or, Mono3D, Faster
R-CNN, Regionlets and DPM-VOC+VP on pedestrian and
cyclist dataset. The moderate value of SRPN is better than
that of FRCNN+Or, Faster R-CNN, Regionlets and DPM-
VOC+VP on car dataset. The reason is that MLEN and
novel loss function are designed in the SRPN. In other
words, the lower and higher feature maps are merged with
the top feature maps. Simultaneously, the novel loss func-
tion based on Huber loss is developed. Therefore, the fitting
ability of SRPN is enhanced. Moreover, the moderate values

FIGURE 14. Recall versus precision on the KITTI data set.

of PBLS_SRPN are higher than other methods. Thereafter,
the outstanding results are achieved by our learning strat-
egy. The parameters of SVM and convolutional network are
optimized by BFO and PSO respectively. As a result, our
proposed solution obtains excellent results on KITTI data set.

As we all know that recall and precision are often used
to evaluate the performance of object detection algorithms.
Additionally, recall and precision are often conflicting goals
in the sense that if one wants to see more relevant items
(i.e., to increase recall value), usually more nonrelevant ones
are also retrieved (i.e., precision decreases). On KITTI data
set, the precision values of SRPN and PBLS_SRPN are
calculated based on the different recall values. From
Figure 14 we can see that as the recall value decreases,
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the precision values of SRPN and PBLS_SRPN also
decrease. Additionally, the precision values of PBLS_SRPN
are better than that of SRPN in all car, pedestrian and cyclist
categories. In other words, the performance of classifica-
tion is strengthened by BFO-SVM classifier. In addition,
the parameters of γ , α, β and θ are optimized by PSO.
Therefore, PBLS_SRPN method can achieve the excellent
result. Moreover, the precision values of PBLS_SRPN and
SRPN are close for pedestrian and cyclist. Thereafter, the
ability of PBLS_SRPN for detecting pedestrian and cyclist
needs to be further improved. However, the precision value
of PBLS_SRPN is significantly better than that of SRPN for
car. Thereupon, our PBLS_SRPN is suitable to detect car
category. As a result, our learning strategy with PSO and BFO
is effective.

FIGURE 15. Recall versus IoU on the KITTI data set.

In this part, the recall values are calculated based on the dif-
ferent IoU values on KITTI data set. Additionally, the number
of region proposals for SRPN and PBLS_SRPN is assigned
to 200 as we have discussed in section E. The selected region
proposals are the top ranked ones according to the scores from
high to low. From Figure 15 we can see that as the IoU value
falls, the recall values of SRPN and PBLS_SRPN decrease.
However the recall values of PBLS_SRPN are significantly
better than SRPN when the IoU threshold is greater than
around 0.7. On the one hand, from the experiment results
we can see the quality of region proposals is promoted by
our learning strategy with PSO and BFO. The reason is
that the lower feature maps and the higher feature maps
are integrated with the output features in MLEN. On the
other hand, the IoU threshold can be assigned to 0.7 as we
described in section E. Therefore the computation speed is
not affected. Consequently, our learning strategy with PSO
and BFO contributes to the quality of region proposals.

L. RUNNING TIME
The object detection speed of PBLS_SRPN is 5 fps which
is the same as Faster R-CNN. The frame rate of our
PBLS_SRPN method is tested through a single NVIDIA
TitanX GPU for VGG-16. The speed of our proposed method
is not accelerated, but the mAP of PBLS_SRPN is enhanced

by introducing the PBLS learning strategy. Additionally the
generalization ability of our proposed method is improved.
In autonomous driving filed, safety is a very important fac-
tor. Thus, the accuracy and the speed are both should be
concerned.

VI. CONCLUSION
In this paper, SRPN is developed to enhance the fea-
ture sampling ability and increase the parameters of RPN.
On PASCAL VOC 2007, 2012 and MS COCO data sets,
SRPN obtained mAPs of 74.6%, 72.8% and 31.5% which
are better than that of Faster R-CNN. The reason is that
the exploring space of SRPN is expanded. In other words,
the generalization ability of SRPN is boosted. Because the
optimization of SRPN is a NP-hard problem, therefore
our novel PSO and BFO based learning strategy PBLS is
designed to solve this problem. From the experiments we can
see that the best results are achieved by PBLS_SRPN. This
is because the learning ability of classifier is promoted by
using BFO method. Additionally, the learning ability of loss
function is raised by introducing PSO method. Thereupon
the performance of SRPN is promoted by applying our novel
learning strategy. Specially, excellent results are achieved by
PBLS_SRPN on KITTI data sets. As a result, our methods
can be applied to autonomous driving for object detection
effectively. In the future, we will apply our improved smooth
L1 loss function and the learning strategy to other methods
for improving the ability of object detection.
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