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ABSTRACT In order to enhance the anti-jamming capability of aeronautic swarm tactical network in the
complicated electromagnetic environment, we address the problem of bandit-based cognitive anti-jamming
strategy for enabling reliable information transmission.We first present an adversarial multiuser multi-armed
bandit model for the aeronautic swarm network employing airborne cognitive radios with the same-frequency
simultaneous transmit and receive feature. Then, we utilize the improved energy detectionmethod to perform
jamming sensing and derive the closed expression of false alarm probability, false detection probability,
and the optimal decision threshold in the case of single and multi-jammer. Finally, using the jamming
sensing output to calculate reward and with the objective of maximizing the throughput of each airborne
radio, a decentralized selfish doubling trick kl-UCB++ anti-jamming strategy is developed to allocate
an optimal configuration of transmitting power and spectrum channel to each radio. This anytime bandit
strategy is simultaneously minimaxed optimal and asymptotically optimal. The simulation results validate
that the aggregate average throughput, cumulative regret obtained with the proposed anti-jamming strategy
outperform the well-known UCB, kl-UCB++ bandit algorithm.

INDEX TERMS Cognitive anti-jamming, aeronautic swarm, adversarial multi-armed bandit, improved
energy detection, doubling trick kl-UCB++.

I. INTRODUCTION
To enable the emerging Net-Centric Warfare (NCW) needs,
the next generation of airborne tactical networks (ATN) must
evolve with multi-unmanned aerial vehicle (UAV) systems
to provide swarm combat capability. Aeronautic swarm net-
work (ASN) consists of multi-UAVs is a new kind of airborne
tactical networks inspired by biological swarm behaviors,
the intensive use of UAVs combat system will be standard
practice in the next decade. In military operations, aeronautic
swarm networksmay vary from slow dynamic to dynamic and
have intermittent links and fluid topology, which would bring
new challenges to the design of mission-centric ATN. While
it is believed that ad hoc mesh network would be most suit-
able for aeronautic swarm system and offers the promise of
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improved capacity and maintaining reliable communications
for multi-UAVs [1].

Aeronautic swarm network is used for exchange of con-
stantly growing amount of battlefield situation information
and it also causes a lot of interferences so coexistence
among swarm nodes becomes a demand. Moreover, with
the aerial battlefield electromagnetic environment getting
increasingly complex and intentional jamming, swarm nodes
are non-permanent, wireless channels may be impaired, and
communication links connectivity between peer nodes is
intermittent. This necessitates resiliency anti-jamming tech-
nologies to be closely integrated into ASN to provide robust
connectivity and gain competitive advantage of future elec-
tromagnetic spectrum warfare (EMSW).

The traditional anti-jamming solutions do not work as
well in complicated electromagnetic scenarios, due to current
airborne tactical radios are statically configured to operate
within a pre-allocated spectrum channel prior to deployment
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in temporal, frequency and geographical domains. The
paradigm of static spectrum allocation results in a situa-
tion where some frequency bands are utilized effectively
where as some portions of spectrum remain under-utilized.
Aeronautic tactical radios need share spectrum with other
in- and out-of network radios to improve frequency spectrum
utilization. Latterly, the conception of cognitive radio (CR)
based anti-jamming communication technology was bring
forward to improve spectral efficiency of tactical network
in a congested electromagnetic environment [2]–[3]. Cogni-
tive anti-jamming (CAJ) radio can sense the jamming signal
and opportunistically avoids the jammer spectrum for secure
data transmission in the presence of intentional and acciden-
tal interferences, and emerge as an intelligent aeronautical
wireless communication system through dynamic spectrum
access (DSA) feature of CR, that has some autonomy to make
decisions about the spectrum usage.

Cognitive anti-jamming technology has attracted
widespread attention and considerable researches. To address
the interactive competition between the legitimate users
and the jammers, game theory and Markov decision pro-
cess (MDP) has been firstly used for cognitive anti-jamming
network. A stochastic zero-sum game framework is pro-
posed in [2] and Minimax-Q learning algorithm is utilized
to explore an optimal channel accessing strategy in dynamic
anti-jamming game. For the same stochastic game model,
Singh et al. presents the use of state-action-reward-state-
action learning and QV learning that are the on-policy and
non-greedy variant of Q-learning algorithm which outper-
form the Minimax-Q algorithm [3]. Further, assumed system
model allows multiple tactical radios to simultaneously oper-
ate over the same spectrum band, and each radio attempts
to evade the transmissions of other radios as well as avoid-
ing jamming signal, a multi-agent reinforcement learning
(MARL) algorithm based on Q-learning is proposed to find
optimal anti-jamming and interference avoidance policies
in [4]. Moreover, a new decision policy for the sub-band
spectrum state to reduce the computational complexity of
learning is developed in the multi-agent environment.

All these above-mentioned cognitive anti-jamming works
is mainly based on Game theory model and utilizes
Q-learning to solve. The stateful Q-learning approach
requires explicit modeling of network states and actions
from an underlying MDP. Unfortunately, for the aeronautic
swarm network, it is difficult to deal with this model directly
because of the more state of the environment. Wang et al. [5]
have modeled the DSA problem with partially observable
Markov decision process (POMDP) framework which con-
siders channel quality to decide about the channel to sense,
however, it has comparatively higher complexity. On the
contrary, the cognitive anti-jamming problem is modeled
under the multi-armed bandit (MAB) framework which turns
to be very easy and less complex to implement. Therefore,
we investigate the stateless MAB model that address the
exploration-exploitation dilemma for allocating power and
channel selection on sequential reward sampling.

The classical MABmodels a sequential interaction scheme
between a learner and an environment. The learner sequen-
tially selects one out of K actions (arms) and obtains some
rewards determined by the chosen action and also influenced
by the environment. Under various assumptions made on
the environment and the structure of the arms, several MAB
settings have been considered such as stochastic bandits,
adversarial bandits, restless bandits and contextual bandits.
In these bandits setting, the most important basic case is the
stochastic bandit problem where, for each particular action,
the rewards are i.i.d. of random variables from a fixed dis-
tribution. However, the assumption on i.i.d. processes does
not always apply to the real battlefield environment. On the
other hand, the adversarial (or non-stochastic) bandit prob-
lem do not make any assumptions on the payoffs, where
the rewards are chosen arbitrarily by the environment. Since
aerial combat applications where the swarm network nodes
would be highly mobile and would establish the network
topology in an ad hoc manner to communicate and cooperate.
Acquiring accurate context information may be extremely
challenging and even unfeasible due to the frequent change
of network topology. Therefore, we are more interested in
the case where no context can be inferred, and the ASN
anti-jamming communication problem would be modeled as
an adversarial multi-armed bandit.

Some of the related bandit-based anti-jamming studies
have been reported recently. From a multi-domain perspec-
tive, the anti-jamming defense scheme which includes both
power domain and spectrum domain is proposed [6]. To be
more specific, a Stackelberg power game is formulated to
fight against the jamming attacks in the power domain, and
a UCB1 bandit algorithm-based channel selection scheme
with a channel switching cost is designed to achieve anti-
jamming in the spectrum domain. In [7], an adversarial multi-
player MAB game is employed to model the problem of joint
channel and power allocation in underwater acoustic com-
munication networks, and presents a game-based distributed
hierarchical exponential learning algorithm that effectively
improves user learning ability and decreases learning time.
Based on multi-player bandit model, Sawant et al. [8] study
distributed algorithms that are robust against malicious jam-
ming attack and give constant regret with high confidence.

The bandit algorithms used in the above anti-jamming
approaches rely on the knowledge of this horizon T to
sequentially select arms (one time) and also can’t be simul-
taneously asymptotically optimal and minimax optimal. kl-
UCB++ algorithm, a slightly modified version of kl-UCB+,
is the first algorithm proved to be asymptotically- and
minimax-optimal at the same time [9]. An online learning
algorithm is anytime if it does not need to know in advance
the horizon T . It is necessary to design bandit-based anti-
jamming strategy with any time feature due to each swarm
node is difficulty to decide the accurate time horizon in
dynamic combat scenario. Note that a well-known technique
to obtain an anytime algorithm from any non-anytime algo-
rithm is the ‘‘doubling trick’’ (DT). In this paper, we merge
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doubling trick and kl-UCB++ to design a novel multi-domain
cognitive anti-jamming strategy for aeronautic swarm net-
work.

On the other hand, most of contemporary research work
has been done in the context of bandit-based anti-jamming
assume that perfect spectrum channel sensing in physical
layer (PHY), and the key to anti-jamming operation is the
radio’s ability to sense its surrounding electromagnetic envi-
ronment, this functionality is known as jamming sensing.
However, imperfect sensing has some limitations concerning
the anti-jamming capability. There have been some attempts
in [10], to consider the energy detector (ED) output as a
reward for general reinforcement learning algorithms, but
they lack from significant theoretical guarantee and a relation
with achievable throughput. In contrast, we jointly investi-
gate DT kl-UCB++ bandit algorithm and jamming sensing,
with the objective of maximizing the throughput of each
airborne radio, design a optimal configuration of transmit
power and spectrum channel for enabling ASN anti-jamming
communication.

The remainder of this paper is organized as follows.
Section II, we describe the aeronautic swarm network model
consists of in-band full-duplex (IBFD) enabled CRs, which
has a good advantage of increased throughput and real-time
sensing ability. In Section III, the detection/false alarm prob-
ability of jamming sensing based on improved energy detec-
tion (IED) is analyzed theoretically. Further, according to the
accurate reward calculation from jamming sensing output,
the distributed anti-jamming scheme using DT kl-UCB++

algorithm is proposed in Section IV. In Section V, the per-
formance evaluation of the presented bandit anti-jamming is
analyzed with simulations. Finally, the conclusions are drawn
in Section VI.

II. SYSTEM MODEL
We consider the aeronautic swarm network is illustrated
in Figure 1. UAVnodes of ASN are hovering over a geograph-
ical area and are equipped with tactical cognitive radio. In the
battlefield the ally and enemy tactical radios face each other
in a competition to dominate an open spectrum resource to
achieve higher throughput. Using accurate local spectrum sit-
uation sensing information, airborne radio applies a strategy
to perform transmit or silence action. Similarly, we assume
the smart jammers have cognitive features such as spectrum

FIGURE 1. ASN model.

sensing, learning and reconfigure ability, subsequently caus-
ing more damages than the conventional jammers. During
the operation, the radio nodes periodically exchange control
information to select the best radios as local controllers,
i.e. cluster heads (CH) in the swarm ad hoc network. If oper-
ational conditions of a specific CH degrade, its role can
be taken over by another radio node of the network. Then,
the radio nodes are also selected to act as gateways (GW)
between clusters if required.

In the following, we present mathematical formulation
for the ASN with N tactical radios and M jammer. Let K
designate the number of non-overlapping channels in the
frequency band for open access, which is partitioned in time
and frequency and located at the center frequency fk (MHz)
with bandwidth B(Hz) for k = 1, . . . ,K . A transmission
slot at channel k and time t with time duration Td (msec) is
represented by a tuple <fk ,B, t,Td>. We define the action
set A such that at ∈ A at time t . And the power domain and
frequency domain-based anti-jamming scheme is considered
in this paper, hence, an ith element in at designates a configu-
ration of power and frequency channel that the ith radio tries
to transmit at t . The tactical radio actions result in an outcome
� : A → R. Subsequently, the outcome can be mapped to a
reward r . For convenience, Table 1 lists the notations used in
this study.

TABLE 1. Summarizes the used notation.

For the presented aeronautic swarm network configuration,
a suitable mathematical formulation needs to be created.
Since there are multiple radios in the tactical network, our
problem is classified as multi-player MAB. In the bandit
model, the radios are the players (agent) in the swarm net-
work, and they play (i.e., transmit) the channels, an arm
(action) corresponds to be a frequency channel and transmit
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power level that the anti-jamming radio may choose under
competition. In the case of decentralized decision making,
each radio computes its own action. For radio i, we can

write as, x ti ,
{
x t , aj, �j

}t−1
j=1

π ti
−→ ati , where x

t
i is the sensing

information only available to radio i at time t , and π ti is the
strategy of radio i’s own. For the decentralized ad hoc swarm
network, it is an adversarial bandit problem, in which the
actions of a given radio affect the reward distributions of the
others’ actions.

For the aeronautic swarm network in which multiple
tactical radios and jammers have to coexist, it generally
operates in highly congested and contested electromagnetic
environments, which may result the spectrum resources is
scarce. Therefore, the same-frequency simultaneous transmit
and receive (SF-STAR) technologies is employed for cog-
nitive radio in this paper. It is worth noting that SF-STAR
CAJ (SCAJ) radio is transmitting and receiving information
signals at the same time and at the same center frequency,
and promise to double the network throughput of a wireless
link, compared with traditional half-duplex operation. The
military IBFD radios will have the progressive capability for
SF-STAR bywhich they can conduct electronic warfare at the
same time when they are also using the same frequency band
for communication. It is quite obvious that, by utilizing the
STAR capability, SCAJ radio could gain a major technical
advantage over an opponent that does not possess similar
technology [11]–[12], and the use of artificial noise generated
by FD receiver technology has been presented to enhance
physical layer security [13].

FIGURE 2. Operation mode of SCAJ radio.

We design IBFD transmitter-based transmit-sense-receive
(T-S-R) mode for SCAJ radio as depicted in Fig. 2(a)-(b).
Firstly, to check channel availability, the radio initially senses
in a half-duplex fashion for a duration TS0. Based on the
sensing outcome, the transmit side (TX) will decide the
current operational center frequency of transmit signal for
duration TX . Simultaneously, the receiver side (RX) continue
to sense jamming or receive signal. This sensing/receiving

process may be divided into K short sensing/receiving peri-
ods TS/TR, which can be dynamically allocated to account
for the tradeoff between sensing efficiency and timeliness in
detecting jamming activity. The current operating frequency
of airborne radio can be continuously monitored during sens-
ing time TS to improve the ability to situation awareness.
The T-S-R mode is effectively and practical way to do long
sensing for detecting whether the channel has been interfered
by jammer.

III. JAMMING SENSING
The design of cognitive anti-jamming strategy started from
the premise that the frequency bands usage information can
be available. Such information gives an advantage during the
operation mission because not only helps to ensure infor-
mation transmission but could be used for electromagnetic
warfare too. Spectrum situation awareness of jamming signal
is a part of cognitive anti-jamming communication system
and would be utilized to learn and adapt to the environment.
Likewise, sensing accuracy indicates the detecting probabil-
ity when the jammer is present. There are several methods of
channel sensing including energy detection, matched filtering
based detection and cyclostationarity-based detection are the
popular methods of sensing and estimation used in the CR
implementation. However, these sensing approaches can’t
achieve the trade off between performance and complexity.
To perform well in jamming sensing, we make use of an
improved energy detector [14], i.e. a p-norm energy detector,
where the conventional energy detector is modified by replac-
ing the squaring operation of the received signal amplitude
with an arbitrary positive power p may yield a performance
gain.

For the swarm network with N tactical radios and M jam-
mer, where M jammers operate in the same frequency band
and is sensed by each tactical radio. Hence, at SCAJ radio the
n−th sample of the baseband equivalent received signal can
be expressed as

y (n) =

{
hSIu (n)+ w (n), H0∑M

i=1
hi(n)si(n)+ hSIu (n)+ w (n), H1

(1)

where si(n) denotes the n-th sample of signal transmitted by
the i-th jammer, u (n) is the n-th sample of self-interfere sig-
nal.We assume that si and u are zero-mean circular symmetric
complex white Gaussian processes with variances σ 2

s and σ 2
u .

hi is the zero mean complex-valued channel coefficient with
variance σ 2

h , hSI is the self-interference channel coefficient
from radio transmitter to receiver with variance σ 2

hSI , while w
represent Gaussian noise signal with zero mean and vari-
ance σ 2

w. H0 and H1 correspond to the decision about the
presence and absence, respectively, of the jamming signal in
current frequency channel.
Based on the signal model described above, and defin-

ing η(n) = |y(n)|p

σ
p
w

, where p is an arbitrary positive real
number and is a tunable parameter that gives the decision
statistics some flexibility. Then the improved energy detector
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calculates the energy test statistics as

� =
∑Ns

n=0
η(n) (2)

whereNs is the number of samples used for jamming sensing.
The energy test statistic � is compared against a threshold λ
to yield the sensing decision, i.e., the IED decides that the
channel is busy if � > λ or idle, otherwise. When p = 2,
� reduces to the statistic

∑Ns
n=0

|y(n)|2

σ 2w
corresponding to the

conventional energy detection method.
Since |y (n)|2

/
σ 2
w is exponentially distributed and the prob-

ability distribution function (PDF) f
|y(n)|2

/
σ 2w
(�) is an exponen-

tially distributed random variable with parameters θ = 1
1+γinr

and θ = 1
1+γinr+

∑M
i=1 γsnr (i)

under hypotheses H0 and H1,

respectively, where γinr = σ 2
hSI σ

2
u

/
σ 2
w is the self-interference

to noise ratio, γsnr (i) = σ 2
h (i) σ

2
s (i)

/
σ 2
w is the signal to noise

ratio of the ith-jammer-radio link. We can make an equivalent
transformation on the cumulative distribution function (CDF)
of η by Pr (η ≤ x) = Pr

(
|y(n)|p

σ
p
w
≤ x

)
= Pr

(
|y(n)|2

σ 2w
≤ x

2
p

)
=∫ x

0

2
p θ exp (θ t) dt =1− exp (−θx

2
p ), where Pr (�) denotes the

probability.
The probability distribution function of η can be obtained

by differentiating the preceding equation, resulting in fη(x) =
2
pθx

2
p−1exp (−θx

2
p ). Therefore, we can obtain the conditional

PDF fη|H0 (x) and fη|H1(x) under hypotheses H0 and H1 as

fη|H0 (x) =
2
p

(
1

1+ γinr

)
x

2
p−1exp

[
−

(
1

1+ γinr

)
x

2
p

]
(3)

fη|H1 (x) =
2
p

(
1

1+ γinr +
∑M

i=1 γsnr (i)

)
x

2
p−1

×exp

[
−

(
1

1+ γinr+
∑M

i=1 γsnr (i)

)
x

2
p

]
(4)

We know that fη|H0 (x) and fη|H1 (x) are Weibull dis-
tributed [15]. According to the central limit theorem, if the
number of received samples are large, the decision variable�
will be normal distributed with mean and variance as

H0 :

µ0 = Ns (1+ γinr )
p
2 0

(
1+

p
2

)
σ 2
0 = Ns (1+γinr )

p
2

[
0
(
1+

p
2

)
−02

(
1+

p
2

)] (5)

and

H1 :



µ1=Ns

[
1+ γinr +

∑M

i=1
γsnr (i)

] p
2

0
(
1+

p
2

)
σ 2
1 =Ns

[
1+ γinr+

∑M

i=1
γsnr (i)

] p
2

×

[
0
(
1+

p
2

)
−02

(
1+

p
2

)] (6)

After some algebraic manipulations, the probability of
miss detection in each SCAJ radio can be obtained as

Pmd=Pr {� ≥ λ |H1 }=1− Q
(
µ1

σ1

)
−Q

(
λ− µ1

σ1

)
(7)

where Q(·) is the Q-function. Similarly, the probability of
false alarm in each radio can be obtained as

Pf = Pr {� ≥ λ |H0 } = Q
(
λ− µ0

σ0

)
(8)

Hence the total error probability of SCAJ radio jamming
sensing can be calculated as

Pe = Pf + Pmd

= 1+ Q
(
λ− µ0

σ0

)
− Q

(
µ1

σ1

)
− Q

(
λ− µ1

σ1

)
(9)

By differentiating the preceding equation (10), we can get

dPe(λ)
d(λ)

=
1
σ0

1
√
2πσ 0

exp

[
−

(
λ− µ0

σ0

)2
]

−
1
σ1

1
√
2πσ 1

exp

[
−

(
λ− µ1

σ1

)2
]

(10)

Let dPe(λ)d(λ) = 0, after some transformations, we can obtain
the optimal jamming sensing threshold

λopt =

µ0
σ 20
−

µ1
σ 21

1
σ 21
−

1
σ 20

−

√√√√√√√√
(
µ0
σ 20
−
µ1
σ 21

)2

−

(
1
σ 20
−

1
σ 21

)(
µ0
σ 20
−

µ1
σ 21
+ 2lnσ0

σ1

)
(

1
σ 20
−

1
σ 21

)2

(11)

FIGURE 3. ROCs for IED with p = 3.

In Fig. 3, the receiver operating characteristic curves (ROCs)
for improved energy detection are illustrated for different
number of jammers, simulation parameters are p = 3,
Ns = 10, INR = −2dB. We observe that as the number of
jammers increases, the detection probability reduces due to
the interference form the jammers increase for a fixed false
alarm probability.
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FIGURE 4. ROCs for multiple jammer with M = 5.

Next, we consider that the SCAJ radio operates
in 5-jammers environment, where the simulation parameter
M = 5. We assume the same p for the jammers, it is observed
that the detection probability increases as the p increase for
a fixed false alarm due to the interferences from the jammers
are suppressed.

FIGURE 5. The total error probability w.r.t. threshold.

Fig. 5 plots the jamming sensing total error probability
of SCAJ radio versus threshold by setting γinr = −10dB.
As show in the figure, for a fixed p = 3, M increase,
the minimum value of the total error probability increase.

Fig. 6 plots total error probability of jamming sensing
under threshold λ = λopt . It is observed that as M increase,
the total error probability increase, this due to the increase
of interferences from jammer increase; for a fixed M , as the
increase of p, the total error probability decrease.

IV. COGNITIVE ANTIJAMMING STRATEGY
In section II, we have presented the multiuser bandit model
for anti-jamming communication in swarm network. Nor-
mally, this problem can be considered as an approxima-
tion of contextual MAB, and the conventional contextual

FIGURE 6. Total error probability w.r.t. M.

bandit considers the existence of a context that influences
the action-selection process. As a consequence, the available
strategies vary with the context and the probability distribu-
tion of a given reward. However, due to the dynamic change
of aeronautical swarm network topology, such information
is difficulty to be obtained in practice. Therefore, we are
more focus on the case where no context can be inferred,
and the anti-jamming communication problem is modeled as
an adversarial bandit in which no stochastic assumption is
taken and several tactical radios compete against each other.
Especially, recent research shows that bandit algorithms tai-
lored for a stochastic model is still useful in non-stochastic
adversarial bandit problem [16]. This is a very encourag-
ing and beneficial result, and we will explore the cognitive
anti-jamming strategies based on stochastic bandit learning
algorithm. In the following, we present a selfish doubling
trick KL-UCB++ algorithm to cope with this kind of bandit
problem.

A. REWARD DEFINITION
In swarm network, the radio shapes an anti-jamming strategy
according to the obtained rewards. And a reward function
allows a radio conducting its action towards a given per-
formance metric. When choosing an action in anti-jamming
scheme based on bandit learning, the SCAJ radio has access
to the history of rewards and actions. The radio’s objective
is to choose a strategy that maximizes the expected reward
over a finite time horizon T . Therefore, accurate reward
is important to design anti-jamming strategy, and we carry
out reward calculation using the above-mentioned jamming
sensing output. However, defining a reward function may be
a very complex task. If a precise definition of reward perfectly
matches with the desired goal, the reward would improve the
learning procedure and reduce the probability of falling into
a local minimum.

Let ai ∈ A be an action that a SCAJ radiomay choose. Each
action is a configuration of frequency channel and transmit
power, and grants a reward that depends on the others’ action.
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We define Ci be the instantaneous throughput experienced by
radio i at time t , and C∗i is the maximum achievable through-
put of SCAJ radio. The maximum theoretical throughput can
be calculated as

C∗i = Bilog (1+ SNRi) (12)

where Bi is the access channel bandwidth of radio i on chan-
nel k , and SNRi is the receive signal-to-noise ratio (SNR) of
radio i. In the ASN, each radio opportunistically access to the
idle frequency channel fi with the transmit power pi under
the local sensing result, thus the opportunistic instantaneous
transmission throughput of radio i is given by

Ci =
(
1− Pf

)
r (1)i + Pmd r

(2)
i (13)

where r (1)i = Bilog
(
1+ |hii|2pi

σ 2w+
∑N

j6=i |hji|
2pj

)
, hji is the channel

gain for the link from radio i to radio j, pi is the transmit power

of radio i, and r (2)i = Bilog
(
1+ |hii|2pi

σ 2w+
∑N

j6=i |hji|
2pj+pJ

)
, pJ is

the jamming power, the Pmd and Pf are defined as (7) and (8),
respectively. After achieving the instantaneous throughput
Ci and the theoretical throughput C∗i , the reward can be
defined as

ri =
Ci
C∗i

=

(
1− Pf

)
r (1)i + Pmd r

(2)
i

Bilog (1+ SNRi)
(14)

This reward definition characterize a selfish behavior
which purely reflect the decentralized and adversarial prob-
lem. Through selfish learning, each tactical radio tries to
learn the best configuration for their own gain, regardless
of the performance experienced by other radios in swarm
network. Under these circumstances, each radio ignores the
existence of other learners. In particular, the accumulated
regret Ri,T that a given radio i experiences until time T can
be characterized as follows

Ri,T =
∑T

t=1

(
r∗i,t − ri,t

)
(15)

where r∗i,t is the optimal reward granted by the best possible
action in iteration t , and ri,t is the reward granted by the action
chosen by radio i at that iteration.

Since the agent in multiuser MAB model of aeronauti-
cal swarm network can’t get a priori information about the
state transition probabilities, KL-UCB++-based model-free
reinforcement learning algorithms would be suitable to solve
this game through trial-and-error interactions. Accordingly,
we introduce the KL-UCB++ algorithm to present a decen-
tralized bandit anti-jamming strategy.

B. KL-UCB++ ALGORITHM
The KL-UCB++ algorithm is a slight modification of algo-
rithm KL-UCB+. We first present some definition of a bandit
problem with K actions indexed by a ∈ {a1, . . . , aK}. Each
action is assumed to be a probability distribution of some

canonical one-dimensional family vθ indexed by θ ∈ 2. The
expectation of action a is denoted by µa ∈ [µ−, µ+] ⊂ I
and the best mean is µ∗ = maxa=1,...,Kµa. At each round 1,
an agent performs an action at and receives an independent
reward rt of the distribution vθAt . Let Na (T ) =

∑T
t=1 1{At=a}

be the number of performing action a up to and including
time T . The goal of KL-UCB++ algorithm is to minimize the
expected accumulated regret

RT = Tµ∗ − E
[∑T

t=1
rt

]
= E

[∑T

t=1

(
µ∗ − µAt

)
rt

]
=

[∑T

t=1

(
µ∗ − µa

)]
E [Na (T )] (16)

Let µa,n be the empirical mean of the first n rewards from
action a, and the empirical mean of action a after t rounds is

µ̄a (t) = µ̄a,N a(T ) =
1

Na (T )

∑
s=1

Ys1{As=a} (17)

Algorithm 1 The KL-UCB++ Algorithm
Parameters: The horizon T and an exploration function
g: N 7→ R+
Initialization: Pull each arm of {1, ..,K} once.
1: For t = K to T− 1, do
2: Compute for each arm a the quantity

Ia (t) = sup
{
µ ∈ I : kl

(
µ̂a (t), µ

)
≤
g (Na (T ))
Na (T )

}
3: Play At+1∈ argmaxa∈{1,...,K }Ia (t)
4: end

The KL-UCB++ algorithm is described as Algorithm 1,
where kl (µ̄a (t), µ) is the Kullback-Leibler divergence on
the set of action expectations. And the KL-UCB++ algorithm
uses the exploration function g given by

g (n) = log+

(
T
Kn

(
log2+

(
T
Kn

)
+ 1

))
(18)

where log+ (x) := max (log (x), 0).
The following results state that the kl-UCB++ algorithm is

simultaneously minimax- and asymptotically-optimal.
Lemma 1 (Minimax Optimality [9]): For any family F and

for any bandit model v ∈ F , the expected regret of the
KL-UCB++ algorithm is upper-bounded as

RT ≤ 76
√
VKT +

(
µ+ − µ−

)
K (19)

Lemma 2 (Asymptotic Optimality [9]): For any bandit
model v ∈ F , for any suboptimal arm a and any δ such that
√
22VK/T ≤ δ ≤ (µ∗ − µa) /3,

E [Na (T )] ≤
log (T )

kl (µa+δ, µ∗ − δ)
+ O

(
loglog (T )

δ2

)
(20)

which implies the asymptotic optimality.
The kl-UCB++ algorithm is simultaneously minimax opti-

mal and asymptotically optimal, but it is not anytime due
to the total number of decisions making is unknown for
anti-jamming communication in ASN. Hence in such cases,
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it is crucial to devise anytime kl-UCB++ algorithms which
do no rely on the knowledge of this horizon T to sequen-
tially select actions. A general way to implement an anytime
algorithm is the use of the doubling trick (DT), first proposed
by [17], that utilize geometric sequence Ti = 2i to consist
in repeatedly running the base algorithm with increasing
horizons, in which the horizon is actually doubling.
The doubling trick is a well known idea in online learn-

ing, and the key to guarantee regret is to choose correctly
the doubling sequence. Empirically, the term doubling trick
usually refers to the geometric sequence Ti =

⌊
T0bi

⌋
, is a

general procedure to convert a non-anytime algorithm into an
anytime algorithm. A geometric doubling sequence allows to
conserve a minimax bound of the form T ε (logT )ρ for any
0 < ε < 1 and ρ ≥ 0. Specific, unlike the previous geometric
sequences, the exponential sequence Ti :=

⌊
τab

i
⌋
can indeed

be used to conserve minimax regret bounds (logT )ρ . It has
been proved that the regret bounds of exponential doubling
tricks is better than that geometric doubling trick [18]. Next,
we utilize the kl-UCB++ algorithm based on exponential
doubling trick to design the anti-jamming strategy.

C. DT KL-UCB++ ANTI-JAMMING STRATEGY
For our K -armed adversarial bandit model with N users,
where the arms (actions) are refer to as the configura-
tion of spectrum channels and transmit power, the players
are the SCAJ radios. The idea of multi-domain cognitive
anti-jamming strategy is that each radio utilizes bandit learn-
ing algorithm to successfully learn a frequency-power selec-
tion policy to avoid the smart jammer. For the classical MAB
framework, an agent interacts with the environment in order
to maximize the reward according to its actions. However,
the presence of other radios in our adversarial bandit model
adds an extra complexity. In the dynamic swarm network
environment, spectrum channel quality may not be the same
for each radio, and channel-power selection should be done
by each SCAJ radio independently. Hence, a decentralized
selfish anti-jamming communication technology should be
implemented, where different radios aim to find the best
configuration by their own.

In our decentralized anti-jamming framework, some
important implications must be considered with regards to
practical application of bandit learning to ASN. Since each
radio attempts to learn by its own in highly dynamic environ-
ments, the action selection procedure is held in a disorganized
way and the competition unleashed by the adversarial radios
exits among the SCAJ radios. Although the radio can sense a
channel to detect the presence of jammers before deciding to
transmit data on this channel. However, distinct radios may
transmit on the same frequency band leading to intensive
collision, which may reduce throughput and cannot always
guarantee a sublinear regret. Therefor, the decision making
strategies which guarantee collision-free transmissions in the
ASN are desired.

FIGURE 7. Schematic of decentralized anti-jamming.

To reduce collision and speed up convergence, we propose
a decentralized anti-jamming strategy with finite coordina-
tion, which is shown schematically in Figure 7. The basic
principle can be described as follows. Firstly, the available
frequency channel is achieved by IED jamming sensing and
shapes a channel list. It is assumed that the list is stored in
cluster heads of ASN. If a radio have accessed one channel,
it will feedback the channel occupation information to cluster
heads. Then, this channel index would be canceled from
current list to avoid collision, and cluster heads broadcast the
updated channel list information to other radios to access.
Finally, the opportunity of channel collision can be reduced
by this partial coordination. The detailed anti-jamming strat-
egy is illustrate in Algorithm 2.

Algorithm 2 DT KL-UCB++ anti-jamming strategy

Input: KL-UCB++ algorithm A(0)

exponential sequence (Ti)i∈N
channel list {f1, · · · ,fK } using IED sensing
action set {a1, · · · ,aK }

Initialization: Let i = 0, and A(0)
= AT0

1: for t = 1, ...,T do
2: if t>Ti then
3: i = i+ 1.
4: Initialize KL-UCB++ algorithm Ai

= ATi−T i−1.
5: Update Ai with the history of actions and rewards

from all the steps from t = 1 to t = Ti.
6: end
7: Perform Ai(t − Ti) using Algorithm 1.
8: Compute an index Ia for each action.
9: Choose the action with highest index.
10: Computing the instantaneous throughput using (7),

(8) and (13).
11: Computing the theoretical throughput using (12).
12: Computing the reward using (14).
13: Update t = t + 1.
14: end

Clearly, we find that the doubling trick kl-UCB++ strategy
depends on a non-decreasing diverging doubling sequence
(Ti)i∈N and reinitializes its underlying algorithm A at each
time Ti. Hence, the total regret is upper bounded by the
regret on each sequence {Ti, · · · ,Ti+1 − 1} and is illustrated
in Lemma 3.

VOLUME 7, 2019 30241



H. Li et al.: Selfish Bandit-Based CAJ Strategy for ASN in Presence of Multiple Jammer

Lemma 3 (Regret Upper Bounds [18]): For any bandit
model and algorithm A and horizon T , doubling trick algo-
rithm has the generic upper bound,

RT (DT(A(Ti))i∈N) ≤
∑LT

i−0
RT i−T i−1 (AT i−T i−1

) (21)

where LT (Ti)i∈N := min{i ∈ N : Ti > T }.
Further, it can be observed that Algorithm 2 is a heuristic

doubling trick algorithm, in which a fresh algorithm A(i) is
created by the history from all the steps from t = 1 to t = Ti,
then fed with successive observations. However, it is much
harder to present theoretical result on this heuristic doubling
trick algorithm. We only conjecture that a regret upper bound
similar to that from Lemma 3, but it is still an open problem
to be solved.

V. SIMULATION RESULTS
In this Section, we evaluate the performance of selfish bandit-
based cognitive anti-jamming strategy for aeronautic swarm
network. In our numeric simulations, the available bandwidth
is B = 10MHz, it is divided into K = 2 frequency channels.
And we set the number of radio nodes N = 4 and the number
of jammers to NJ = 5. The ASN radios compete for access
to two orthogonal channels at three possible power levels.
Hence, denoting that the action sets {channel number fk ,
transmit power pt (dB) : a1 = {1, 5}, a2 = {1, 10}, a3 =
{1, 15}, a4 = {2, 5}, a5 = {2, 10}, a6 = {2, 15}, respectively.
Let Pd = 0.9 and the mean rewards µ̄ = [0.1, 0.5, 0.6,
0.9, 0.7,0.8] for distinct actions,. The doubling sequences we
consider are a exponential sequences Ti = 200× 2i.

FIGURE 8. Cumulated regret w.r.t time horizon.

In bandit learning-based strategy, a quantity termed as
expected cumulative regret is often used to characterize
the learning performance, which represents the cumulative
difference between the reward of the chosen actions and
the maximum expected reward. Accordingly, the objective
of anti-jamming strategy is equivalent to minimizing the
expected cumulative regret. We compare DT-kl-UCB++-
based anti-jamming strategy with the UCB and kl-UCB++

strategies. Figure 8 presents the growth of cumulated regret

with time of all these anti-jamming strategies. As expected,
it can be observed that the cumulative regret performance of
DT-kl-UCB++ anti-jamming strategy clearly outperforms the
UCB, kl-UCB++ strategies and Lai & Robbins lower bound.

FIGURE 9. Aggregate average throughput w.r.t. time horizon.

Figure 9 compares the aggregate average throughput
achieved by UCB and kl-UCB++ and DT-kl-UCB++ strate-
gies. In the figure, we find that the UCB and kl-UCB++

strategies perform slightly worse than the anytime
DT-kl-UCB++ strategy.

FIGURE 10. Probability of selection of the optimal action.

The probability of selection of the optimal action is shown
in Figure 10 for different strategies. Similarly, it can be
observed that the proposed DT kl-UCB++ strategy enjoys
more opportunity to select the optimal action than the other
non-anytime strategies.

VI. CONCLUSION
This paper has dealt with the potential and feasibility of
applying decentralized selfish bandit anti-jamming strategy
to aeronautic swarm network. We analyze the main charac-
teristics of ASN in electromagnetic spectrum warfare sce-
nario and establish an adversarial multiuser multi-armed
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bandit model. Then, we propose a doubling trick kl-UCB++

bandit-basedmultidomain anti-jamming strategy to copewith
this model. We highlight practical issues such as accurate
reward generation from jamming sensing results and anytime
kl-UCB++ algorithm design when applying bandit learn-
ing methods into ASN. Our studies show that the proposed
multidomain anti-jamming strategy is able to achieve larger
average throughput and low cumulative regret than state-of-
the-art bandit learning strategies. Even though each radio
performs anti-jamming by selfish and has no knowledge of
the number of players, which is appealing to engineering
implementation in dynamic ASN scenarios. In addition, the
presented DT-kl-UCB++ bandit strategy is only an heuristic
and lacks systematic theoretical proof, which is left for our
future work.
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