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ABSTRACT Complex-valued time-varying Sylvester equation (CVTVSE) has been successfully applied
into mathematics and control domain. However, the computation load of solving CVTVSE will rise
significantly with the increase of sampling rate, and it is a challenging job to tackle the CVTVSE online.
In this paper, a new sign-multi-power activation function is designed. Based on this new activation function,
an improved complex-valued Zhang neural network (ICZNN)model for tackling the CVTVSE is established.
Furthermore, the strict proof for the maximum time of global convergence of the ICZNN is given in detail.
A total of two numerical experiments are employed to verify the performance of the proposed ICZNNmodel,
and the results show that, as compared with the previous Zhang neural network (ZNN) models with different
nonlinear activation functions, this ICZNN model with the sign-multi-power activation function has a faster
convergence speed to tackle the CVTVSE.

INDEX TERMS Zhang neural network, complex-valued time-varying Sylvester equation, convergence
speed, sign-multi-power function, finite-time convergence.

I. INTRODUCTION
Today the Sylvester equation (SE) has been successfully
applied into many fields, such as the robotic application
[1], the waveguide eigenvalue problem [2], the commutative
rings [3], the isogeometric preconditioners [4], the multi-
agent linear parameter-varying systems [5]. Generally speak-
ing, the Sylvester equation can be divided into two categories:
namely the static SE and the dynamic SE (i.e., time-varying
Sylvester equation, TVSE). The classical algorithms to tackle
the static SE are the Bartels−Stewart and Hessenberg−Schur
methods [6], [7]. The main shortcoming of the above algo-
rithms is that they only fit for solving the small-scale prob-
lems due to the dense matrix operation. Recently, a series
of iteration algorithms using the gradient information have
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been proposed to tackle the static SE, such as the relaxed
gradient based iterative algorithm [8], the least-squares iter-
ative algorithm [9], the accelerated gradient algorithm [10],
and the alternating direction implicit algorithm [11]. How-
ever, the above methods can not effectively tackle the TVSE
online. The main reason is that the TVSE should be calcu-
lated in every sampling cycle, and the computational burden
will significantly increase within a sampling cycle when the
sampling rate increases. Thus the above algorithm may not
complete a calculation if the computational burden is too
big. Today the neural networks have caused widely attention
[12]–[14]. As a kind of neural network, the recurrent neu-
ral networks (RNNs) have a stronger real-time computation
ability than the traditional numerical algorithms [15]–[21].
So a series of RNN models have been designed for tackling
the dynamic SE. For example, the gradient-based RNNs are
designed to tackle the real-valued SE [22], [23]. But the
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gradient-based RNNs may need very long time to obtain
its ideal solution because its performance indicator is the
Frobenius norm of errors. So a novel RNN called Zhang
neural network (ZNN), which can converge to zero expo-
nentially, is proposed because its performance indicator is a
vector/matrix-valued error function [24]–[29], [33]. But Xiao
pointed [30] out that the traditional ZNN cannot obtain its
theoretical solution in finite time. So a series of improved
ZNNs with the finite time convergence property have been
proposed [31]–[33]. Furthermore, some of improved ZNNs
have been successfully employed to tackle the TVSE online
[1], [34], [35].

Now the complex-valued neural networks have shown
more advantages than the real-valued neural networks in
some fields, such as the high-capacity auto-associative mem-
ories [36], the spectral domain [37], the millimeter-wave
active imaging [38], and the geometric measures [39].
Inspired by the previous studies for the ZNNs, we explore a
novel complex-valued ZNN model for solving the complex-
valued time-varying Sylvester equation (CVTVSE) in this
paper. Before that, some related work about complex-valued
ZNNs is reviewed as follows. In [40], a ZNNmodel is applied
to tackle a complex matrix inversion. However, a linear acti-
vation function is used in this ZNN model, which causes
this ZNN model cannot obtain its ideal solution in finite
time. Li et al. [41] proposed a novel sign-bi-power nonlinear
activation function to build an improved ZNN model, which
can obtain its theoretical results in finite time for tackling the
TVSE. We can describe this sign-bi-power function as

9(u) =
1
2
sgnz(u)+

1
2
sgn1/z(u), (1)

where z is an odd integer and satisfy z > 1, and

sgnz(u) =

|u|
z, if u > 0

0, if u = 0
−|u|z, if u < 0.

Furthermore, Li et al. [42] proposed a complex-valued ZNN
based on the sign-bi-power function to tackle the CVTVSE.
Inspired by the sign-bi-power function, a tunable activation
function is designed to obtain a higher convergence rate
in [43]. Ding et al. [44] designed an improved ZNN acti-
vation function to tackle the complex-valued linear equa-
tions (CVLE), which is transformed into a real-valued linear
equation, and the improved ZNN activation function can be
described as

9(u) = sign(u)(j1|u|h + j2|u|1/h − j3|u|), (2)

where j1 > j3 > 0, j2 > j3 > 0, h is an odd integer and
satisfies h > 1, and

sign(u) =

1, if u > 0
0, if u = 0
−1, if u < 0.

According to the above idea, to obtain a higher convergence
rate for online solving the CVTVSE, an improved nonlinear

activation function is designed and investigated in this paper.
Based on this new activation function, an improved complex-
valued Zhang neural network (ICZNN)model for tackling the
CVTVSE is established. Furthermore, the strict proof for the
maximum time of global convergence of the ICZNN is given
in detail. Two numerical experiments are employed to verify
the performance of the proposed ICZNN model.

The remaining parts contain the following content.
In Section II, we give the description of the problem.
In Section III, we design a sign-multi-power function to build
a novel ICZNN to tackle the CVTVSE, and give the theoreti-
cal proof for the maximum time of global convergence of the
ICZNN. In Section IV, we give two digit experiments to ver-
ify the superiority of the sign-multi-power function. Finally,
we give the final conclusions of this paper in Section V.

Before finishing this section, we can summarize the con-
tribution of this paper as below.
1) A novel sign-multi-power activation function is designed.
2) A novel ICZNN is derived to tackle the CVTVSE in

complex-valued domain, and the strict theoretical proof
is explained.

3) The digit experiments demonstrate that this novel model
for online tackling the CVTVSE can increase the conver-
gence rate significantly.

II. DESCRIPTION OF THE PROBLEM
The CVTVSE can be described as

G(t)X (t)− X (t)Q(t) = −S(t) ∈ Cn×n, (3)

where G(t), Q(t) and S(t) are all the complex-valued coef-
ficient matrices, t means time, and X (t) is a time-varying
matrix needs to be calculated. Now we give the following
assumptions: the complex-valued matrices G(t), Q(t), and
S(t) have no identical eigenvalues, and are all first-order
differentiable. So there will be only a solution for the equa-
tion (3). To help the future description, let X̃ (t) denote the
theoretical solution. Our target is to design a novel nonlinear
complex-valued activation function to build a neural network
for tackling the CVTCSE.

First suppose G(t), Q(t), X (t) and S(t) are all real-valued
matrices, and the procedure for the real-valued TVSE using
the ZNNmodel can be described as the following three steps.

Step 1: The error function can be represented as:

D(t) = G(t)X (t)− X (t)Q(t)+ S(t). (4)

Step 2: The evolution procedure is designed as follows:

Ḋ(t) = q9(D(t)), (5)

where q > 0 denotes the coefficient to accelerate the conver-
gence rate, and 9(·) denotes the activation function.
Step 3: Substitute (4) into (5), and we will have the follow-

ing equation:

G(t)Ẋ (t)− Ẋ (t)Q(t)
= q9(G(t)X (t)− X (t)Q(t)
+ S(t))− Ġ(t)X (t)+ X (t)Q̇(t)− Ṡ(t). (6)
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Now suppose G(t) = Gre(t) + jGim(t), Q(t) = Qre(t) +
jQim(t), X (t) = Xre(t) + jXim(t) and S(t) = Sre(t) + Sim(t),
where j =

√
−1 denotes an imaginary unit. Then according

to the equation (6), we have

G(t)Ẋ (t)− Ẋ (t)Q(t) = q(9(Gre(t)Xre(t)

−Gim(t)Xim(t)− Xre(t)Qre(t)

+Xim(t)Qim(t))+ j9(Gim(t)Xre(t)

+Gre(t)Xim(t)− Xim(t)Qre(t)

−Xre(t)Qim(t)))− Ġ(t)X (t)

+X (t)Q̇(t)− Ṡ(t). (7)

III. A NOVEL RECURRENT NEURAL NETWORK
A. A NEW NONLINEAR ACTIVATION FUNCTION
From the equation (7), we can find that a suitable activation
function will increase the convergence rate significantly. So a
novel nonlinear activation function called the sign-multi-
power function can be designed as follows:

9(k) = a1sgnz(k)+ a2sgnz−2
1
(k)+ a3sgnz−2

2
(k)

+ · · · + ansgn1(k)+ an+1sgn1/z(k), (8)

where z is odd integer and satisfy z > 1, the parameters a1,
· · · , an+1 are all the positive numbers, and

sgnz(u) =


|u|z, if u > 0
0, if u = 0
−|u|z, if u < 0.

B. A SIGN-MULTI-POWER MODEL FOR TACKLING
THE CVTVSE
For ease of comparison, we first introduce two improved
ZNN models. One is a sign-bi-power model [42], and the
other is an IZNNmodel [44]. For ease of description, we first
give the following definition:

f1(t) = Gre(t)Xre(t)− Gim(t)Xim(t)

−Xre(t)Qre(t)+ Xim(t)Qim(t),

and

f2(t) = Gim(t)Xre(t)+ Gre(t)Xim(t)

−Xim(t)Qre(t)− Xre(t)Qim(t).

Then the sign-bi-power model is represented as:

G(t)Ẋ (t)− Ẋ (t)Q(t) = q(
1
2
sgnz(f1(t))

+
1
2
sgn1/z(f1(t))+ j(

1
2
sgnz(f2(t))

+
1
2
sgn1/z(f2(t))))− Ġ(t)X (t)

+X (t)Q̇(t)− Ṡ(t). (9)

The IZNN model is represented as:

G(t)Ẋ (t)− Ẋ (t)Q(t)

= q(sign(f1(t))(j1|f1(t)|h

+ j2|f1(t)|1/h − j3|f1(t)|)

+ j(sign(f2(t))(j1|f2(t)|h

+ j2|f2(t)|1/h − j3|f2(t)|)))− Ġ(t)X (t)

+X (t)Q̇(t)− Ṡ(t), (10)

where j1 > j3 > 0, j2 > j3 > 0, and h is an odd integer and
satisfy h > 1, and

sign(u) =


1, if u > 0
0, if u = 0
−1, if u < 0.

Now we can build a novel improved ZNN using the sign-
multi-power function, which is designed as:

G(t)Ẋ (t)− Ẋ (t)Q(t)

= q(a1sgnz(f1(t))

+ a2sgnz−2
1
(f1(t))+ a3sgnz−2

2
(f1(t))

+ · · · + ansgn1(f1(t))+ an+1sgn1/z(f1(t))

+ j(a1sgnz(f2(t))+ a2sgnz−2
1
(f2(t))

+ a3sgnz−2
2
(f2(t))+ · · · + ansgn1(f2(t))

+ an+1sgn1/z(f2(t))))− Ġ(t)X (t)

+X (t)Q̇(t)− Ṡ(t), (11)

where q > 0, z is an odd integer and satisfies z > 1, q > 0,
and the parameters a1, · · · , an+1 are all the positive numbers.
We can call this model (11) as the ICZNN model.

C. THEOREM ANALYSIS OF ICZNN MODEL
Theorem 1: The ICZNN model (11) is globally stable no
matter what its randomly generated initial value X (0) is.
Proof: According to the error evolution (5), we can find

each element of the matrix D(t) has the same dynamics, then
we have

Ḋiw(t) = q9(Diw(t)), (12)

where Diw(t) denotes the iwth element of the error matrix
D(t). According to Diw(t) = Diw,re(t) + jDiw,im(t), the fol-
lowing two real-valued equations are derived:

Ḋiw,re(t) = q9(Diw,re(t)),

Ḋiw,im(t) = q9(Diw,im(t)), (13)

where Diw,re(t) and Diw,im(t) denote the real part and imag-
inary part of Diw(t), respectively. Then we can design the
following Lyapunov functions:

Vre(t) = D2
iw,re(t),

Vim(t) = D2
iw,im(t). (14)

Considering the equation Vre(t) = D2
iw,re(t) and the equation

Vim(t) = D2
iw,im(t) have the identical dynamic, we need only

take the equation Vre(t) = D2
iw,re(t) as a example to analyse

the convergence property. Now we have

V̇re(t) = −2qDiw,re(t)9(Diw,re(t)). (15)
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FIGURE 1. Output trajectories of neural states X11(t) synthesized by the model (9) in example 1.The dotted red line denotes the theoretical
values, and the blue solid line denotes the calculated values. (a) Element of real part of X11(t). (b) Element of imaginary part of X11(t).

FIGURE 2. Output trajectories of neural states X21(t) synthesized by the model (9) in example 1. The dotted red line denotes the theoretical
values, and the blue solid line denotes the calculated values. (a) Element of real part of X21(t). (b) Element of imaginary part of X21(t).

FIGURE 3. Output trajectories of neural states X12(t) synthesized by the model (9) in example 1. The dotted red line denotes the
theoretical values, and the blue solid line denotes the calculated values. (a) Element of real part of X12(t). (b) Element of
imaginary part of X12(t).
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FIGURE 4. Output trajectories of neural states X22(t) synthesized by the model (9) in example 1. The dotted red line denotes the
theoretical values, and the blue solid line denotes the calculated values. (a) Element of real part of X22(t). (b) Element of
imaginary part of X22(t).

FIGURE 5. Output trajectories of the residual errors synthesized by the model (10) in example 1. (a) Element of real part of the
residual errors, (b) Element of imaginary part of the residual errors.

FIGURE 6. Output trajectories of neural states X11(t) synthesized by the model (10) in example 1. The dotted red line denotes
the theoretical values, and the blue solid line denotes the calculated values. (a) Element of real part of the residual errors. (a)
Element of real part of X11(t). (b) Element of imaginary part of X11(t).

If we choose the sign-multi-power activation function,
we will have

9(Diw,re(t)) = a1sgnz(Diw,re(t))

+ a2sgnz−2
1
(Diw,re(t))

+ a3sgnz−2
2
(Diw,re(t))

+ · · · + ansgn1(Diw,re(t))

+ an+1sgn1/z(Diw,re(t)). (16)
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FIGURE 7. Output trajectories of neural states X21(t) synthesized by the model (10) in example 1. The dotted red line denotes
the theoretical values, and the blue solid line denotes the calculated values. (a) Element of real part of X21(t). (b) Element of
imaginary part of X21(t).

FIGURE 8. Output trajectories of neural states X12(t) synthesized by the model (10) in example 1. The dotted red line denotes
the theoretical values, and the blue solid line denotes the calculated values. (a) Element of real part of X12(t). (b) Element of
imaginary part of X12(t).

From the equation (16), we can first find sgnz(t), · · ·
and sgn1/z(t) are monotone increasing functions. Then the
equation (16) is an odd and monotone increasing function.
So Diw,re(t)9(Diw,re(t)) is positive definite. Now according
to the equation (15), V̇ is negative definite. Then the corre-
sponding conclusion can be given thatDiw,re(t) will converge
to 0 globally with time for all i andw. Similarly, we can prove
the convergence property of Diw,im(t) for all i and w.
Now from the equation (4), the corresponding conclu-

sions can be given that the X (t) of the sign-multi-power
model (11) will also converge to 0 globally. This proof is
successful. �
Theorem 2: The state X (t) of ICZNN model (11) will

obtain its theoretical solution within the time th:

th =
z

q(z− 1)
V

z−1
2z

max (0)

where Vmax(0) denotes the maximum initial element of
Diw,re(t) and Diw,im(t) for all possible i and w, and z is an
odd integer and satisfy z > 1.

Proof: According to the equation (13), we first design the
following Lyapunov function:

Vre(t) = D2
iw,re(t),

Vim(t) = D2
iw,im(t). (17)

Now we take the equation Vre(t) = D2
iw,re(t) as a

example to analyse the maximum convergence time, and
have

V̇re(t) = −2qDiw,re(t)(a1sgnz(Diw,re(t))

+ a2sgnz−2
1
(Diw,re(t))+ a3sgnz−2

2
(Diw,re(t))

+ · · · + ansgn1(Diw,re(t))

+ an+1sgn1/z(Diw,re(t)))

= −2q|Diw,re(t)|(a1sgnz(|Diw,re(t)|)

+ a2sgnz−2
1
(|Diw,re(t)|)

+ a3sgnz−2
2
(|Diw,re(t)|)

+ · · · + ansgn1(|Diw,re(t)|)

+ an+1sgn1/z(|Diw,re(t)|))
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FIGURE 9. Output trajectories of neural states X22(t) synthesized by the model (10) in example 1. The dotted red line denotes
the theoretical values, and the blue solid line denotes the calculated values. (a) Element of real part of X22(t). (b) Element of
imaginary part of X22(t).

FIGURE 10. Output trajectories of the residual errors synthesized by the model (10) in example 1. (a) Element of real part of the
residual errors. (b) Element of imaginary part of the residual errors.

FIGURE 11. Output trajectories of neural states X11(t) synthesized by the model (11) in example 1. The dotted red line denotes
the theoretical values, and the blue solid line denotes the calculated values. (a) Element of real part of X11(t). (b) Element of
imaginary part of X11(t).

≤ −2q|Diw,re(t)|(an+1sgn1/z(|Diw,re(t)|))

= −2qVre1/2(t)(an+1sgn1/z(Vre1/2(t))). (18)

Then we have

V̇re(t) ≤ −2qVre1/2(t)an+1sgn1/z(Vre1/2(t))
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FIGURE 12. Output trajectories of neural states X21(t) synthesized by the model (11) in example 1. The dotted red line denotes
the theoretical values, and the blue solid line denotes the calculated values. (a) Element of real part of X21(t). (b) Element of
imaginary part of X21(t).

FIGURE 13. Output trajectories of neural states X12(t) synthesized by the model (11) in example 1. The dotted red line denotes
the theoretical values, and the blue solid line denotes the calculated values. (a) Element of real part of X12(t). (b) Element of
imaginary part of X12(t).

= −2qVre1/2(t)Vre1/2z(t)

= −2qVre
1+z
2z (t). (19)

Now let’s integrate the equation (19) from zero to t , and we
will have

Vre(t) ≤ (V re
z−1
2z (0)−

q(z− 1)
z

t)
2z
z−1

.

Let

t1,i =
z

q(z− 1)
v
z−1
2z (0). (20)

Nowwe can draw a conclusion if t ≥ t1,i,Vre(t) = 0. Suppose
Vre,max(0) denote the maximum element of Diw,re(t) for all

possible i andw, and t1,re = z
q(z−1)V

z−1
2z

re,max(0). Therefore if t ≥
t1,re, Vre(t) = 0. Similarly, we can deal with the Lyapunov
function Vim(t) = D2

iw,im(t) using the abovemethod. Suppose
Vim,max(0) denote the maximum element of Diw,im(t) for all

possible i and w, and t1,im = z
q(z−1)V

z−1
2z

im,max(0). Then we can
find if t ≥ t1,im, Vim(t) = 0.

Suppose t1 = max(t1,re, t1,im), and we can draw a conclu-
sion that if t ≥ t1, the Lyapunov function (17) will converge
to zero.

Now the proof is successful. �

IV. NUMERICAL SIMULATION
Now, two illustrative examples are provided in this section.
Furthermore to show the advantage of the ICZNNmodel (11),
the sign-bi-powermodel (9) and the IZNNmodel (10) are also
used to calculate the solution of CVTVSE. The convergence
process of each neural-state solution and the residual error
norm of each model are shown in corresponding figures. For
the convenience of comparison, the following parameters are
chosen q = 1, z = h = 5, a1 = a2 = a3 = a4 = j1 = j2 =
1
2 , and j3 = 0.25.
Example 1: In this example, the sign-bi-power model

(9), the IZNN model (10) and the ICZNN model (11) are
employed to calculate the theoretical solution X̃ (t), respec-
tively. The specific CVTVSE example is presented as below:

G1(t)X (t)− X (t)Q1(t) = −S1(t) ∈ Cn×n,

19298 VOLUME 7, 2019



L. Ding et al.: Improved Complex-Valued RNN Model for CVTVSE

where

G1 =

[
cos(5t)+ j4 sin(2t) 3 sin(4t)+ j6 cos(3t)
6− sin(t)+ j cos(4t) 2+ cos(2t)+ j3 sin(2t)

]
,

Q1 =

[
2 0
0 3

]
,

and

S1 =

[
sin(3t) sin(2t)

− cos(t)+ j4 sin(3t) sin(t)

]
.

The calculation results are displayed in Figs.1-15. The Figs.
1-4, the Figs. 6-9 and the Figs. 11-14 display the output trajec-
tories of neural stateX (t). From these figures, we can find that
the complex-valued time-varying parameters X11(t), X21(t),
X12(t), X22(t) of different models will all converge to the the-
oretical solution in finite time. However, the ICZNN model
(11) has the highest convergence speed. The Fig. 5, the Fig. 10
and the Figs. 15-18 display the output trajectories of the
residual error norm ||D(t)||2. From these figures, we can find
that the convergence time of the sign-bi-power model (9),

the IZNN model (10), and the ICZNN model (11) is about
2.6s, 4.7s, and 1.7s, respectively. Compared with the sign-bi-
power model (9) and the IZNNmodel (10), the ICZNNmodel
increases the convergence speed about percent 34% and 62%,
respectively.
Example 2: In this example, the sign-bi-power model (9),

the IZNN model (10) and the sign-multi-power model (11)
are further employed to calculate the following CVTVSE:

G2(t)X (t)− X (t)Q2(t) = −S2(t) ∈ Cn×n,

where

G2 = p

[
cos(t)+ j3 sin(4t) 5 sin(3t)+ j cos(4t)

8− j cos(4t) 6 cos(3t)+ j sin(4t)

]
,

Q2 =

[
2+ j cos(2t) 4+ j sin(3t)

cos(3t)− j sin(2t) 3+ cos(t)

]
,

and

S2 =

[
sin(t)+ j4 cos(t) cos(t)

− cos(t)+ j sin(3t) sin(t)+ j sin(2t)

]
.

FIGURE 14. Output trajectories of neural states X22(t) synthesized by the model (11) in example 1. The dotted red line denotes
the theoretical values, and the blue solid line denotes the calculated values. (a) Element of real part of X22(t). (b) Element of
imaginary part of X22(t).

FIGURE 15. Output trajectories of the residual errors synthesized by the model (11) in example 1. (a) Element of real part of the
residual errors. (b) Element of imaginary part of the residual errors.
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FIGURE 16. Output trajectories of the residual errors synthesized by the model (9) in example 2. (a) Element of real part of the
residual errors. (b) Element of imaginary part of the residual errors.

FIGURE 17. Output trajectories of the residual errors synthesized by the model (10) in example 2. (a) Element of real part of the
residual errors. (b) Element of imaginary part of the residual errors.

FIGURE 18. Output trajectories of the residual errors synthesized by the model (11) in example 2. (a) Element of real part of the
residual errors. (b) Element of imaginary part of the residual errors.

The calculation results are displayed in Fig.16-18 which
show the output trajectories of the residual error norm
||D(t)||2. Similarly, we can find the the sign-multi-

power model (11) has a higher convergence speed than
the sign-bi-power model (9) and the IZNN
model (10).
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V. CONCLUSIONS
In this paper a novel activation function is designed. Based on
this novel activation function, a new finite-time ZNN model
(11) is designed to tackle the CVTVSE, and the strict proof
of global convergence and the upper bound are described.
The simulation results validate the proposed ICZNN model
can increase the convergence speed significantly. So it has a
certain significance for tackling the CVTVSE online.
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