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ABSTRACT Direction-of-arrival (DOA) estimation in coprime array involves the problem that there is the
coexistence of both uncorrelated signals and coherent signals in the multipath environment. An approach
to estimate DOA of uncorrelated and coherent signals separately, based on the coprime linear array and
coprime planar array, is proposed in this paper. The uncorrelated signals are estimated first, where the root
multiple signal classification (root-MUSIC) is applied in the coprime linear array and unitary estimating
signal parameters via rotational invariance techniques (Unitary-ESPRIT) is utilized in the coprime planar
array. Those subspace algorithms are of low complexity compared with the spectral peak search method.
We then eliminate the components of noises and uncorrelated signals and reconstruct a covariance matrix
of coherent signals. Finally, we use the root-MUSIC or Unitary-ESPRIT to resolve the one-dimensional or
two-dimensional DOAs of coherent signals, respectively. The simulation results demonstrate the computa-
tional efficiency and high accuracy of the proposed algorithm. The results also prove that this algorithm can
estimate the number of signals more than that of subarray sensors and separate two signals from the same
angle.

INDEX TERMS Direction-of-arrival, coprime linear array, coprime planar array, coherent signals.

I. INTRODUCTION
Direction-of-arrival (DOA) estimation for multiple uncor-
related signals is a fundamental task in many applications
such as radar [1], underwater acoustics [2], [3], indoor nav-
igation, and wireless communication [4]. In most researches,
the uniform non-sparse arrays, such as uniform linear array
and uniform rectangular array (URAs) [5], with subspace
algorithms can obtain high-resolution DOA estimations. The
multiple signal classification (MUSIC) [6] is a spectral peak
search method. However, it owns large computational com-
plexity. The root-MUSIC [7], estimating signal parameters
via rotational invariance techniques (ESPRIT) [8], propaga-
tion method (PM) [9], and Unitary-ESPRIT [10], [11] aim
to reduce the complexity efficiently. The algorithms men-
tioned above are all based on uncorrelated signals. However,
there are usually the coherent signals or highly correlated
signals in multipath environment, which results in the low
rank of signals subspace. Thus, the subspace algorithms
become invalid to estimate DOAs for coherent signals and
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highly correlated signals. In uniform non-sparse array, spatial
smoothing divides an array into multiple overlapping subar-
rays, and combines all covariance matrices of subarrays to
recovery the rank of the signals subspace [12], [13]. Besides
spatial smoothing, in uniform non-sparse array, a processing
that estimates the DOAs of uncorrelated signals and coherent
signals, separately, has a favorable performance [14]–[17].
The methods are all based on the processing that estimates
the uncorrelated signals, then eliminates the components of
them, and resolves the coherent signals at last. Thus, they can
estimate the number of signals more than that of sensors.

Nowadays, the coprime arrays, a kind of sparse array,
including coprime linear arrays [18]–[20] and coprime planar
arrays [21], [22], which are respectively applied to estimate
one-dimensional (1D) and two-dimensional (2D) DOAs,
have become a focus. Compared with a uniform non-sparse
array, a coprime array has a larger aperture with the same
number of sensors so that it can acquire a higher accu-
racy. When the signals are coherent, the coprime array can
also have effective methods. We consider that the coprime
array consists of two uniform arrays, then we respectively
use spatial smoothing in each subarray, and apply common
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peak search method to find the real DOAs [20]–[22]. Unfor-
tunately, one disadvantage of spatial smoothing is that it
reduces the maximum number of signals resolved. More-
over, common peak search also limits the number of signals
resolved less than that of subarray sensors. Hence, if we
combine those two methods to estimate coherent signals in
coprime array, we will not be able to estimate multiple sig-
nals with limited sensors. Two active estimation algorithms
in coprime linear array of multiple-input multiple-output
(MIMO) system have been presented in [23] and [24]. But
the active detection has a higher cost than passive detection.
A passive estimation method in coprime linear array uses
fourth-order cumulants matrix (FCM), which can estimate
the number of signals more than that of sensors, but it needs
another supplementary sparse array [25].

In this paper, we introduce the methods from [15] and [17]
to coprime model to estimate both coherent and uncorrelated
signals, where we consider both coprime linear array and
coprime planar array. We present the algorithms steps and
prove that the methods in uniform non-sparse array can also
be applied to sparse array. Compared with spatial smoothing
in coprime array, we can estimate the number of signals big-
ger than that of subarray sensors. Compared with the existing
passive estimation algorithms, we need no supplementary
array in coprime linear array. Moreover, we have made some
improvements to reduce the complexity. We use root-MUSIC
in coprime linear array. Partial spectral search (PSS) [21]
and 2D-ESPRIT [22] have been utilized in coprime planar
array, where the former is still based on spectral peak finding
and the latter needs to match parameters. Hence, we utilize
Unitary-ESPRIT in coprime planar array, which obtain the
lowest complexity than PSS and 2D-ESPRIT without param-
eters matching.

The paper is organized as follows. We first present two
array models in Section 2. In Section 3, we explain our
approach to estimate DOAs, and show the steps of the pro-
posed algorithm. The computational complexity and themax-
imum number of signals resolved analysis are presented in
Section 4. In Section 5, we show the results of simulations.
Finally, we summarize work in Section 6. Throughout this
paper, IN represents the N dimensional unit array; (•)T , (•)∗

and (•)H respectively represent the transposition, conjuga-
tion and conjugate transposition; diag [•] represents a vector
transforming to a diagonal matrix; ⊗ denotes the Kronecker
product; d•e denotes the round up to the number.

II. SYSTEM MODEL
Considering the coprime arraymodel, 1D and 2D array geom-
etry are shown in Fig. 1 and 2, respectively. 1D coprime array
is generally made up of two uniform linear arrays. Subarray
1 has M1 sensors and subarray 2 has M2 sensors, where
M1 and M2 are the coprime integers (generally assuming
M1 < M2). We define the mth sensor location of the ith
(i = 1, 2) subarray as (m − 1)Mīλ/2 (ī = 1, 2 and ī 6= i),
where λ denotes the wavelength. Hence, the steering vector

FIGURE 1. Geometry of coprime linear array.

FIGURE 2. Geometry of coprime planar array when M1 = 3, M2 = 4.

of coprime linear array is given by

ai (ϕ) =
[
1, e−jπMī sinϕ, · · · , e−jπ (Mi−1)Mī sinϕ

]T
, (1)

where ϕ is the DOA of one signal. As for 2D coprime array,
we combine two uniform rectangular arrays, where subarray
1 hasM1 ×M1 sensors and subarray 2 hasM2 ×M2 sensors,
and the space distance between the two adjacent sensors is
Mīλ/2. The steering vector of coprime planar array is denoted
as

bi (ϕ, θ) = ayi ⊗ axi , (2)

where

axi (ϕ, θ) =
[
1, e−jπMī sin θ cosϕ, · · · , e−jπ (Mi−1)Mī sin θ cosϕ

]T
,

(3)

ayi (ϕ, θ) =
[
1, e−jπMī sin θ sinϕ, · · · , e−jπ (Mi−1)Mī sin θ sinϕ

]T
,

(4)

and (ϕ, θ) are the azimuth angle and elevation angle of one
signal, respectively.

Suppose that there are K narrowband far-field signals
impinging on the array. Assume P coherent signal groups,
where the pth group has Lp signals. The coherent signal com-
ing from ϕp,` or (ϕp,`, θp,`) is corresponding to the `th mul-
tipath propagation of Sp(t) with power σ 2

p for p = 1, · · · ,P.
The signals within each group are coherent to each other and
uncorrelated to those in the different group. The total number
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of coherent signals is Kc =
∑P

p=1 Lp. And the remaining
signals, Sk (t) coming from ϕk or (ϕk , θk ) with the power σ 2

k
for k = Kc + 1, · · · ,K , are uncorrelated to each other. The
number of those signals is Ku = K − Kc. Thus, the received
signals at the ith subarray can be represented as

X(1)
i (t) =

P∑
p=1

Lp∑
`=1

ai
(
ϕp,`

)
βp,`Sp (t)

+

K∑
k=Kc+1

ai (ϕk) Sk (t)+ n(1)i (t)

= AiS (t)+ n(1)i (t) , (5)

X(2)
i (t) =

P∑
p=1

Lp∑
`=1

bi
(
ϕp,`, θp,`

)
βp,`Sp (t)

+

K∑
k=Kc+1

bi (ϕk , θk) Sk (t)+ n(2)i (t)

= BiS (t)+ n(2)i (t) , (6)

where the array manifold matrices are denoted as

Ai (ϕ) = [ai (ϕ1) · · · ai (ϕK )], (7)

Bi (ϕ, θ) = [bi (ϕ1, θ1) · · · bi (ϕK , θK )], (8)

and βp,` is the complex fading coefficient of the `th coherent
signals in the pth group. The signal data vector

S (t) =
[
β1,1S1 (t) , · · · , sK (t)

]T
, (9)

where t = 1, · · · , J is sampling time and J is the number of
snapshots. And the noise vector is usually Gaussian random
variables with zero means and variance σ 2

n .

III. DOA ESTIMATION FOR BOTH UNCORRELATED AND
COHERENT SIGNALS
From (5) and (6), we can obtain the received signal covariance
matrix of the ith (i = 1, 2) subarray as

R(1)
Xi
=

1
J
X(1)
i X(1)

i
H
= AiRSAH

i + σ
2
n IMi , (10)

R(2)
Xi
=

1
J
X(2)
i X(2)

i
H
= BiRSBHi + σ

2
n IM2

i
, (11)

where RS = SSH/J . If there exist the coherent signals,
the rank of RS is P + Ku, which is smaller than K . The con-
ventional spatial smoothing is used to increase rank of signal
subspace to K . However, The algorithms in [15] and [17]
divide covariance matrix into two parts, according to uncorre-
lated and coherent signals, and just needs to enhance the rank
of covariance matrix of coherent signals to Kc. In coprime
array, the processing of algorithms is changed and shown in
following parts.

A. DOA ESTIMATION FOR UNCORRELATED SIGNALS
Generally, the MUSIC and 2D-MUSIC can be applied to
find DOAs in linear array and rectangular array, respectively.

However, to reduce the complexity burden, we apply root-
MUSIC [7] and Unitary-ESPRIT [10] to solve this problem.

In coprime linear array, through root-MUSIC, we can get
the estimation ϕ̂i,k (k = Kc + 1, · · · ,K ). But because the
space between the adjacent sensors is more than half wave-
length, the ϕ̂i,k may be an ambiguous value. If we get the
one possible value of one signal, we can solute all possible
values, including the real value, by the relationship between
ambiguous values and real value. The relationship is given by

Mī sinϕi,real = 2m+Mī sinϕi,ambiguous
(−Mī ≤ m ≤ Mī). (12)

Then we define the two sets as

8
(1)
i,k = {ϕ̂i,k,m|ϕ̂i,k,m = arcsin(sin ϕ̂i,k + 2m/Mī)}

(−Mī ≤ m ≤ Mī), (13)

8
(1)
i = {8

(1)
i,Kc+1

, · · · ,8
(1)
i,K }. (14)

Through finding the common values between the set 82,k
and 81, we can obtain the real DOA estimation ϕ̂rk of the
uncorrelated signal.
Similarly, as for coprime planar array, the possible estima-

tion (ϕ̂i,k , θ̂i,k ) can be resolved via Unitary-ESPRIT. Consider
the relationship between ambiguous values and real value,
which is represented as (15), as shown at the top of the next
page. Thus, we can also have corresponding sets given by (16)
and (17), shown at the top of the next page.
Through finding the common values between the set 8(2)

2,k

and 8(2)
1 , and 2(2)

2,k and 2(2)
1 , we can calculate the real val-

ues µ̂rk and ν̂rk . Furthermore, the DOA estimation (ϕ̂rk , θ̂
r
k )

(k = Kc + 1, · · · ,K ) is denotes asθ̂ rk = arcsin
(√(

µ̂rk

)2
+
(
ν̂rk

)2)
ϕ̂rk = arctan

(
ν̂rk/µ̂

r
k

)
.

(18)

B. DOA ESTIMATION FOR COHERENT SIGNALS
1) ELIMINATE THE COMPONENTS OF NOISES AND
UNCORRELATED SIGNALS
Wefirst eliminate the components of the noises, following the
steps as:

R(1)
i = R̂(1)

Xi
− σ̂ 2

niIMi ≈ AiRSAH
i , (19)

R(2)
i = R̂(2)

Xi
− σ̂ 2

niIM2
i
≈ BiRSBHi , (20)

where σ̂ 2
ni is the average value of Mi − Ku − P smallest

eigenvalues of R̂(1)
Xi

or M2
i − Ku − P smallest eigenvalues of

R̂(2)
Xi
. Moreover, the RS can be rewritten as

RS =



RS1
. . .

RSKc
σ 2
Kc+1

. . .

σ 2
K


, (21)
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{
Mī sin θi,real cosϕi,real = 2mx +Mī sin θi,ambiguous cosϕi,ambiguous (−Mī ≤ mx ≤ Mī)
Mī sin θi,real sinϕi,real = 2my +Mī sin θi,ambiguous sinϕi,ambiguous (−Mī ≤ my ≤ Mī)

(15){
8

(2)
i,k = {µ̂i,k,mx |µ̂i,k,mx = 2mx/Mī + sin θ̂i,k cos ϕ̂i,k ,−Mī ≤ mx ≤ Mī}

2
(2)
i,k = {ν̂i,k,my |ν̂i,k,my = 2my/Mī + sin θ̂i,k sin ϕ̂i,k ,−Mī ≤ my ≤ Mī}

(16){
8

(2)
i = {8

(2)
i,Kc+1

, · · · ,8
(2)
i,K }

2
(2)
i = {2

(2)
i,Kc+1

, · · · ,2
(2)
i,K }

(17)

R(1)i (m, n) =
P∑
p=1

Lp∑
`=1

σ 2
p β
∗

p,`γ
m
p e

jπ (n−1)Mī sinϕp,` +

K∑
k=Kc+1

σ 2
k e

jπ(n−m)Mī sinϕk (23)

r (1)i (m, n) = R(1)i (m, n)− R(1)∗i (Mi − m+ 1,Mi − n+ 1) (25)

R(2)i
(
mx ,my, nx , ny

)
=

P∑
p=1

Lp∑
`=1

σ 2
p β
∗

p,`η
mx ,my
p ejπMī sin θp,`((nx−1) cosϕp,`+(ny−1) sinϕp,`)

+

K∑
k=Kc+1

σ 2
k e

jπMī sin θk((nx−mx ) cosϕk+(ny−my) sinϕk) (28)

η
mx ,my
p =

Lp∑
`′=1

βp,l′e
jπMī sin θp,`′

(
(1−mx ) cosϕp,`′+(1−my) sinϕp,`′

)
(29)

r (2)i

(
mx ,my, nx , ny

)
= R(2)i

(
mx ,my, nx , ny

)
− R(2)∗i

(
Mi − mx + 1,Mi − my + 1,Mi − nx + 1,Mi − ny + 1

)
(30)

r (2)i

(
mx ,my, nx , ny

)
=

P∑
p=1

Lp∑
`=1

σ 2
p ζ

mx ,my
p,l ejπMī sin θp,`((nx−1) cosϕp,`+(ny−1) sinϕp,`) (31)

ζ
mx ,my
p,` =

∑Lp

`′=1

(
β∗p,`βp,`′ − βp,`β

∗

p,`′

)
e
jπMī sin θp,`′

(
(1−mx ) cosϕp,`′+(1−my) sinϕp,`′

)
(32)

where

RSp =
1
J


βp,1S1
...

βp,LpSp

[β∗p,1SH1 · · · β∗p,LpSHp ]

=


βp,1β

∗

p,1 βp,1β
∗

p,2 · · · βp,1β
∗
p,Lp

βp,2β
∗

p,1 βp,2β
∗

p,2 · · · βp,2β
∗
p,Lp

...
...

...
...

βp,Lpβ
∗

p,1 βp,Lpβ
∗

p,2 · · · βp,Lpβ
∗
p,Lp

 σ 2
p .

(22)

Thus, the element of R(1)
i in the mth row and nth column is

expressed as (23), shown at the top of this page, where γmp =∑Lp
`′=1 βp,`′e

jπ (1−m)Mī sinϕp,`′ . Because the covariance matrix
of uncorrelated signals is a Hermite matrix, we can get the
relationship between the uncorrelated signals component of

R(1)i (m, n) and that of R(1)∗i (Mi − m+ 1,Mi − n+ 1) as
K∑

k=Kc+1

σ 2
k e
−jπ((Mi−n+1)−(Mi−m+1))Mī sinϕk

=

K∑
k=Kc+1

σ 2
k e

jπ(n-m)Mī sinϕk , (24)

For m, n = 1, · · · ,Mi, we then define r (1)i (m, n) as (25),
shown at the top of this page, and r (1)i (m, n) can be rewritten
as

r (1)i (m, n) =
P∑
p=1

Lp∑
`=1

σ 2
p ξ

m
p,`e

jπ (n−1)Mī sinϕp,` , (26)

where

ξmp,` =

Lp∑
`′=1

(
β∗p,`βp,`′ − βp,`β

∗

p,`′

)
ejπ (1−m)Mī sinϕp,`′ .

(27)
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Hence, we remove the components of uncorrelated signals
via (25).

This processing can also be applied to the 2D symmet-
ric rectangular array. The element of R(2)

i in the (Mi(mx −
1) + my)th row and (Mi(nx − 1) + ny)th column is denoted
as (28), as shown at the top of the previous page, where
η
mx ,my
p is given by (29), shown at the top of the previous page.

For mx ,my, nx , ny = 1, · · · ,Mi, we define the new value
r (2)i

(
mx ,my, nx , ny

)
as (30), shown at the top of the previous

page, which can be rewritten as (31), as shown at the top of
the previous page, where ζ

mx ,my
p,` is given by (32), shown at the

top of the previous page. Thus, we eliminate the component
of uncorrelated signals in coprime planar array via (30).

2) COHERENT SIGNALS IN COPRIME LINEAR ARRAY
In order to construct covariance matrix of coherent signals,
whose rank is Kc, we utilize the feature that the covariance
matrix of linear array is a Toeplitz matrix, and reconstruct a
Toeplitz matrix based on r (1)i (m, n). Define the new covari-
ance matrix as

R(1)
Yi (

m) =

r
(1)
i

(
m, M̄i

)
· · · r (1)i (m,Mi)

...
...

...

r (1)i (m, 1) · · · r (1)i (m, M̄i)


= Āi6

(1) (m) ĀH
i , (33)

where M̄i = (Mi + 1)/2. If Mi is an even number, we just
set r (1)i

(
m, M̄i

)
= 0. The new array manifold Āi =

J
[
ai∗
(
ϕ1,1

)
, · · · , ai∗

(
ϕP,LP

)]
, J =

[
OM̄i×(M̄i−1), IM̄i

]
and

6(1)(m) = diag
[
σ 2
1 ξ

m
1,1, · · · , σ

2
Pξ

m
P,LP

]
. When Kc < M̄i,

the rank of R(1)
Yi

is generally Kc.

As a result, we can apply root-MUSIC to R(1)
Yi

to solve
the closed-form solutions of DOAs. Through (13) and (14),
we can calculate all possible DOAs and find the common
values ϕ̂rk (k = 1, · · · ,Kc).

3) COHERENT SIGNALS IN COPRIME PLANAR ARRAY
In order to construct the covariancematrix of coherent signals
based on a rectangular array, we first construct a new matrix
Fi,ms of size M

2
s1 × Ms2 as (34), shown at the bottom of the

next page, wherems = 1, · · · ,Ms2 withMs1+Ms2−1 = Mi,
and 1 ≤ mx ,my ≤ Mi. Arrange all Fi,ms to a new matrix Fi
as Fi = [Fi,1, · · · ,Fi,Ms2 ]. Hence, construct the covariance
matrix of coherent signals as

R(2)
Yi
= FiFHi . (35)

WhenM2
s2 ≥ Kc andM

2
s1 > Kc, the rankR

(2)
Yi

isKc, which sat-
isfies the requirement of using Unitary-ESPRIT. We provide
Theorem 1, the proof of which is postponed into Appendix A.
And we can calculate (ϕ̂rk , θ̂

r
k ) (k = 1, · · · ,Kc) via (16),(17)

and (18).
Theorem 1: If M2

s2 ≥ Kc and M
2
s1 > Kc, the rank of R(2)

Yi
is Kc.

C. ALGORITHM STEPS CONCLUSION
The main steps for the proposed algorithms in coprime lin-
ear array and coprime planar array can be summarized as
follows:

Algorithm 1 DOA Estimation Algorithm in Coprime Linear
Array
1) Calculate the covariance matrix via (5) and estimate

the DOAs of uncorrelated signals using root-MUSIC
in each subarray.

2) Find the common values of two subarrays and obtain
the real DOAs as ϕ̂rk (k = Kc + 1, · · · ,K ).

3) Eliminate the component of noises and uncorrelated
signals via (19) and (25).

4) Define a new matrix r(1)i and construct the new covari-
ance matrix of coherent signals via (33).

5) Utilize root-MUSIC to resolve the DOAs of coherent
signals in each subarray and find the common values
of two subarrays as ϕ̂rk (k = 1, · · · ,Kc).

Algorithm 2 DOA Estimation Algorithm in Coprime Planar
Array
1) Calculate the covariance matrix via (6) and use

Unitary-ESPRIT to solve the possible values of each
subarray.

2) Find the common values of two subarrays and obtain
the real DOAs as (ϕ̂rk , θ̂

r
k ) (k = Kc + 1, · · · ,K ).

3) Eliminate the component of noises and uncorrelated
signals via (20) and (30).

4) Define a new matrix r(2)i and Fi,ms , construct Yi, and
calculate the new covariance matrix of coherent signals
as R(2)

Yi
.

5) Utilize Unitary-ESPRIT to resolve the DOAs of coher-
ent signals in each subarray and find the common val-
ues of two subarrays as (ϕ̂rk , θ̂

r
k ) (k = 1, · · · ,Kc).

IV. ANALYSIS OF MAXIMUM NUMBER OF SIGNALS
RESOLVED AND COMPUTATIONAL COMPLEXITY
A. ANALYSIS OF MAXIMUM NUMBER OF SIGNALS
RESOLVED
Here we analyze the maximum number of signals that can be
resolved by the proposed algorithm. In coprime linear array,
using the proposed algorithm to estimate the uncorrelated
signals, we shouldmeet the requirement thatKu+P ≤ M1−1.
To estimate the coherent signals, the requirement changes
to Kc ≤ d(M1 − 1)/2e. If P = 1, the Kc + Ku can reach
the maximum value M1 − 2 + d(M1 − 1)/2e. In conclusion,
the proposed algorithm can estimate more number of signals
than the number of subarray sensors when there are coherent
signals.

Furthermore, in coprime planar array, when Ku + P ≤
M2

1 − 1, we can first estimate the DOAs of uncorrelated
signals. After constructing an Ms1 ×Ms1 covariance matrix,

18594 VOLUME 7, 2019



H. Xu et al.: DOA Estimation for Both Uncorrelated and Coherent Signals in Coprime Array

we can estimate maximum Kc = M2
s1 − 1 coherent signals,

while the total coherent signals are no more than M2
s2, where

Ms1 + Ms2 − 1 = M1. The maximum K requires that
Ms1 and Ms2 are big enough, and P is small enough. Thus,
when Ms1 = d(M1 + 1)/2e, Ms2 = M1 + 1 − Ms1, and
P = 1, the number of resolved signals is maximum as K =
min{M2

s2,M
2
s1 − 1} +M2

1 − 2, which can also be larger than
the number of subarray sensors.

B. ANALYSIS OF COMPUTATIONAL COMPLEXITY
We analyze the computational complexity of proposed algo-
rithm, which is divided into two parts: coprime linear array
and coprime planar array.

We present an algorithm using root-MUSIC to reduce
the complexity in coprime linear array. Compared with
the algorithm using MUSIC, the difference of complexity
between them is the complexity of subspace algorithms.
The root-MUSIC costs O

(
M3

1 +M
3
2 + (d(M1 + 1) /2e)3+

(d(M2 + 1) /2e)3
)
while the MUSIC costsO (((d(M1 + 1) /

2e)2 + (d(M2 + 1) /2e)2
)
Gϕ
)
+O

((
M2

1 +M
2
1

))
, whereGϕ

denotes the number of spectral points.
Similarly, the difference of complexity between the

algorithm using Unitary-ESPRIT and algorithm using 2D-
MUSIC is the complexity of subspace algorithms. That of for-
mer isO

(
M6

1 +M
6
2 + (d(M1 + 1) /2e)6 + (d(M2 + 1) /2e)6

)
and that of latter is O

((
(dM1/2e)4 + (dM2/2e)4

)
GϕGθ

)
+O

((
M4

1 +M
4
2

))
, whereGϕ,Gθ denote the number of spec-

tral points.
For the sake of clarity, we compare the complexities of

methods in Fig. 3, where we setM2 = M1+1,1θ = 1ϕ, and
Gθ = 90◦/1θ + 1,Gϕ = 360◦/1ϕ + 1. The figure proves
that root-MUSIC and Unitary-ESPRIT can truly reduce the
complexity compared with spectral peak search methods.
Moreover, the spectral peak search method can obtain the
higher accuracy with a smaller searching step, which means
costing higher complexity.

V. SIMULATION RESULTS
A. CRAMER-RAO BOUND OF COPRIME ARRAY
In this section, the Cramer-Rao bound (CRB) of coprime
array is presented, which is plotted as a benchmark. The
CRB for two-dimensional DOA estimation in planar array
has been derived in [26], when uncorrelated and coherent

FIGURE 3. Complexity comparison versus the number of subarray
sensors. (a) Coprime linear array. (b) Coprime planar array.

signals coexist. Consider that a coprime planar array is
also a planar array, thus, the unknown parameter vec-
tor in [26] has been changed to ψ =

[
ϕT , θT ,βTr ,β

T
i
]
,

where ϕ =
[
ϕ1,1, · · · , ϕP,LP , ϕKc+1, · · ·ϕK

]T , θ =[
θ1,1, · · · , θP,LP , θKc+1, · · · θK

]T , and βr ,β i are the real
part and the imaginary part of the vector β =[
β1,2, · · · , β1,L1 , β2,2, · · · , βP,LP

]T . We denote the mth ele-
ments in ψ as ψm, thus the general expression of the (m, n)th

Fi,ms =



r (2)i

(
mx ,my, 1,ms

)
· · · r (2)i

(
mx ,my,Ms2,ms

)
... · · ·

...

r (2)i

(
mx ,my,Ms1,ms

)
· · · r (2)i

(
mx ,my,Ms1 +Ms2 − 1,ms,

)
... · · ·

...

r (2)i

(
mx ,my, 1,Ms1 + ms − 1,

)
· · · r (2)i

(
mx ,my,Ms2,Ms1 + ms − 1

)
... · · ·

...

r (2)i

(
mx ,my,Ms1,Ms1 + ms − 1,

)
· · · r (2)i

(
mx ,my,Ms1 +Ms2 − 1,Ms1 + ms − 1

)


(34)

VOLUME 7, 2019 18595



H. Xu et al.: DOA Estimation for Both Uncorrelated and Coherent Signals in Coprime Array

element in Fisher information matrix (FIM) can be expressed
as

FIMψmψn = −E
[

∂2L
∂ψm∂ψn

]
. (36)

Moreover, the FIMs corresponding to each vector included
in ψ are denoted as FIMϕϕ , FIMθθ , FIMβrβr , and FIMβiβi ,
respectively, and to the cross terms between each vector are
FIMϕθ ,FIMϕβr ,FIMϕβi ,FIMθϕ ,FIMθβr ,FIMθβi ,FIMβrϕ ,
FIMβrθ , FIMβrβi , FIMβiϕ , FIMβiθ and FIMβiβr . As a result,
the whole FIM is given as

FIMψψ =


FIMϕϕ FIMϕθ FIMϕβr FIMϕβi

FIMθϕ FIMθθ FIMθβr FIMθβi

FIMβrϕ FIMβrθ FIMβrβr FIMβrβi

FIMβiϕ FIMβiθ FIMβiβr FIMβiβi

.
(37)

DefineH = FIM−1ψψ , and we can obtain the CRBs of azimuth
angle and coherent angle, respectively, as

CRBϕ =

√√√√ 1
K

K∑
k=1

Hkk , (38)

CRBθ =

√√√√ 1
K

2K∑
k=K+1

Hkk , (39)

where Hk,k denotes the (k, k)th element of H.
We can consider the linear array as a special planar array,

where only the azimuth can be solved. Hence, we just need
changeψ =

[
ϕT ,βTr ,β

T
i
]
, and the FIM and CRB of azimuth

angle are respectively given by

FIMψψ =

FIMϕϕ FIMϕβr FIMϕβi

FIMβrϕ FIMβrβr FIMβrβi

FIMβiϕ FIMβiβr FIMβiβi

. (40)

CRBϕ =

√√√√ 1
K

K∑
k=1

Hkk . (41)

B. SIMULATION EXPERIMENTS
To measure the accuracy of the algorithms, we define the root
mean square error (RMSE) as

RMSE =

√√√√√ 1
QK

Q∑
q=1

∥∥∥ξ − ξ̂q∥∥∥2. (42)

whereQ, ξ and ξ̂q are the number ofMonte Carlo simulations,
the real values and the qth estimated values, respectively.

1) DOA ESTIMATION OF TWO DISTINCT SIGNALS FROM THE
SAME ANGLE
There are two possible situations when two distinct sources
from the same azimuth (for simplicity we only consider
coprime linear array here). One situation is that one of the
coherent signals and one uncorrelated signal come from the

FIGURE 4. Distribution of estimated values. (a) Coprime linear array.
(b) Coprime planar array.

same azimuth. The other is that the two signals, from the same
azimuth, are both uncorrelated signals or belong to the groups
of coherent signal. With the proposed algorithm, we can
separate two signals in different steps in the former situation.
But we cannot obtain the results in the latter situation because
their peaks are totally overlapped in spatial spectrum in the
same estimating step.

Hence, we assume that there are two coherent signals at
ϕ1,1 = 0.7◦ and ϕ1,2 = 25.8◦, and one signal uncorrelated
to the other two signals at ϕ3 = 0.7◦ with a signal-to-
noise ratio (SNR) of 15dB and J = 500. We set M1 = 7
and M2 = 9. The results of proposed algorithm are listed
in Table 1. Through finding the nearest values between sets
of two subarrays, we can ensure that ϕ̂1,1 = 0.6979◦, ϕ̂1,2 =
25.82◦ and ϕ̂3 = 0.6993◦.

Both conclusions of two situations can be applied to
coprime planar array, where the two signals come from
the same azimuth and elevation angle. The signals are
from (ϕ1,1, θ1,1) = (45◦, 45◦), (ϕ1,2, θ1,2) = (64◦, 54◦),
and (ϕ3, θ3) = (45◦, 45◦), and M1 = 4, M2 = 5.
The estimated values are shown in Table 2. Obviously,
(µ̂r1, ν̂

r
1) = (0.5002, 0.5001), (µ̂r2, ν̂

r
2) = (0.3545, 0.7271),
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TABLE 1. The detailed values of results in coprime linear array.

TABLE 2. The detailed values of results in coprime planar array.

and (µ̂r3, ν̂
r
3) = (0.5002, 0.4998), and then (θ̂1,1, ϕ̂1,1) =

(44.967◦, 45.007◦), (θ̂1,2, ϕ̂1,2) = (64.016◦, 54.007◦), and
(θ̂3, ϕ̂3) = (44.997◦, 45.009◦).
In conclusion, the proposed algorithm is valid to estimate

the DOAs, even if there are two distinct signals from the
same angle, where one is an uncorrelated signal and the other
belongs to a group of coherent signals.

2) FEASIBILITY DEMONSTRATION WHEN THE NUMBER OF
SIGNALS IS BIGGER THAN THAT OF SUBARRAY SENSORS
In the second simulation, we consider the case of Ku = 5,
P = 1 and Kc = 3 with a SNR of 15dB in coprime linear
array, where M1 = 7 and M2 = 9. Next, we conduct
the simulation in coprime planar array where M1 = 4 and
M2 = 5. We set Ku = 14, P = 1, and Kc = 4 with a
SNR of 15dB. The estimated values of 20 times Monte Carlo
simulations are shown in Fig. 4 (a) and (b). The figure shows
that the proposed algorithms can realize the estimation of the
true DOAs, when there is the coexistence of both uncorrelated
and coherent signals, under the condition that the number of
signals is bigger than that of subarray sensors.

3) RMSE COMPARISON UNDER DIFFERENT SNRs
In the third simulation, we compare the RMSE of proposed
algorithm using root-MUSIC with that of algorithm using
MUSIC and FCM under SNRs from −5dB to 15dB at 5dB
intervals and J = 500, where M1 = 7 and M2 = 9.
There are two coherent signals at ϕ1,1 = −40.6◦ and
ϕ1,2 = 25.8◦, and one signal uncorrelated to the other
two at ϕ3 = 0.2◦. Furthermore, we compare the proposed
algorithm using Unitary-ESPRIT with the algorithm using
2D-MUSIC, where M1 = 4 and M2 = 5. Assume that
two coherent signals come from (ϕ1,1, θ1,1) = (25.3◦, 28.1◦)
and (ϕ1,2, θ1,2) = (64.4◦, 54.2◦), and one uncorrelated
signal comes from (ϕ3, θ3) = (45.2◦, 45.7◦). We conduct
100 simulations for each SNR and vary searching step in

FIGURE 5. RMSE versus SNR in coprime linear array.

the range from 0.5◦, 0.1◦, and 0.01◦.The results are shown
in Fig. 5 and Fig. 6, respectively.

The Fig. 5 demonstrates that FCM is not sensitive to SNR.
Because there exists the fence effect in spatial spectrum and
the real angles are not located at the searching grid, the accu-
racy ofMUSICwith1ϕ = 0.5◦ do not improve when SNR is
high. Moreover, the smaller searching step can acquire higher
accuracy. Hence, the RMSE of MUSIC with 1ϕ = 0.01◦ is
smaller than that of MUSIC with 1ϕ = 0.1◦, but the gap
between them is not big. In low SNR, the RMSE of FCM is
lowest, while that of root-MUSIC is highest. However, when
SNR is high, root-MUSIC has close accuracy as MUSIC
with small searching steps, and higher accuracy than FCM.
Although the RMSE of MUSIC with 1ϕ = 0.01◦ is closest
to the CRB, considering the complexity, root-MUSIC is more
computationally efficient than MUSIC.

As for coprime planar array, the RMSE of 2D-MUSICwith
1ϕ = 0.5◦ is highest due to fence effect. The proposed
algorithm using Unitary-ESPRIT obtains higher RMSE than
2D-MUSIC with small searching steps in low SNR, but the
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FIGURE 6. RMSE versus SNR in coprime planar array. (a) Elevation.
(b) Azimuth.

FIGURE 7. RMSE versus J in coprime linear array.

gap between them becomes smaller with SNR increasing.
They have the close RMSE in high SNR. Also given the
complexity, even though the 2D-MUSIC with 1ϕ = 0.01◦

is closest to the CRB, the Unitary-ESPRIT is more favorable
because it costs much lower complexity to acquire the highly
precise estimated values.

FIGURE 8. RMSE versus J in coprime planar array. (a) Azimuth.
(b) Elevation.

4) RMSE COMPARISON UNDER THE DIFFERENT NUMBER
OF SNAPSHOTS
Consider situations used in simulation 3 again. The number
of snapshots is varied in the range from J = [20, 50,
100, 200, 500, 1000, 2000, 5000], when SNR = 15dB, and
the results are shown in Fig. 7 and Fig. 8, respectively. With
the increase of number of snapshots, the accuracy of the
proposed algorithms becomes higher. Moreover, the decline
gradually reaches a plateau. The figures also prove the
conclusions in simulation 3.

VI. CONCLUSIONS
The paper has presented the DOA estimation algorithm in
coprime array when there is the coexistence of both coherent
and uncorrelated signals. The paper has described coprime
linear array model for 1D DOA estimation and coprime pla-
nar array model for 2D DOA estimation. We then present the
associated algorithms, analyze the computational complexity
and the maximum number of signals resolved, and conduct
the simulation experiments, respectively. We prove that both
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proposed algorithms in two models can estimate signals of
which the number is bigger than that of subarray sensors,
when there exist the coherent signals. And compared with
spectral peak search method, the root-MUSIC in coprime lin-
ear array and Unitary-ESPRIT in coprime planar array have
greatly reduced the complexity. They obtain the higher RMSE
in low SNR than spectral peak search methods, while they
can obtain the close accuracy when SNR is high. Moreover,
the proposed method can separate two signals coming from
the same angle, when one of them is a uncorrelated signal and
the other belongs to a group of coherent signals.

APPENDIX
PROOF OF THEOREM 1
The Fi,ms in (34) can be reformulated as

Fi,ms = BciD
ms−1
yi

[
ζ Dxiζ · · · D

Ms2−1
xi ζ

]
, (43)

where ζ = [σ 2
1 ζ

mx ,my
1,1 , · · · , σ 2

Pζ
mx ,my
P,LP ], and

Dxi =

dx1,1 . . .
dxP,LP


=

e
−jπMī sin θ1,1 cosϕ1,1

. . .

e−jπMī sin θP,LP cosϕP,LP

,
(44)

Dyi =

dy1,1 . . .

dyP,LP


=

e
−jπMī sin θ1,1 sinϕ1,1

. . .

e−jπMī sin θP,LP sinϕP,LP

.
(45)

Bci is denoted as Bci = [ã∗yi (ϕ1,1, θ1,1)⊗ ã∗xi (ϕ1,1, θ1,1), · · · ,
ã∗yi (ϕP,LP , θP,LP )⊗ ã∗xi (ϕP,LP , θP,LP )], where ãxi = J̃axi , ãyi =
J̃ayi , and J̃ = [IMs1 , 0Ms1,M−Ms1 ]. Thus,

Fi,ms = BciDyi6
(2)


1 dx1,1 · · · dMs2−1

x1,1
...

...
...

...

1 dxP,Lp · · · dMs2−1
xP,LP

, (46)

where 6(2)
= diag(ζ ). Next, Fi can be rewritten as

Fi = Bci6
(2)Di, (47)

where Di = [dy1,1 ⊗ dx1,1 , · · · ,dyP,LP ⊗ dxP,LP ], dxp,` =
[1, · · · , dMs2−1

xp,` ]T , and dyp,` = [1, · · · , dMs2−1
yp,` ]T . At last,

the covariance matrix of coherent signals is given by

R(2)
Yi
= FiFHi = Bci6

(2)DiDH
i 6

(2)HBHci . (48)

Given the conclusion in [12], we can find that Bci is of full
column rank when M2

s1 > Kc, 6(2) is of full rank, and DiDH
i

is of full of rank whenM2
s2 ≥ Kc. Thus, the rank ofR

(2)
Yi

is Kc,
which satisfies the requirement of using subspace algorithms.
This completes the proof of Theorem 1.
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