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ABSTRACT Breast cancer prognostic modeling is difficult since it is governed by many diverse factors.
Given the low median survival and large scale breast cancer data, which comes from high throughput
technology, the accurate and reliable prognosis of breast cancer is becoming increasingly difficult. While
accurate and timely prognosis may save many patients from going through painful and expensive treatments,
it may also help oncologists in managing the disease more efficiently and effectively. Data analytics
augmented by machine-learning algorithms have been proposed in past for breast cancer prognosis; and
however, most of these could not perform well owing to the heterogeneous nature of available data and
model interpretability related issues. A robust prognostic modeling approach is proposed here whereby a
Pareto optimal set of deep neural networks (DNN5s) exhibiting equally good performance metrics is obtained.
The set of DNNSs is initialized and their hyperparameters are optimized using the evolutionary algorithm,
NSGAIIIL. The final DNN model is selected from the Pareto optimal set of many DNNs using a fuzzy
inferencing approach. Contrary to using DNNs as the black box, the proposed scheme allows understanding
how various performance metrics (such as accuracy, sensitivity, F1, and so on) change with changes in hyper-
parameters. This enhanced interpretability can be further used to improve or modify the behavior of DNNs.
The heterogeneous breast cancer database requires preprocessing for better interpretation of categorical
variables in order to improve prognosis from classifiers. Furthermore, we propose to use a neural network-
based entity-embedding method for categorical features with high cardinality. This approach can provide a
vector representation of categorical features in multidimensional space with enhanced interpretability. It is
shown with evidence that DNNs optimized using evolutionary algorithms exhibit improved performance
over other classifiers mentioned in this paper.

INDEX TERMS Breast cancer prognostic modelling, entity embedding, deep learning networks,

evolutionary algorithms, fuzzy inferencing.

I. INTRODUCTION

Breast cancer is predominantly diagnosed in women while
it’s a rare medical condition in males accounting for only 1%
of all breast cancers [1]. It adversely affects the physiological
as well as psychological health of subjects and can be fatal
in some cases which is apparent from its high morbidity and
mortality rates [2]. Breast cancer is also one of the predom-
inant causes of cancer-related deaths worldwide and its rate
of incidence is ever increasing. In 2012 women in US had
12.4% risk of being diagnosed with breast cancer in their
life span while it was only 9.09%, in 1970’s [2]. However,
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the increase in this proportion may be due to longer life
expectancy, changes in the environment and lifestyle apart
from increased awareness and scrutiny. It has been reported
in the literature that while there were about 14.9 million
new incidences of breast cancer in the world in 2012 the
figure is estimated to reach up to 22 million in coming two
decades [3]. It is important to note here that breast cancer inci-
dences amount to 25% of all types of cancers which makes it
the second most probable cancer [3]. Incidence rate of breast
cancer also differs by places and ranges from a minimum
of 19.4 over 100,000 people in East Africa to a maximum
of 89.7 over 100,000 subjects in West Europe [4]. With for-
mation of cancer cells in breast tissues, disease progresses and
eventually the growth becomes out of control. Early stage of

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

18050 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-0284-0949
https://orcid.org/0000-0002-4352-0212
https://orcid.org/0000-0002-1330-6186

B. Abdikenov et al.: Analytics of Heterogeneous Breast Cancer Data Using Neuroevolution

IEEE Access

TABLE 1. Databases for breast cancer.

Database Sample size
SEER Research Data (1973 —2015), USA 1631572
Wisconsin Breast Cancer Data, USA 569
Nottingham Primary Breast Cancer, UK 1076
Srinagarind Hospital, Thailand (1985 — 2006) 4312
Clinical Center of Kragujevac, Croatia 146
National Cancer Institute, Egypt 60

breast cancer can be detected by signs and symptoms such
as swelling, skin irritation, breast pain, nipple pain, redness,
thickening of nipple and a nipple discharge etc., [5]. Nev-
ertheless, the disease can be prevented, treated or managed
substantially on account of precise prognosis and diagnosis.
Through prognostication it is possible to predict occurrence
and severity of breast cancer besides further course of disease.
Accurate and reliable prognosis can provide information
on the type and intensity of required therapeutic interven-
tion [6], [7]. This will save many patients from going through
unnecessary painful and expensive treatment protocols and
at the same time alert medical practitioners in deciding on
intensity of treatment for some urgent cases [8].

Prognosis on the other hand requires rigorous analysis and
synthesis of past available data on breast cancer. Over the
time this database has increased enormously in length and
breadth [9], [10]. There are number of breast cancer databases
like Wisconsin breast cancer diagnosis(WBCD) [11], breast
cancer data collected in the University of Nottingham [12],
UCT Breast Cancer Database [13], Surveillance, Epidemi-
ology, and End Results (SEER) data [14] and data from
hospitals in Croatia, Egypt and Thailand [15]. Although there
is good number of cancer databases available, most of these
databases have undesirably small sample size. The SEER
database, on the other hand, has records and statistics stored
since 1973 till date which makes it one of the largest cancer
databases. In the present research, we have accessed and used
the SEER breast cancer database. Details of available breast
cancer databases from literature are presented in Table 1.
Apparently, traditional statistical tools, owing to their inher-
ent limitations, may not comprehend and process the vast and
diverse cancer databases and therefore machine learning tools
have become leading tools in health informatics in recent
years [16].

Rapid development in the machine learning field provides
an opportunity to develop and train sophisticated models
on larger datasets. To cite an example, deep convolutional
neural networks model proposed by [17] and [18] achieved
improved result on image classification task. Recently,
the state of the art models show phenomenal performance
on image and object recognition [19]. In addition, artifi-
cial neural networks (ANNS) drastically changed computer
vision, speech recognition and natural language process-
ing [20]-[22]. ANNs are looked upon as suitable candi-
dates to replace traditional methods across the disciplines.
As a matter of fact, ANNs can approximate continuous
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as well as arbitrary non-continuous information which
predominantly is the case while dealing with cancer
data.

The structured medical data comprises of heterogeneous
variables, which are continuous and categorical in nature.
The discrete categorical data can further be presented in two
scales, which are nominal and ordinal. In case of ordinal
scale, entities of categorical variable are assigned a numeric
index. However, arbitrary numbers do not represent true
distance measure between entities involved. For instance,
we usually assign number grades from one to three to evaluate
some event for expressions, such as, “bad”, ‘““average” and
“good”. These numbers only inform us about some order
but fail to provide information or exact measures of dis-
tances between these entities. Categorical variables can also
be represented by nominal scale providing appropriate labels.
A suitable example to cite here could be the marital status
in socio-economic or demographic analysis where entities
are ““single”, “married”, “divorced” and “widowed”. Once
again it is difficult to interpret as how the labels are related.
Unfortunately, due to the non-continuous nature of data,
majority of machine learning algorithms may not perform
reasonably well on categorical data. A conventional approach
to address this issue is to use one- hot encoding [23], but
it also has two drawbacks. First, when categorical variables
have high cardinality one-hot encoding outputs large size
vector which influences computational complexity. Secondly,
every entity of categorical variable treated independently
without considering intrinsic relations between them and this
affects prognosis precision to some extent apart from over-
fitting data. A possible solution to these drawbacks is an
appropriate transformation of categorical data into numerical
vector space. This is also termed as entity embedding of the
categorical data [24]. Subsequently, wide range of methods
adopted for continuous data can be applied on this trans-
formed numerical vector.

Continuous vector representation, which is also called
word embedding, was first introduced by Paccanaro and Hin-
ton [25]. Word embedding made a significant breakthrough
in various natural language processing challenges in last
few years, which involves language modeling [26], machine
translation [27] and text classification [28]. It has differ-
ent implementations, but the prominent and robust ones are
GloVe [29] and fastText [30]. The principle working of these
models is to transform the semantic or syntactic attributes of
a word into a low dimensional continuous vector represen-
tation. This further resolves issues encountered due to curse
of dimensionality and similarity between words. Although,
word embedding had been used in past for language mod-
elling and text classification tasks, recently few research
works have been proposed using entity embedding in the
context of processing of categorical data. Entity embedding
proposed by Zhang et al. also showed promising results [31].
In the present research, we propose to use entity embedding
on heterogeneous breast cancer data and then develop a pre-
dictive model for prognosis.
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Borrowing concepts of neuroevolution, deep neural net-
works (DNNs) have been employed which are optimized with
evolutionary algorithms for binary classification of breast
cancer survivability. Main contributions from the proposed
research work include implementation of entity embedding
on large breast cancer data and evolutionary optimization of
DNNs for enhanced robustness and interpretability.

While most of the previous related works consider predic-
tion accuracy as the sole objective, a many-objective opti-
mization approach (optimizing many performance metrics
simultaneously) using state of the art evolutionary algorithm
is being proposed for the first time. While there exist a num-
ber of evolutionary algorithms [31]-[33], a recently proposed
NSGAIII is implemented here which performs well while
optimizing many objectives simultaneously [34].

The rest of the paper is structured as follows. Section II pro-
vides information about neuroevolution and its significance
in many-objective optimization of DNNs. Discussion on the
breast cancer database used in this research and the entity
embedding of categorical data is provided in Section III.
Section IV introduces state of the art evolutionary algorithm
NSGA-III. Neuroevolution using NSGA-III is also discussed
in Section IV along with apropos data preprocessing and
experimental design. Section V presents performance met-
rics used for evaluation of the classifiers or the predic-
tive models along with details of NSGAIII implementation.
A fuzzy logic based approach for the selection of a single
best DNN model from Pareto optimal set of DNN models is
explained in Section VI. Details of experiments performed
using other classifiers such as Logistic Regression, support
vector machine (SVM), Random Forest and Gradient Boost-
ing are provided in Section VII. Results from various exper-
iments are illustrated and discussed in Section VIII whereas
conclusion and future directions of the current research are
given in Section IX.

Il. NEUROEVOLUTION
Deep learning or sometimes referred as hierarchical learn-
ing paradigm applied to neural networks, is a computational
generalization of the human biological information process-
ing system. There exists a special class of neural networks,
where learning is achieved through evolution process and
hence they are termed as Evolutionary artificial neural net-
works [35], [36]. These neural networks are evolved using
evolutionary algorithms, which are population based search
methods inspired from Darwinian evolution [37].
Neuroevolution is about finding an alternative to the con-
ventional neural network (NN) training algorithm called
backpropagation which is a form of stochastic gradient
descent approach. It is expected that owing to their inherent
evolutionary mechanism, these algorithms may conquest the
otherwise standard learning algorithms such as backpropaga-
tion and hybrid schemes. With its advent in 1980s, weights
of the complex network were obtained using evolutionary
approach keeping the architecture unchanged. This approach
was called fixed-topology neuroevolution [38]. Although, by
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changing weights, the intensity or strength of neurons’
knowledge was evolved but a new knowledge could not be
evolved since the architecture was still the same. Further,
randomly generated networks in the initial population lack-
ing appropriate information also did not improve network
performance. Later in 1990s, researchers experimented with
changing network topology besides weights and it was termed
as topology and weight evolving ANNs (TWEANNSs) [39].
One of the popular algorithms called NEAT among Aug-
menting Topologies was widely used in neuroevolution [40].
In order to speed up the ANN training and reduce num-
ber of function evaluations, researchers from neuroevolution
community proposed an alternative class of genetic encoding
and named it as indirect encodings, which employs fewer
numbers of genes than the number of connections and neu-
rons in the network. This further facilitated evolving larger
ANNs which were otherwise difficult to train using NEAT.
Compositional pattern-producing networks (CPPNs) is one
of such endeavors of indirect encodings [41]. One of the other
successful researches worth mentioning here is the idea that in
the successive evolutionary process, parents which are novel
should be preferred over those which give better network
accuracies. This new paradigm was known as novelty search
and apparently networks were trained to be accurate and at the
same time explore better alternative solutions [42]. However,
there are other evolutionary approaches such as the one based
on Fogel’s evolutionary programming which emphasizes on
the evolution of NN’s behaviors through its architecture [43].

Until recently the focus of network training has been to
enhance its performance or in other words reduce the net-
work error in mapping outputs and inputs of a given system.
Such approaches may not be robust and may results in over-
fitting the training data [44]. We propose that during training,
the network performance should also be evaluated on the
basis of other metrics such as precision, recall/sensitivity,
and F1 score apart from the accuracy. While precision is
the ratio of correctly predicted positive observations to the
total predicted positive observations, recall reveals how many
of positive observations were actually found. The weighted
average of Precision and Recall is termed as F1 Score.

Evaluating a network on more than one performance metric
transforms training into a multiple objective optimization
problem. During selection stage of evolution, population of
generated networks will now be evaluated not only for accu-
racy but for multiple objectives which are none other than
the performance metrics. Recently, NSGAII (Non-dominated
Sorting Genetic Algorithm), a popular evolutionary algorithm
(EA), has been used to perform multi-objective optimization
of neural networks minimizing the perceptron error and the
network complexity [45]. However, applications of EAs to
optimize neural networks have been limited to the varia-
tion in network hyper-parameters such as network architec-
ture, number of neurons and parameters namely; connection
weights [45]-[50].

To the best knowledge of authors, many-objective opti-
mization of deep neural networks (DNN) considering various
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TABLE 2. Entity embedding of categorical variables.

Names  Ethnicity Dmitry Abdul Ramesh Ethnicity
Dmitry  Russian 1 0 0 Russian
Abdul Arab 0 1 0 Arab
Ramesh Indian 0 0 1 Indian

network parameters and hyper-parameters simultaneously
has not been done. In the present research, an advanced ver-
sion of NSGAII [51]evolutionary algorithm which is called
NSGAIII [34], [37], [52], has been used for many-objective
optimization of deep neural networks. Hyper-parameters cho-
sen for DNN many-objective optimization are learning rate,
number of layers, number of neurons in each layer, choice
of activation function, and number of iterations. The hyper-
parameters of the network are optimized using evolutionary
algorithm NSGA III, whereas the parameters such as con-
nection weights between layers and biases are obtained using
Levenberg-Marquardt optimization.

Ill. DATABASE AND ENTITY EMBEDDING OF
CATEGORICAL DATA

Breast cancer data used in this study is obtained from the
SEER database (http://seer.cancer.gov/), which is available in
the public domain. The Surveillance, Epidemiology, and End
Results (SEER) program of the National Cancer Institute,
United States (US), is an authentic source of information on
cancer incidence, prevalence, mortality, treatment, and other
related information. This large database consists of compre-
hensive information from 28% of the US cancer affected
population since 1973 [15]. Out of ten million cancer cases
from 1973 up to 2015, about one million cases are of breast
cancer [15]. Before using SEER data, appropriate procedure
for accessing the database was followed during this research.

The SEER database discussed above is a high dimensional
database consisting of both continuous as well as categorical
variables. Analysis of such a heterogeneous data is difficult
unless the categorical variables are converted into continuous
domain or mapped into logical data form, a process which is
also termed as entity embedding [53]. There are a number
of data encoding schemes to handle categorical variables
such as one-hot encoding, hash encoding, ordinal and target
encoding etc. [23]. The aim of entity embedding is to map
discrete values to a multi-dimensional embedding space
where values with similar function output are placed close to
each other. This is further explained using a Table 2 below.
Entity embedding using one-hot encoding coverts ethnic-
ity feature to three features through binarization meaning:
“is_Russian”, “is_Arab”’, “is_Asian”’ etc.

However, a neural network based entity embedding has
been used in the present work owing to its capability of
handling high cardinality categorical variables which is oth-
erwise cumbersome using one-hot encoding [24]. Readers
are encouraged to read a paper by Guo and Berkhahn [54]
for further information on entity embedding of categorical
variables. In the present work, the categorical variables are
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Batch
Normalization

Output
Layer Layer

FIGURE 1. Architecture of NN model used for entity embedding.

initially represented using widely used one hot encoding and
then later these are multiplied with weights of an extra layer
of linear neurons [55]. This extra layer is termed as the
embedding layer. Following the standard practice, weights
and other parameters of neural network of embedding layer
are learned using Levenberg-Marquardt method [55]. Binary
outputs obtained from the neural network (transformed cate-
gorical variables) are combined together with the continuous
variables and given as inputs to the respective classifiers for
further cancer prognosis [31].

The architecture of the entity embedding model used in
the present work is shown in Figure 1. The entire system
comprises of an input layer, encoding layer, embedding layer,
dense layer, batch normalization layer and an output layer.
The input layer comprises of both categorical and continuous
variables. While continuous variables are connected directly
to the dense layer, categorical variables pass through the
transformation as discussed. Outputs of embedding layer
are later connected to the dense layer where they are again
grouped with the continuous data. Further, neurons between
dense layers and batch normalization layers are connected
unidirectionally i.e. in one-to-one manner whereas neurons
in batch normalization layer and dense layer are connected
completely similar to the batch normalization and the output
layer.

Linear activation functions are used for entity embedding
layer and the number of neurons in this layer are obtained
based on grid search algorithm [31].

IV. NEUROEVOLUTION USING NSGAIIl ALGORITHM

In the face of multiple objectives, the usual concept of mini-
mization and maximization is replaced by obtaining a set of
trade-off solutions which is also called as a Pareto optimal
solution set. While using evolutionary algorithms for this
purpose, a population of solutions (genotypes) is randomly
generated and evolved using genetic operators such as selec-
tion, crossover, mutation etc. A population thus evolved in
the next iteration of the algorithm is called an offspring.
The competing solutions are compared using their individual
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fitness indices which are evaluated based on their objective
function values using non-domination criterion. This fur-
ther means that the solutions, which have objective func-
tion values not dominated by other competing solutions, are
selected. As mentioned in the previous Section, NSGA-III is
an efficient extension to the former NSGA-II algorithm to
address many objective optimization problems. The generic
phases in evolving deep learning networks using NSGA-III
are explained below [34]:

1. Initialize a population of N deep learning geno-
types, each of which is encoded with chosen hyper-
parameters. This is called the parent population (P;).
An offspring population (Q;), is obtained as a result of
the application of genetic operators such as cross over
and mutation on (P;).

2. Next the two populations are combined together to
form a pool of 2N solutions (P; U Q;). The combined
population of NN is evaluated on the training data and
the three performance metrics are evaluated for each of
the NN model. Later, a fitness index (non-domination
index) F based on performance metrics is determined
for every member of the population [56].

3. In order to select optimal N individuals from the
combined population R = P; U Q; (having 2N indi-
viduals) the population R is sorted according to their
non-domination levels (Fy, F», F3etc..).

4. Thereafter, one individual is selected from each non-
domination level to form a new population S;, starting
from Fi, until the size of S; is equal to or bigger
than N.

5. The offspring population S; thus obtained is again
combined with the preceding parent population and
steps 2-5 are repeated for given number of genera-
tions (which is another hyper-parameter chosen in the
beginning of algorithm) till the networks satisfy the set
performance/termination.

One of the main advantages of using evolutionary algo-
rithms for optimization of DNNs is that evolution can be
combined with learning to provide a powerful synergy. It is
known that, gradient-based learning algorithms are normally
sensitive to the set of initial hyper-parameter values which
affects the network performance considerably by providing
sub-optimal values of parameters. On the contrary, evolution-
ary algorithms can be used to find suitable hyper-parameter
values of networks. However, during every epoch of evolu-
tionary algorithm of DNN, the parameters such as weights
and biases of the network are obtained using conventional
backpropagation scheme.

Preprocessing of the SEER database to select input vari-
ables for DNN and experimental design is explained in the
subsequent sections before NSGA-III implementation.

V. EXPERIMENTS

A. DATA PREPROCESSING

In order to increase efficiency and accuracy of prognosis
prediction from a classifier, the relevant database should be
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processed carefully. Data preprocessing essentially includes
understanding data type and its distribution, applying suitable
transformation, handling skewed and missing data, analyz-
ing outliers, and reducing the dimensions. Available data is
processed through several stages for dimensionality reduction
without sacrificing its important features.

Prior to start working with the SEER database,
SEER Stat software is used to access breast cancer data from
2004 to 2014. Later, number of variables are reduced iter-
atively referring to SEER record description documenta-
tion [57]. As a result, a set of 20 variables is obtained in
text format for around 659802 cases. In the final dataset,
19 amongst 20 variables are considered as independent vari-
ables, whereas, “‘survivability” is taken as the dependent
variable.

Further, out of 19 independent variables selected, 18 were
categorical variables and the variable for the tumor size was
the only continuous variable. The dependent variable, sur-
vival month, was transformed into binary format whereby
values greater than sixty become one and values less than
sixty were assigned to zero. Details of selected variables are
provided in the Table 3.

It is important to mention here that the incidences of binary
classified dependent variable are found to be almost balanced
with 43% for negative and 57% for positive classes. All
the input variables including the continuous and categorical
ones are converted into binary numbers. Total input binary
variables are found to be 89 after this conversion.

B. EXPERIMENTAL DESIGN

In order to perform experiments the data is randomly divided
into train and test in a proportion of 90% and 10% respec-
tively. Next, a ten-fold cross validation is performed on the
train sample which is normally a practice adopted while
working with cancer data [58]. During each epoch, nine
subsets are selected to enter training whereas the remaining
one is used later for validation purpose. Further, a gener-
alization capability of model was evaluated on test sam-
ple. To prevent overfitting of classifiers, L2 regularization
is also implemented. Finally, the DNN model is trained in
a TensorFlow environment, which is an open source library
used for machine learning applications. The simulations are
implemented on a workstation with such configurations: Intel
Xeon Platinum 2.10 GHz 48 Cores, NVIDIA Quadro P6000
24 GB, 512 GB DDRA4.

C. PERFORMANCE METRICS
Enhancing performance by reducing network error may not
be sufficient and robust rather it may results in over-fitting the
training data. In order to test robustness of the prognosis pre-
diction five important performance metrics have been chosen.
The chosen metrics are accuracy, sensitivity, specificity, Area
under the ROC curve (AUROC) and F1 score.

Sensitivity measures the ability of a test to detect the
condition when the condition is present. On the other hand,
specificity measures the ability of a test to correctly exclude
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TABLE 3. Description of selected variables.
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FIGURE 2. Performance metrics of the final Pareto optimal set
of 100 DNNs.

against one minus specificity. In addition, the terms AUROC
and AUC are used interchangeably in a literature [49].

D. NSGAIIl IMPLEMENTATION

While implementing NSGAIII one thousand DNN models
were initialized with varied hyper parameters. The ranges and
types of hyper parameters used for the initial population are
given below:

Number of neurons in hidden layers 1-1000
Number of layers 1-10
Learning rate 0.001-1

Types of activation functions used for
the hidden layers:

Relu, Sigmoid, Linear,
Elu, Selu

#  Variable Description Data type
name
1 Age Actual age of patient at the ~ Factor
time of diagnosis
2 Race White, black and others Factor
3 Yearofbirth  Year of birth Factor
4 Marital status ~ Marital status Factor
5 State State Factor
6  Yearof The year tumor was first Factor
diagnosis diagnosed
7  Behavior In situ or malignant Factor
code
8  Primary site This data item identifies the ~ Factor
site in which the primary
tumor originated.
9  Histologic The data item Histologic Factor
type Type describes the
microscopic composition of
cells and/or tissue for a
specific primary.
10 Grade Grade Factor
11 Laterality Laterality describes the side  Factor
of a paired organ or side of
the body on which the
reportable tumor originated.
12 Diagnostic This data item records the Factor
confirmation  best method used to
confirm the presence of the
cancer being reported.
13 Reason no Reason no surgery Factor
surgery
14 Tumor size Tumor size Numeric
15 Extension Extension Factor
16 Lymphnodes Lymph nodes Factor
17  Metastasis Metastasis Factor
18 Cause of Cause of death Factor
death
19  Survival Survival moth Factor
moth

the condition when the condition is absent. Usually high
sensitivity tests have low specificity, which further means
that these two objectives are conflicting. Further, precision
is defined as the ratio of correctly predicted positive observa-
tions to the total predicted positive observations and recall
reveals how many of positive observations were actually
found. The weighted average of Precision and Recall is
termed as F1 Score. However, to begin with, a confusion
matrix is derived which is used to test the correctness and
accuracy of a subject model. The metrics used in this research
are defined below using common abbreviations such as
TN (True Negatives) TP (True Positives) FN (False Nega-
tives) and FP (False Positives).

Accuracy = (TN 4 TP)/(TP + FP 4+ FN + TN)
Sensitivity (Recall) = TP/(TP + TN)

Specificity = TN/(TN + FP)

F1 score = (2 * Precision * Recall)/(Precision + Recall)

Area under the ROC curve (AUROC) measures an area
under the receiver characteristic curve, which plots sensitivity
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Initially, population of thousand solutions for DNN is ran-
domly generated with four hyper parameters defined as vari-
ables with in their limiting ranges. Vital parameters of DNNs
such as connection weights (initialized randomly), momen-
tum index is kept constant as 0.9 and sigmoidal gain and
threshold values are initialized as unity.

Activation function for the input layer of initialized models
is chosen to be linear. Since the prediction of survivability is
a binary classification problem, we have chosen sigmoidal
activation function for the output layer.

During all these experiments, following simulation param-
eters were considered for NSGA III [37], [52].

Population size: 1000; Crossover prob.: 0.90; Real-
parameter mutation prob.:0.1; Distribution index for
crossover: 10; Distribution index for mutation: 50; Number
of iterations: 20

Subsequent to the implementation of NSGAIII (as dis-
cussed in Section V) we obtain a Pareto optimal set of
DNN models which are all non-dominated. Three perfor-
mance metrics (Accuracy, AUC and F1 score) of the first
front solutions of DNNs are plotted against each other and
shown in Figure 2. While all the models on the first non-
dominated front are equally good, we just need a singular
DNN model for prognosis prediction. Selection of a single
DNN model from the set of equally good DNNss is difficult
and calls for some strategy from the realm of decision making
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theories or processes. We propose a fuzzy logic based scheme
in the next Section which can help in selecting the best
DNN model from the better ones.

VI. SELECTION OF THE BEST DEEP LEARNING MODEL
FROM PARETO OPTIMAL SET

For practical implementation, we need a singular best solu-
tion for DNN model or in other words a single Pareto point
giving best compromised DNN model. This results in a big
cognitive burden on the user and as such certain strategy
is required to help the user in making this vital decision.
Previously, some research has been proposed around this
using min-max approach or fuzzy inference [52], [53]. In the
present research, we propose a fuzzy inference based method
which can provide us a single metric combining many perfor-
mance metrics in a logical manner. Various steps used during
implementation of this method are described below.

A. FUZZIFICATION

To begin with, the performance metrics are defined as fuzzy
variables and their expected ranges are decided by the values
obtained from the NSGAIII experiments (Section VI). The
ranges for these fuzzy performance metrics are later normal-
ized between 0 and 1. The metrics are defined as fuzzy vari-
ables using three fuzzy activation functions (AFs) namely;
Low (L), Medium (M) and High (H). The shapes of AFs are
chosen to be Gaussian (1-3). The typical practice in the design
of fuzzy systems is to use triangular or trapezoidal activation
functions, however, owing to the smooth transition between
activation functions, a Gaussian distribution is selected in the
present work. This step can be termed as fuzzification of the
inputs with reference to the fuzzy selection systems.

L= aef(%) (1)
M =ae \ K )
H = ae_(fl;i l) 3)

Here, f; stands for the input performance metrics values from
a competing DNN model, which are considered as objectives
to optimize. The range of the performance metrics is R; and is
defined as R; = (max (f;) —min (f;)). The constant a = #ﬂ
and standard deviation of three fuzzy activation functions
(L, M and H) is taken as o; = R;/5 which is also constant.

B. FUZZY INFERENCE

Once the inputs (performance metrics) are defined as fuzzy
variables, an inference mechanism is required in place to
complete the design of this fuzzy system. Inferencing in
fuzzy systems is realized through its rule-base. The rule-base
essentially is a collection of ifand then statements which maps
the antecedents or inputs to the consequents or the outputs.
A common structure of fuzzy rule-base is given below.

If iisLand,......... and fy is H then AS; is y;
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Here fi...fy are the performance metrics as inputs to the
fuzzy system, AS; is the Activation Score for i’ rule and its
numerical value is y;. Total number of rules can be derived
from the number of AFs used for defining antecedent vari-
ables. For simplicity, we have considered only three (Accu-
racy, AUC and F1 score) out of five performance metrics
while designing this fuzzy based system. Since each of
the three performance metrics is defined using three AFs
(L, M and H) the total number of fuzzy rules (N, ) shall be 33
i.e. 27. These rules have all possible combinations of AFs
of the antecedents. The AFs are further assigned numerical
values such that L = 0; M = 1; H = 2. The outputs or the
consequents for all these rules are simply the sum of the
activation scores of their component AFs as shown in (4).

5
vi=1+3  AS; “

Here i represents the rule index, and AS;; is the activation
score for j* objective function in i rule. For instance, if in
a particular rule all the objectives have low (L) AFs then the
output of the rule or the activation score of that rule shall be
one else if all the AFs are medium (M), the output or the score
shall be 6.

Later, we follow the conventional procedure of fuzzy infer-
encing to calculate output from fuzzy system. As per the
practice, output for each rule is computed by considering
the degrees of fulfillment of all the AFs for given set of
input performance metrics. To compute degrees of fulfill-
ment equations (1-3) are used by plugging input (f;) values.
Weights for individual rules are calculated using (5).

5
Wi = nj:l (Lij * M,'j * H,j) (5)

The overall activation score of a candidate DNN is essen-
tially a numerical or crisp output of the fuzzy inference sys-
tem. This output is the weighted average of all the individual
rule consequents for a given set of input values. Therefore,
the final overall activation score (OAS) can be computed
using (6) as below.
>N i)

Zf’il Wi
Here N, stands for number of fuzzy rules which are 27 in
the present system. Performance metrics from all the non-
dominated solutions for DNNs (obtained through NSGAIII)
are given as inputs to the above described fuzzy selection sys-
tem and the outputs obtained subsequently are recorded. Ten
representative DNN Solutions from Pareto optimal DNNs
with their performance metrics and their overall activation
scores have been shown in Table 4, along with their respective
input performance metric values and final overall activation
scores. Apparently, a candidate design number 48 is finally
selected for the proposed DNN design owing to its maximum
fuzzy index value (6.732). It may be emphasized here that
though all the solutions are non-dominated and should be
equally good, their fuzzy indices or OAS are different. Fur-
ther, interestingly the proposed fuzzy ranking and selection

Y = (©6)
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TABLE 4. Ten instances from the Pareto optimal DNNs with their
performance metrics and their overall activation scores.

DNN Test Test F1 Test Overall
Solution Accuracy Score AUC Activation
Numbers Score (OAS)
45 0.96230 0.96419  0.97143 6.7213
46 0.95915 0.96495  0.97151 6.7183
47 0.95896 0.96500  0.97128 6.7179
48 0.97130 0.96489  0.97211 6.7320
49 0.96155 0.96508  0.97150 6.7212
50 0.96474 0.96398  0.97102 6.7235
51 0.93932 0.96483  0.97105 6.6917
52 0.91501 0.96401  0.97010 6.6513
53 0.96207 0.96495 097112 6.7213
54 0.95451 0.96476  0.97086 6.7118

TABLE 5. Parameters of the finally selected DNN Model.

Activation function for input layer Linear
Number of neurons in input layer 89
Number of hidden layers 4
Number of neurons in hidden layers 8
Activation function for hidden layer RELU
Learning rate 0.3425
Regularization method L2
Weights initialization method Uniform
Mini-batch size 128
Training epoch 20
Normalization Batch
Activation function for output layer Sigmoid

method is able to provide better discrimination among can-
didate solutions. Eventually, a solution with maximum fuzzy
index is found to be better than rest of the DNN models.

Parameters of the finally selected DNN Model, amongst
Pareto optimal models, are displayed in Table 5.

VII. EXPERIMENTS WITH OTHER CLASSIFIERS
Subsequent to obtaining hyper-parameters for the best DNN
model using NSGA 111, its performance is compared with
other classifiers. In the present work we have imple-
mented widely used classification algorithms such as Logistic
Regression, Support Vector Machines, Random Forest and
Gradient Boosting. Various parameters used for these clas-
sifiers are given in Table 6. The breast cancer data is sampled
into train and test in a ratio of 90% to 10%. Further, a ten-fold
cross validation is performed on train sample to find optimal
model parameters.

All the classifiers are regularized in order to avoid over-
fitting. Identical test samples are used to measure general-
ization capabilities of classifiers. Logistic Regression, SVM,
Random Forest were implemented using scikit-learn package
and Gradient Boosting was developed using xgboost package.

VIIl. RESULTS AND DISCUSSIONS
After successful optimization of DNNs using NSGAIII,
a Pareto optimal set of DNNs is obtained. Some of the

VOLUME 7, 2019

TABLE 6. Parameters of other classifiers.

Coefficient of regularization 0.8
Coefficient of regularization 0.8
Number of trees 200
Maximum depth of tree 10
Minimum number of samples to split an internal node 02
Coefficient of regularization 0.4
Maximum depth of tree 05
Minimum sum of instance weight needed in a child 04
Subsample ratio of the training instances 0.8

Subsample ratio of columns when constructing each tree 0.3

TABLE 7. Comparison of classifiers with entity embedding.

Q g o ==
% A7) = L8 o=
&n 8 > RS 28
A o 7 S 2 s 8
= [~ oM

Accuracy | Train | 97.13 | 97.01 | 97.04 | 97.13 | 97.10
(Ace) | Test | 97.09 | 96.99 | 97.02 | 97.07 | 97.08

Sensitivity | Train | 0.9669 | 0.9718 | 0.9675 | 0.9790 | 0.9769
(Sn) Test | 0.9663 | 0.9719 | 0.9677 | 0.9787 | 0.9771
Specificity | Train | 0.9703 | 0.9689 | 0.9725 | 0.9656 | 0.9667
(Sp) Test | 0.9689 | 0.9685 | 0.9720 | 0.9647 | 0.9661
F1 Score | Train | 0.9649 | 0.9615 | 0.9653 | 0.9667 | 0.9663
Test | 0.9646 | 0.9651 | 0.9652 | 0.9662 | 0.9662

AUC Train | 97.21 97.04 97.00 | 97.23 | 97.18
Test | 97.15 97.02 96.98 | 97.17 | 97.16

1
P r
1
T

100
8 o5
a4 B =N BE B
90
LR SVM RF

GB

FIGURE 3. Comparison of classifiers with DNN for train samples.

representative DNN solutions with their performance metrics
are given in Table 4. The fuzzy inference based method
devised to select the best DNN solution from the Pareto
optimal solutions has been successful. As can be seen from
Table 4, 48" DNN solution has highest fuzzy overall activa-
tion score and is considered to be the best among all. Glanc-
ing at the values displayed in Table 4, the selected solution
(48™) fares well in accuracy & AUC and has comparable
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FIGURE 4. Comparison of classifiers with DNN for test samples.

F1 score. The set of hyper-parameters for the finally selected
DNN is provided in Table 5. Further analysis showed that
the OAS is sensitive to the activation function used at the
hidden layers. RELU and Sigmoid functions provided better
OAS values compared to other functions. Similarly, better
OAS can be obtained with less number of neurons in the
hidden layers and number of layers should not be more than
four in the present case. Other classifiers such as Logistic
Regression, Support Vector Machines etc. are also imple-
mented and trained using categorical variables along with
continuous variables from SEER database. These classifiers
are compared with the finally selected DNN Model using
five performance metrics. Results from the train and test
experiments while using classifiers and final DNN model are
displayed in Table 7. The resulting performance metrics are
also illustrated in Figures 3&4 for train and test experiments.

IX. CONCLUSION AND FUTURE WORK

Breast cancer prognostic modelling requires synthesis of
large SEER database which has many discrete features apart
from continuous ones. In this research, we have proposed a
neural network based entity embedding approach to obtain
continuous vector representations of categorical variables.
Later, these transformed categorical variables are used along
with other continuous variables for prognostic modelling of
breast cancer data. In order to achieve enhanced accuracy as
well as interpretability we have proposed a neuroevolution
approach whereby NSGA III is used to optimize and provide
hyper parameters for DNNs. As a result of this optimiza-
tion a set of Pareto optimal DNN models is obtained which
gives us further insight in the behavior of DNNs. A novel
method of selecting final DNN model from the set of Pareto
optimal solutions is also demonstrated successfully in this
manuscript. Intuitively, looking at the results one can find a
relation between hyper parameters (building blocks of DNN)
and various performance metrics. It is possible therefore to
achieve a specific performance metric by modifying DNN
hyper parameters. Further analysis of the Pareto optimal
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DNN solutions in the light of their hyper parameters and
performance metrics can provide more information about the
behavior of DNN. Increased transparency and interpretability
of DNN models may help in performing training experiments
more efficiently and effectively. Similarly, enhanced trans-
parency in DNN models will give rise to its acceptability
among medical practitioners as well.

During the experiments it was found that the evolutionary
algorithm (NSGAIII) used in the present research may not
handle many performance criteria at the same time. At many
instances during experiments the algorithm converged pre-
maturely providing a false or pseudo Pareto optimal front.
In future, authors would like to modify the selection operator
of NSGAIII in order to address this issue. Further, analogies
shall be established between hyper-parameters and model
performance metrics as a future direction of this research.
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