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ABSTRACT As a prerequisite for cell detection, cell classification, and cancer grading, nuclei segmentation
in histology images has attracted wide attention in recent years. It is quite a challenging task due to the
diversity in staining procedure, cell morphology, and cell arrangement between different histopathology
images, especially with different color contrasts. In this paper, an Unet-based neural network, RIC-Unet
(residual-inception-channel attention-Unet), for nuclei segmentation is proposed. The techniques of residual
blocks, multi-scale and channel attention mechanism are applied on RIC-Unet to segment nuclei more
accurately. RIC-Unet is compared with two traditional segmentation methods: CP and Fiji, two original
CNN methods: CNN2, CNN3, and original U-net on The Cancer Genomic Atlas (TCGA) dataset. Besides,
in this paper, we use Dice, F1-score, and aggregated Jaccard index to evaluate these methods. The average
of RIC-Unet and U-net on these three indicators are 0.8008 versus 0.7844, 0.8278 versus 0.8155, and
0.5635 versus 0.5462. In addition, our method won the third place in the computational precision medicine
nuclei segmentation challenge together with MICCAI 2018.

INDEX TERMS Computational pathology, nuclei segmentation, residual block, deep learning.

I. INTRODUCTION
Pathology images serve as a gold standard for doctors in
disease diagnosis and are widely recognized by authorities.
For pathological images, the difference in the morphology of
the nuclei is the main basis for the current tumor diagnosis.
In-depth understanding of the morphological changes of the
nucleus is very meaningful for the diagnosis and identifica-
tion of tumors. Therefore, accurate segmentation of the nuclei
in pathological images is an emergent and fundamental part
for further analysis. When accurately segment the outline
of the nuclei, we will then get some basic morphological
information of the nuclei, such as the size and the shape of
the nucleus, etc. In addition, we can also count the num-
ber of nuclei and record the arrangement of nuclei in the
whole image. The ratio of nucleus and cytoplasm is also an
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important indicator which can help pathologists make more
accurate diagnosis.

Semantic segmentation is a classic problem in the field
of computer vision, and is also very essential in medical
imaging research. In the past few decades, many classic seg-
mentation algorithms have been applied in the area ofmedical
imaging. Otsu [1] is a classic method based on dynamic
thresholding. However, the selection of the threshold depends
on the histogram distribution. In digital pathology images,
histogram distribution is complicated, the difference in fore-
ground and background is not obvious, and the performance
of Otsu is therefore reduced. Watershed algorithm [2], which
performs region base growing is based on the initial seed
point and often encounters problems of over- segmentation.
Therefore, to obtain ideal results, watershed algorithm usu-
ally needs some complex post-processing methods. Besides,
active contour method such as gradient vector flow(GVF) [3]
has also been widely used on CT and MR images for organ
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segmentation, but this method needs a priori contour to iter-
atively fit ground truth. As the number of nuclei in patho-
logical images is too large, it is difficult for GVF to realize
automatic detection. In recent years, the applications of Deep
Convolutional Neural Networks(DCNNs) have proved the
powerful performance on image classification, object detec-
tion and semantic segmentation [4]–[6]. Deep convolution
network has the advantage of automatic feature extraction and
can be trained end-to-end compared with traditional image
processing methods which use hand-crafted features. Now
it can be recognized that deep learning method has become
an emerging need for well-annotated labels, especially for
semantic segmentation tasks.

FIGURE 1. (a): original image. (b): ground truth label. (c): predicted result
by U-net. (d): the difference between ground truth and predicted result.
The yellow pixels represent the result of the miss-segmentation, and the
green pixels represent the result of the missed segmentation. As can be
seen, U-net fails on some border areas between closing and touching
cells, result in some inaccuracy for instance segmentation. Best viewed
on screen with zoom in.

Fully convolution Network (FCN) [5] achieved promising
results on several benchmarks with relatively simple architec-
ture. Following this common architecture, several improved
networks further improved the segmentation result, such as
U-net [7] which utilized features from different scales and had
a better performance on biomedical images. Apart from the
inspiring accuracy achieved by U-net, for some challenging
histology images, U-net could hardly distinguish touching
or overlapping cells, as well as some confusing background
areas, which could be seen in Fig 1. Besides, the original
U-net architecture has strong representation ability, it also
requires a large number of parameters. When the dataset size
is relatively small, it is prone to a certain degree of over-fitting
to influence the generalization ability of the model. The pop-
ularity of FCN-based model arises from its fully convolution
architect which is quite computation efficiency. It could be
widely applied regardless of input image size, an annoying
problem in some networks containing fully connected layers.
FCN has already proved the effectiveness of utilizing features
from different scales, which could produce more accurate
segmentation results. Based on the development of FCN, sev-
eral other popular architectures achieved state-of-art results
by utilizing multi-scale features in different ways, such as
Seg-Net [8], Deep Lab [9], Refine-Net [10]. However, the dif-
ficulties of nuclei segmentation task for histology images
arises from two aspects, the heterogeneity in nuclear appear-
ance and the condition of touching nucleus in overlapping
cells. Although these methods have achieved great success in
natural image scenes, but for multi-organ pathological image
nuclei segmentation, these methods are rarely used. To tackle
the touching objects in biomedical images, topological infor-

mation is important, and contour prediction is one of the com-
mon method [11]. Chen et al. [12], developed deep contour
network based on FCN to predict both gland and contour
combining multi-level features. Kumar et al. [13] modified
the prediction output into three class classifications includ-
ing the contour, which is proved to have better accuracy.
Although these methods introduce contour information to
accurately segmentation result, but in themain part of the seg-
mentation network, these methods make insufficient use of
the semantic information of the image, because most of these
segmentation networks only extract the semantic information
of the former layer, they do not paymuch attention to the shal-
lower layers’ semantic information. For the reason that this
paper proposed a revised network architecture to incorporate
more discriminative features as well as multi-scale features.
Following the basic network architecture of U-net, we revised
the down-sampling module to contain both residual mod-
ule [14] as well as inceptionmodule [15] to extract more pow-
erful features. Residual connection has been proved to better
represent image features, which has been first experimented
on image classification task. Here we incorporated residual
block in down sampling part to extract more representative
features for segmentation. Inception module is well known
for its computational efficiency while incorporating multi-
scale features with different kernel sizes, which has also
been proved in image classification. So we included incep-
tion module together with residual block in down-sample
part. We named the new revised block as RI-block(Residual-
Inception-block), which contained both larger reception field
and better feature representations. Recently, channel atten-
tion mechanism has been proved to be quite effective in
extracting more representative features [16] for image clas-
sification, as well as semantic segmentation [17]. Channel
attention mechanism can focus the parameter training on the
region of interest, taking into account the correlation between
the channels, and alleviate the overfitting problem. There-
fore, we incorporated this module [17] in our up-sampling
part to handle the heterogeneity of nuclei appearances
called DC-block(Deconvolution-Channel-block). To better
segment touching nuclei in instance level, we used a separate
up-sampling module to predict contours, which was quite
effective for improvement in instance level evaluation met-
rics. Experiments on the public TCGA dataset [18] and com-
putational precision medicine (CPM) nuclei segmentation
challenge [19] validate the effectiveness of our proposed
algorithm.

II. MATERIALS AND METHOD
A. THE DATASET
In this paper, we use TCGA(The Cancer Genomic Atlas)
dataset which contains 30 whole slide images(WSIs) [18],
and use only one WSI per patient to maximize nuclear
appearance variation. Since the computational requirements
for processing WSIs are high, the WSI images are cropped
into sub-images of size 1000 * 1000 from regions dense
in nuclei, keeping only one cropped image per WSI and
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FIGURE 2. Algorithm flow chart.

per patient. Each sub-images are annotated the boundary,
nuclei and background separately. To increase the diversity
of nuclear appearances, these images have covered seven
different organs viz. breast, liver, kidney, prostate, bladder,
colon and stomach, including both benign and diseased tis-
sue samples. In addition, the dataset split 16 sub-images
as training and validation set which contains 13372 nuclei,
and 14 sub-images as testing set which contains 8251 nuclei,
the number of nuclei boundaries that are well-annotated is
going to be totally 21623.

B. ALGORITHM FRAMEWORK
Our algorithm contains three parts: image pre-processing,
model architecture and image post-processing. The easy flow
chart can be seen in Fig 2. In section C, the network archi-
tecture is showed, and in section D, the methods of pre-
processing and post-processing are briefly introduced. More
specifically, because the training set of pathological images
we acquired is limited, in order to have sufficient data to train
the segmentation network, we extracted each original training
set of 1000 * 1000 to sub-patches (which size is 224 * 224),
each original image is cut into 100 smaller ones with overlap,
and then feed them into the network for training.

C. MODEL ARCHITECTURE
Differ from classification task, segmentation needs to incor-
porate more local information based on high resolution image
as well as global features in low resolution to differentiate
foreground and background. Common segmentation mod-
els utilize features of different levels with different reso-
lutions, which can be seen in encoder-decoder framework.
As mentioned above, for pathological cells, the diversity of
cell shapes and dense cell overlap have posed new chal-
lenges for the segmentation of pathological cells. Inspired by
inception-net, U-net and some pioneered research works in
nature image semantic segmentation and pathological image
segmentation tasks, we proposed our network to tackle the

problems mentioned above. In order to enable our model to
identify different types of cell shapes and cells of different
scales, it was subjected to better extraction of global context
and local context to solve the problem of diverse cell shapes.
Meanwhile, in order to deal with the problem of dense cell
overlap, we followed the idea proposed by Chen et al. [12]
in the segmentation of gland instances, adopting a multi-task
learning framework, allowing the network to learn to segment
the nucleus and cell contour at the same time. This network
will use the cell contour as auxiliary information assist in the
differentiation of dense cells and reduce errors at the object
level. In particular, our model contains two stages. In encod-
ing phase, we used a series of RI blocks to extract the multi-
scale local details. Besides, we used convolution operators
with stride 2, kernel size 3 * 3 to instead of max-pooling
operators to retain more details. We thought that this com-
bined down-sample network architecture could better extract
features of different resolutions. In decoding phase, we use a
structure similar to U-net to concatenate high level features
with low level features in up-sampling procedure. In order
to better select the high resolution features, inspired by
Yu et al. [17], DC blocks which contained the CAB(Channel-
Attention-Block) module to give attention weight to high res-
olution feature channels based on low resolution features are
used in up-sampling part. In detail, the high level features is
transformed to attention vector through average pooling, then
weights contained in this vector is multiplied by low level
features to give different attention weights to channels. RIC-
Unet(Residual-Inception-Channel attention-Unet) architec-
ture is shown in Fig 3, where it takes an input patch as well
as outputs of the contour segmentation result, and an input
patch as well as outputs of the nuclei segmentation result.

1) RI BLOCK
Traditional U-net only contains basic convolution layers.
Our method replaces convolution layers with RI-Blocks,
which includes residual module and inception module.
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FIGURE 3. Model Architecture: this model contains three parts and two outputs, the left part is the same architecture as U-net
up-sampling part, and the output is nuclei’s contour mask, the middle part contains RI block, which details can see Fig. 4(a),
the right part contains DC block, which detail can see Fig. 4(b), the output is original nuclei mask.

The block architecture is illustrated in Fig 4(a). Input fea-
ture is processed by a convolution layer, followed by DRI
module. Then another convolution layer with stride of 2 to
squeeze the feature map size is used, following the paradigm
of encoder framework. At last, we use the residual block to
extract more representative features. DRI module is a more
complicated version of inception module which can extract
features within different receptive fields with various kernel
size and this is proposed in [20]. By building this block, our
intuition is to incorporate more representative features within
different reception fields, which could improve the overall
segmentation accuracy. Relu layers are used after each feature
extraction module as a common paradigm.

2) DC BLOCK
As for the up sampling part, DC block is used to be built
to better utilize features from different levels to get the final
prediction result. By selecting more powerful features with
attention weights, the attention mechanism is used in several
deep learning tasks [21]–[23]. Inspired by the attentionmech-
anism, CAB module presented in [16], is first designed to be
used in up-sample part in semantic segmentation task. This
module is included in our up-sample block to better utilize
features extracted from down-sample part. The basic idea of
CAB module is to use high level features produce attention
vector by average pooling, then this vector serves as guidance
to let model pay attention to different channels of low level
features, which could also be viewed as a kind of feature
refinement by assigning weights to different channels. The
architecture of DC block is shown in Fig 4(b). The CABmod-
ule are inserted before the deconvolution layer to combine
features from different resolutions by attention mechanism.

3) LOSS FUNCTION
Focal loss is proposed by Lin et al. [24], to complete better
mining dense object detection task in difficult samples and
prevent the vast number of easy negatives from overwhelming
the detector during training. This loss plays an important role
in our model training. During the training process, focal loss
can adjust the sample weight according to the training loss,
so that the difficult samples can be assigned higher weights
during the model training. This loss can be defined as:

FL(pt ) = −αt (1− pt )γ log(pt ) (1)

For notational convenience, we define pt :

pt =

{
p if y = 1
1− p otherwise,

(2)

where p is the probability that the classification is posi-
tive, and αt , γ are both hyper-parameter. We followed the
focal loss and modified the weights according to the image
information to better learn the contour and the background
information.

D. IMPLEMENTATION
1) PRE-PROCESSING METHOD
Since the staining procedure varies significantly among the
training and testing images, color normalization has become
an essential step in pre-processing. We took the method
proposed by Macenko et al. [25], to normalize the H and E
channel by extracting feature vectors. The result of color
normalization is demonstrated in Fig 5. As for the source
image in color normalization, we chose it based on simple
observation that nuclei and contour were more clear in the
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FIGURE 4. RI block and DC block, (a): RI Block, (b): DC block.

FIGURE 5. Color normalization visualization, (a): original image,
(b): normalized image.

source image. Then we applied data normalization by the
mean and standard deviation of the input image. Besides,
in order to avoid over-fitting as much as possible, we con-
ducted some data augmentation operations for training set,
such as image flip, image crop, image translation, etc.

2) POST-PROCESSING METHOD
The predicted original nuclei results will have many overlap-
ping cells, so we need to post- process the predicted results
and refine the segmentation results. Firstly, we obtained the
contour predict map and nuclei predict map, and for each
pixel, we took the pixel as a nuclear pixel when the probability
of the foreground exceeded 0.5 and the probability of the
contour was below 0.5. After that, the overlapping of nuclei
was alleviated, but the nuclei mask was smaller than ground
truth at the same time. Therefore, we then dilated each cell
by using the disk template whose size was 3. This dilation
would stop until the nuclei pixels became closed enough to
the contour to get the final segmentation results.

3) PARAMETER SETTINGS
The initial learning rate is 0.0001, and then the learning rate is
reduced by ten percent per 1000 iterations. The batch size is 2.

The optimization method uses Adam, and the weight attenu-
ation coefficient is set as 0.0005. We set the weight of the
front and background as 1 and 2. The weights of the outline
and the background are set as 5.0 and 1.0 respectively. Epoch
is performed 100 times, and the model is selected through
data verification which is evaluated for each epoch. Since our
training loss is slightly different from our evaluation index,
we also evaluate Dice [27], AJI [13], and F1-score [26].
Finally, we select the optimal model based on the scores of
the three indicators, and then use the model to evaluate the
test data. A simple weighting method was applied in this
process with the weight of Dice, AJI and F1-score being set
as 0.25, 0.5 and 0.25 respectively.

E. EVALUATION CRITERION
The evaluating nuclei segmentation methods should penalize
both object-level (nucleus detection) and pixel-level (nucleus
shape and size) errors. A commonly used object detection
metric is the F1-score [26]. For ground truth objects Gi
indexed by i and segmented objects Sj indexed by j, the
F1-score is based on true positives TP (count of all ground
truth objects Gi with an associated segmented (detected)
object Sj), false positives FP (count of all segmented objects
Sj without a corresponding ground truth object Gi ), and false
negatives FN (count of all ground truth objects Gi without a
corresponding detected object Sj) [13]. F1-score is defined as
follows:

F1 =
2TP

2TP+ FP+ FN
(3)

To make the results more convincing, Dice’s coefficient [27]
and aggregated Jaccard index(AJI) [13] are also used to
evaluate our results. Dice coefficient is a statistic method
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used for comparing the similarity of two samples. In image
segmentation, this formula can be refined as:

DSC =
2|G ∩ S|
|G| + |S|

(4)

where |G| and |S| represent the ground truth image’s pixels
and associated segmented image’s pixels. |G ∩ S| represents
the intersect pixels of two images. Aggregated Jaccard index
is also a vital evaluation indicator which was first proposed
by Kumar et al. [13]. Original Jaccard index can be defined
as:

J (A,B) =
|A ∩ B|
|A ∪ B|

(5)

Different from original Jaccard index, for each ground truth
nucleusGi in an image, when a segmented nucleus Sj, is asso-
ciated to this image, Kumar et al. [13] add the contributions
to the aggregated Jaccard index by adding the pixel of Gi∩Sj
to AJIs numerator, and that of Gi ∪ Sj to the denominator.
Besides, pixels of false negatives and false positives are also
added to the denominator, which is a necessary performance,
as otherwise, it is likely that the mean Jaccard index will
be relatively low due to the bias of the segmentation system
towards slight under-segmentation.

TABLE 1. Evaluation result by different method.

III. RESULTS
A. EXPERIMENTAL RESULTS
Based on evaluation indicators, we set the previous methods
(CP [28], Fiji [29], CNN2 [30], CNN3 [13]) as baseline.
In addition, we use all test images for original U-net, U-net
with DRI module, U-net with DRI and CAB module and
ours RIC-Unet. The evaluation results are shown below. (See
Table 1). From Table 1, it is obviously that original U-net
obtained higher average AJI and average Dice than CNN3,
but average F1-score is lower than CNN3. After adding
modules based on U-net, we found whether introducing DRI
module or introducingDRI andCABmodule, the averageAJI
and average Dice both higher than original U-net, but aver-
age F1-score both lower than U-net. Besides, DRI module
introduced separately on average AJI and average F1-score
performs better than simultaneous introduction of DRI and
CAB module, but by adding DRI and CAB module can get
higher average Dice. However, among all of these methods,
RIC-Unet can get the highest score for all indicators.

Besides, we focus on comparing the performance of orig-
inal U-net and RIC-Unet on test images. In order to bet-
ter show the results of these two methods, a three images
which nuclei are sparse, overlapping are not serious to be
selected, another case also contain three images which nuclei

are dense, overlapping are serious. These six images are
named simple_image 1,2,3 and complex_image 1,2,3 respec-
tively. The sub-image segmentation results of these six large
images are shown in Fig 6, Fig 7, the simple case’s and com-
plex case’s evaluation result are shown in Table 2, Table 3.
From Fig 6, It can be observed that our method and U-net
both can have better segmentation results for pathological
images with sparse nuclei. Even on some of the evaluation
indicators of the whole image, U-net’s results are slightly
higher than our method. In spite of our method can mitigate
miss-segmentation, but the situation of missed segmentation
is serious than U-net. As for complex case, it’s clear that orig-
inal U-net cause a serious over-segmentation, but RIC-Unet
can properly suppress the occurrence of this situation. And
original results of U-net have shown a lot of overlap. The
results obtained through our method also have some overlaps,
but they are more similar to the ground truth.

Apart from TGCA, we use our method to participate in the
computational precision medicine (CPM) nuclei segmenta-
tion challenge. By using image tiles from whole slide tissue
images, we aim to reduce the requirements of computa-
tion and memory. The image tiles are rectangular regions
extracted from a set of Glioblastoma and Lower Grade
Glioma whole slide tissue images. Nuclei in each image tile
in the training set has been subjected to manual segmentation.

The scoring for this sub-challenge is completed by using
two variants of the DICE coefficient: the first is the tradi-
tional Dice coefficient (DICE1) to measure the overall over-
lapping between the reference/human segmentation and the
participant segmentation, and the second is the Ensemble
Dice (DICE2) to capture mismatch in the way the segmenta-
tion regions are split, while similarities exist in a large degree
in the overall region. The two DICE coefficients of each
image tile will be calculated in the test dataset. The score
for the image tile will be the mean value of the two dice
coefficients and the score for the entire test dataset will be
the mean value of the scores for the image tiles.

Although it is to be noticed that there is no public test
set in this challenge, the results we submitted have shown
that we can obtain 0.8968 in DICE1 and 0.8280 in DICE2,
the average DICE is 0.8624, which win the third place
in this challenge. The challenge’s rank can be found in
‘‘http://miccai.cloudapp.net/competitions/83#results’’.

B. DISCUSSION
From Table 1, We found that adding DRI module to the
original U-net increases the receptive field, which leads to
a certain improvement in the segmentation results. Espe-
cially for average AJI, there was a significant improvement.
With the introduction of the CAB module, we hope to focus
more on the effective features to improve the segmentation
results, however it is not difficult to find a slight decrease
in average AJI and average F1-score, but Dice has been fur-
ther improved. However, compared with the original U-net,
adding DRImodule or adding DRI and CABmodule, average
AJI and average Dice can both improved, while average
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FIGURE 6. Three sub-images result on simple case, the original image named simple_image 1, simple_image 2 and simple_image 3.
In (d) and (f), the yellow pixels represent the result of the miss-segmentation, and the green pixels represent the result of the missed segmentation.
(a) Sub Image. (b) Sub Image GT. (c) U-net. (d) Difference between GT and U-net. (e) RIC-Unet. (f) Difference between GT and RIC-Unet.

FIGURE 7. Three sub-images result on complex case, the original image named complex_image 1, complex_image 2 and complex_image 3.
In (d) and (f), the yellow pixels represent the result of the miss-segmentation, and the green pixels represent the result of the missed segmentation.
(a) Sub Image. (b) Sub Image GT. (c) U-net. (d) Difference between GT and U-net. (e) RIC-Unet. (f) Difference between GT and RIC-Unet.

F1-score decreased. The reason for these results is probably
that the network is too deep and the number of images is
insufficient to cause a certain degree of overfitting. Therefore,
in order to alleviate the overfitting and improve the average
F1-score to increase the detection rate of the nuclei, in our
RIC-Unet, we also use residual blocks, so that the network
can not only deepen to learn more detailed features, but also

enrich the semantics through skip connection, thus reducing
the error rate of pixel-level classification.

Our network incorporates information from different reso-
lutions and separating touching nucleus with extra contour
prediction. And our method is higher than other methods
in related indicators. Besides, the test time of one image
with size 1000 * 1000 is less than 1 second on one
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TABLE 2. Simple case evaluation results by original U-net and RIC-Unet.

TABLE 3. Complex case evaluation results by original U-net and RIC-Unet.

GPU GTX 1080TI, including both pre-processing and post-
processing time, which is relatively computational efficient.

Multi-organ nuclei segmentation is useful in the research
field of digital pathology, and can serve a series following
tasks including detection, cell counting and cancer classifi-
cation. Although our research has improved the nuclei seg-
mentation results, large improvement margin still needs to be
explored, especially for some complicated cases with nuclei
and contour which are not quite clear. Although our method
has a stronger discrimination effect on some deeper back-
grounds which color are not much different from the color
of the nuclei than U-net, there are still some miss-segmented
results.

IV. CONCLUSIONS
In this paper, we aim to enable the network better learn
effective features and get more accuracy nuclei segmentation
result, we propose a revised network architecture which use
RI blocks and DC blocks. This network can be better than
other methods not only in evaluating indicators, but also cost-
effective enough to better assist doctors in better diagnosis
of the details of these histology images. Future research
topic in nuclei segmentation would be reinforcement learning
to automatically select features from different resolutions,
or adversarial training including test images would be consid-
ered to utilize features from test images without annotations.
Besides, design more effective post-processing methods to
deal with the problem of cell overlap is also meaningful.
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