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ABSTRACT Forward scattered waves are produced by underwater intruders that cross a source–receiver
line. Strong direct blasts lead to a difficult detection of sound field aberrations caused by forward scattered
waves. An unsupervised detection scheme that processes repeatedly transmitted pulses on a receiver array
is proposed. For detection under strong blasts, the scheme performs unsupervised learning on spectra of
normalized envelopes on an array output, which has the advantage of robustness for weak field aberrations
and real-time detection after effective training. An experiment was carried out on the lake; the results show
that the method has yielded reliable results in comparison with approximately 1-dB aberrations on the
received pulse strengths caused by forward scattering from an intruder. Furthermore, the relationship between
strength aberrations caused by forward scattering and the location of the intruder through the baseline is
discussed further, and the capabilities of the scheme are further discussed with noise-added experimental
data.

INDEX TERMS Forward scattering, littoral water, sound field aberration, unsupervised machine learning.

I. INTRODUCTION
Forward scattered waves are produced when an underwa-
ter intruder crosses the baseline between a source and a
receiver. Sound field aberration occurs when a forward scat-
tered wave arrives on the receiver and interferes with direct
blasts. This aberration is intensely weak and difficult to detect
because the strength of the direct blasts is several decibels
over the forward scattered waves when the receiver is far
from the target. Moreover, the dynamics of the environment
can cause fluctuation on the received signal. The detection of
the aberration produced by the forward scattered signal from
the fluctuation caused by undulating environment directly
without a priori knowledge is difficult.

Researchers have proposed several processing meth-
ods and techniques for detecting acoustic field aberra-
tions. Gillespie et al. [1], Matveev and Mityugov [2], and
Matveev et al. [3] proposed similar methods that adopted
matched filtering techniques to detect perturbed fields; the
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effectiveness of the method was evaluated using models and
data obtained from experiments in a lake. This processing
technique was intuitive and preliminary. Folegot et al. [4]
developed a localization algorithm based on forward scat-
tering by using the result of an experiment set in a har-
bor. Song et al. [5] implemented an active time-reversal
experiment and observed that field aberrations were ini-
tially observed with the increase in the intensity of side
lobes near the focal zone. Sabra et al. [6] analyzed the
stable portions of received pulses and extracted the aber-
rations of recorded signals on hydrophones using princi-
pal component analysis (PCA). At the laboratory scale,
Marandet et al. [7] experimentally demonstrated the detec-
tion and localization of a wavelength-sized target in a shallow
ultrasonic waveguide between two source–receiver arrays at
3 MHz. Lei et al. [8], [9] further combined PCA with array
processing to enhance the aberrations of the recorded direct
arrival data on a short vertical receiver array (VRA), validated
the performance of the proposed method on the basis of
a lake experiment, and identified the relationship between
sound field aberration and crossing distance in theory
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and experiment. The adaptive processing scheme and
PCA-based concept are executed after acquiring several
pulses. He et al. [10] proposed a processing scheme based
on adaptive filtering to decrease the degree of received data
association; Lei et al. [11] developed this technology to a
dynamic environment and enhanced the forward scattered
signal by 10 dB higher than the direct blasts.

Machine learning refers to programming computers to
optimize a performance criterion using sample data or past
experience [12]. In recent years, applying machine learning
has achieved considerable results in many fields, such as
speech recognition [13] and image processing [14]. In ocean
acoustics, machine learning is preliminarily introduced in
source localization [15], [16] and sediment density estima-
tion [17]. Recently, Liu et al. [18], [19] proposed an unsu-
pervised machine learning method called isolation forest
(iForest) for anomaly detection. iForest builds an ensemble
of isolation trees (iTrees) for a given data set, and anoma-
lies are instances with short average path lengths on iTrees.
This method detects anomalies purely on the basis of the
concept of isolation without using any distance or density
measurement. Furthermore, this method has been verified to
work effectively in high-dimensional problems that contain
several irrelevant attributes. Under the forward scattering
detection configuration, a pulse signal is transmitted repeat-
edly and successively. The field aberration caused by forward
scattering from intruders can be considered the anomalies
of strength and arrival structure on the receivers. Thus,
the received signal that contains forward scattered waves can
be considered an abnormality with respect to direct blasts.

Therefore, a scheme based on this unsupervised machine
learning concept for forward scattering detection is proposed.
The received waveforms were subjected to a feature extrac-
tion process to suppress the variation in the received sig-
nal caused by environment undulations. A lake experiment,
in which a sinusoidal signal with 10 cycles was transmit-
ted repeatedly and received by a VRA placed in the water
column, was conducted. The scheme performed effectively
on the experimental data. The well-trained intruder might be
detected nearly in real time.

The remainder of this paper is organized as follows.
Section II provides the principle of the scheme based on unsu-
pervised machine learning. Section III describes the exper-
imental configuration and illustrates the processed results.
Section IV discusses the performance with different signal-
to-noise ratios (SNRs). Section V presents the conclusions of
this study.

II. DETECTION BASED ON UNSUPERVISED
MACHINE LEARNING
Forward scattering detection is a specified configuration in
a bistatic sonar system, which constantly broadcasts signals
successively and pulses repeatedly.When a submerged object
invades an area between the sound source and the receiver
because of forward scattering, an extremely weak sound field
aberration occurs on the receiver at an extended distance.

Therefore, intruders can be alerted by detecting this sound
field aberration.

The problem of detecting the field aberration can be trans-
formed into a problem of detecting anomalies. For a data set,
ungrouped data points are anomalies. In detecting sound field
aberration caused by forward scattering, a direct blast pulse is
dominant, and the similarity can be considered normal. The
field aberrations caused by the forward scattering are minor
and isolated. These results can be regarded as abnormalities.
In iForests, the attribute space spanned by the attributes of
data set is continuously segmented with hyperplanes until
each subspace contains only one data point. The direct blast
pulses are concentrated in the attribute space and must be
split multiple times to be isolated. The pulses affected by the
forward scattering are scattered, drawn out of the group in the
data space, and can be isolated only with a small number of
divisions. Therefore, anomaly detection can be achieved by
analyzing the difficulty of isolated data points.

Under the forward scattering configuration, the amplitude
of the received signal disturbed by the forward scattering
from intruders may be slight when the receiver is far from
the intruder. In practice, the anomaly may also be caused by
interference and environmental disturbances in addition to the
forward scattered signal, thereby causing a serious problem
when anomaly detection is utilized to detect the intruder with
forward scattering. Many literature [8], [10] reviews have
shown that beamforming on a vertical hydrophone array can
suppress a multipath direct blast and enhance the forward
scattered signal–direct blast ratio. The present study further
compares the detection performance of a beam output that
steered to horizontal direction and a single hydrophone and
draws a consistent conclusion.

A feature extraction process is required to ensure that the
detection method is stable and has favorable generalization
capabilities. The Hilbert transform on the received signals
was initially executed to obtain the pressure strength and
then normalized by a signal power to eliminate the influence
of attenuation in a time-varying channel. Discrete Fourier
transform (DFT) was then executed on the normalized enve-
lope waveforms because using the spectrum as the feature
vector of the algorithm avoids the instability of the time
domain waveform. The spectrum of the normalized envelope
is expressed as follows:

X(f ) = [x1(f ), x2(f ), . . . , xN (f )], (1)

where f is the frequency, and xn(f ) is the envelope spectrum
of the nth received pulse signal (referred to as pulse envelope
spectrum thereafter). X(f ) with a dimension of L × N is
used as input data for processing, where L is the length of
a single pulse envelope spectrum, and N is the number of
pulse envelope spectra. The two processing steps, namely,
training and evaluation processes are executed within the
iForest algorithm to detect the field aberration caused by
forward scattering from intruders. The training process uses
training data to build iTrees, whereas the evaluation process
obtains an anomaly score for each pulse envelope spectrum.
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Data set X includes the training data in the training pro-
cess. A sub-sample of dimension L × Ñ (Ñ ≤ N ) selected
randomly from X is used to build one an iTree, which is
denoted as X̃. Frequency bin qth is selected randomly from
L frequency bins for one iTree. T denotes a node of an
iTree. Split value p between the max and min amplitudes of
frequency bin q is randomly selected for node T . At node T ,
a test X̃(q) > p or X̃(q) < p determines the traversal of
pulse envelope spectra xi ∈ X̃ to either Tl or Tr , the two
daughter nodes of T . These steps are repeated until Ñ pulse
envelope spectra are isolated (the last node has only one pulse
envelope spectrum, or all pulse envelope spectra at the node
have the same amplitudes) or have reached the height limit
of the iTrees to complete one iTree. The height limit defaults
to hlim = log2(Ñ ) to ensure algorithm efficiency. Multiple
iTrees are created by repeating these steps. At the end of
the training process, a collection of iTrees is returned for
evaluation.

In the evaluation procedure, the test spectra are processed
through iTrees to obtain an anomaly score for each pulse.
The test spectra travel along the corresponding branch in the
iTree until the external node is reached. The path length h(x)
that was passed during this process is recorded. The path
length h(x) indicates the number of edges that passed when
a pulse envelope spectrum x traverses from the root node
through an intermediate node and finally reaches an external
node in an iTree, and its value indicates the anomaly level of
pulse envelope spectra. A short path length indicates a high
susceptibility to isolation, and its counterpart indicates a low
susceptibility. Therefore, the spectra disturbed by forward
scattering must have short path lengths because they are
highly decentralized, i.e., more isolated than other spectra in
the data space. Isolated data are separated from other data
early on iTrees.

An anomaly score for pulse envelope spectrum x is defined
as follows:

s(x, Ñ ) = 2
−E(h(x))

/
a(Ñ )

, (2)

where E(h(x)) is the average of h(x) from a collection of
iTrees. a(Ñ ) is the average of h(x) with a given Ñ expressed
as follows:

a
(
Ñ
)
=


2H

(
Ñ − 1

)
− 2

(
Ñ − 1

)
/Ñ for Ñ > 2

1 for Ñ = 2
0 for Ñ = 1,

(3)

where H (i) is the harmonic number and can be estimated
by H (i) = ln(i) + ξ (where ξ ≈ 0.5772156649 is Euler’s
constant). In the application of anomaly detection, the data
set with only one sample (Ñ = 1) has no anomaly con-
cept. Therefore, in this paper, Ñ ≥ 2 is required and thus

a
(
Ñ
)
= 0 does not actually occur.

Two limit values of the anomaly score are observed.
(1) If the intruder is absent, then all the direct blasts are

basically the same. The received pulses are concentrated
in the data space, thereby resulting in scores at approxi-
mately 0.5. (2) If the intruder is present and the pulses dis-
turbed by forward scattering are sufficiently isolated from
other pulses in the data space, then the scores of these pulses
will be approximately 1 and that of the other pulses will
be nearly 0. Provided that the direct blast is much stronger
than the forward scattered waves in detecting sound field
aberrations, the scores for the received signals that contain a
forward scattered signal and that of received signals that only
contain direct blasts may not have an apparent difference. The
following experimental results corroborate that the scores
for a received signal that contains a forward scattered wave
reach 0.6 and that the scores for only the direct blast are
approximately 0.4.

Since the normalization in the feature extraction process
results in the loss of the amplitude information, the anomaly
score s needs to be compensated as follows:

1M =
M

E(M )
, (4)

s′ = (1+ |1M − 1|)× s, (5)

where M is the maximum amplitude of the received pulse
signal, and E(M ) is the average maximum amplitude calcu-
lated by the maximum amplitude of the received pulses in the
previous 100 s.

The processing procedures for the proposed scheme are
illustrated in Figure 1 and described as follows:

Step 1. Feature extraction processing. The received signals
undergo Hilbert transform to obtain the envelopes and are
then normalized by power. DFT is then applied to obtain the
spectra. Finally, the processing frequency band is intercepted
on the basis of the frequency band of transmitted signal
envelopes.

Step 2. The input data are divided into training and testing
data, or all the data are used as training and testing data
because iForest is an unsupervised machine learning algo-
rithm. The training data do not require being labeled. Thus,
a priori knowledge of data anomaly is superfluous.
Step 3. Training data are used to build iTrees.
Step 4. The anomaly scores for each pulse are obtained

using (5). Thereafter, sound field aberrations may be detected
in accordance with anomaly scores.

A receiver operating characteristic (ROC) [20] curve is a
graphical plot that illustrates the diagnostic ability of a binary
classifier system because its discrimination threshold varies.
A pulse that is accurately predicted to be affected by a forward
scattered signal is called true positive (TP); otherwise, it is
called false positive (FP). Similarly, a pulse that is accurately
predicted to be a regular pulse is called true negative (TN);
otherwise, it is called false negative (FN). The TP rate (TPR)
and FP rate (FPR) are defined as follows:

TPR =
TP

TP+ FN
, (6)

FPR =
FP

TN + FP
, (7)
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FIGURE 1. Detection scheme within four steps. Step 1. The received signals undergo Hilbert transform to obtain the
envelope and are then normalized by power. DFT is then applied to obtain the spectra. Step 2. The input data are
divided into training and testing data. Step 3. The training data are used to build i Trees. Step 4. The anomaly scores for
each pulse envelope spectrum are obtained.

FIGURE 2. Experimental setup in the lake. The depth was 40 m, and the source–receiver range was
1100 m. The source, object and receiver were placed at a depth of 10m and the intruder was towed 15 m
behind a boat that travelled approximately perpendicularly to the source–receiver line.

where TP,FP, TN, and FN are the positive or negative num-
bers of the four cases. The ROC curve is created by plot-
ting the TPR against the FPR at various threshold settings.
The area under the ROC curve (frequently referred to as
simply the AUC) [21] is equal to the probability that a
classifier will rank a randomly selected positive instance
higher than a randomly selected negative one (assuming
that ‘‘positive’’ ranks higher than ‘‘negative’’). An AUC
value that is approximately 1 indicates an effective detec-
tion effect. Calculating the AUC is to calculate the area
between the ROC and the abscissa axis. Assuming that the
ROC is formed by a series of point connections with coor-
dinates {(A1,B1), (A2,B2), · · · , (Am,Bm)}, the AUC can be
estimated as:

AUC =
1
2

m−1∑
i=1

(Ai+1 − Bi)(Ai + Bi+1) (8)

III. EXPERIMENT AND PROCESSING RESULTS
In Figure 2, an experiment was conducted in a lake with a
depth of 40 m. An omnidirectional transmitter with a reso-
nance frequency of 11 kHz was deployed at a depth of 10 m,
and a VRA that included 13 omnidirectional hydrophones
was positioned. The center of the array was at the same depth
with the source, and the inter-sensor spacing was 25 cm. The
distance between the source and the VRAwas 1100 m, which
is in accordance with the global positioning system measure-
ment. A plastic foam plate (length = 6 m; width = 2 m;
thickness= 5 cm), covered on both sides by aluminum plates,
was submerged into the line between the source and the VRA.
A load was attached beneath the object to provide negative
buoyancy. The object was centered at an approximate depth
of 10 m. The source intermittently transmits a pulse signal to
reduce aliasing of the multipath propagation signal. A 0.5 ms
sinusoidal pulse was transmitted repeatedly every 0.5 s at a
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frequency of 10 kHz, and the sampling frequency was set to
223 kHz on the receivers.

FIGURE 3. Sound speed profile. The upper volume was an isovelocity and
the sound speed was approximately 1484 m/s. The sound speed profile
has a negative gradient at the low volume.

The sound speed profile was measured with conductivity-
temperature-depth instrument (CTD), as depicted in Figure 3.
The upper volume was an isovelocity, and the sound speed
was approximately 1484 m/s. The sound speed profile was
a negative gradient at the low volume given the temperature
decrease. The depth of the sound speed was 33 m because
we did not have the exact information beyond the bottom.
At the lowest volume, the sound speed, which was evaluated
in accordance with the negative gradient, was approximately
1445 m/s at the depth of 40 m. The bottom was assumed to
be a half-space with a density of 1.6 g/cm3 and sound speed
of 1720 m/s.

FIGURE 4. Eigenrays in the experimental environment simulated by the
bellhop ray model. The Figure does not include ray that bounces more
than twice between the surface and the floor. It shows that the main
energy is horizontally oriented.

The sound propagation under the experimental environ-
ment is simulated using the bellhop ray model [22], [23], and
the eigenrays are demonstrated in Figure 4 (excluding more
than two bounces on the surface or seafloor). The propagation

path results showed that the main energy is horizontally
oriented. Thus, the VRA was subjected to Chebyshev time-
delay beamforming with the beam steered to the hydrophone
array broadside. The array horizontal beam output waveform
is compared with the waveform of a single hydrophone,
as exhibited in Figure 5. The horizontal direct blasts and
the blasts from the bottom reflections are partially amplified.
The left panel clearly shows that the direct blasts remain
intact in the beam output, whereas the blasts from the bottom
reflections in the right panel are effectively suppressed in the
beam output. In the following context, the detection results
obtained from the output of a single hydrophone and the
horizontally steered beam output were further discussed.

The intruder was towed 15 m behind a boat that travels
approximately perpendicularly to the source–receiver line at
a distance of 186 m (hereinafter referred to as Case 1) and
324 m (hereinafter referred to as Case 2) from the VRA.
The strength aberrations of the received pulses on the output
of beam steered to horizontal for two cases are plotted in
Figures 6(a) and 6(d), respectively. The sound field aberra-
tion caused by forward scattering could be weakly observed
between 100 and 140 s. The strength aberrations of received
signals were not more than 3 dB in Figure 6(a) and approxi-
mately 1 dB in Figure 6(d). The bandwidth of the envelope
spectrum was 2 kHz because the length of one pulse was
0.5 ms. Therefore, the frequency band below 2 kHz was
intercepted to reduce extraneous frequency response bins
and suppress noise. After feature extraction processing, each
pulse envelope spectrum contained 93 equally spaced fre-
quency response bins, i.e., 93 features. Therefore, the input
samples were 93-dimensional. A high dimension is an impor-
tant factor for selecting the iForest algorithm. The data above
were used as the training data to build the iForest.
The path lengths in the iForest algorithm typically con-

verge effectively before 100 iTrees according to Liu’s
research result. Therefore, the iForest performed in this study
included 100 iTrees. For each iTree, subsampling size Ñ is set
to 256 according to Liu’s research. Thus, the height limit for
theiTrees was set to 8.

Once iForest is performed, the anomaly scores for each
pulse can be obtained using (2). Figure 6(b) exhibits the
anomaly scores for the data shown in Figure 6(a). At a
running time of approximately 95–150 s, the object crossed
through the source–receiver line. Thus, forward scattering
occurred, and the scores were significant at higher than 0.6.
For direct blasts, the scores were mostly close to 0.4. At a
running time of approximately 75 and 165 s, the scores were
higher than 0.5 for a few pulses. These high scores might
be caused by an interference from the experimental environ-
ment or equipment. The results showed that the proposed
scheme can effectively distinguish the sound field aberration
caused by forward scattering even under strong direct blasts.

When underwater intruders cross the line at a far distance
from the receiver, The strength aberrations of the received
pulses on the output of beam steered to horizontal are plotted
in Figure 6(d). The forward scattered waves are weaker
than the short-range forward scattered waves because the
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FIGURE 5. Waveforms of the array horizontal beam output and a single hydrophone. The
horizontal direct blasts and the blasts from the bottom reflections are partially amplified. The
left panel clearly shows that the direct blasts remain intact in the beam output, whereas the
blasts from the bottom reflections observed in the right panel are effectively suppressed in the
beam output.

underwater intruders cross the source–receiver line farther
from the receiver. In this case, detecting the intruders was
difficult. Nearly no sound field aberration can be directly
found in Figure 6(d). The anomaly scores of data is displayed
in Figure 6(e), in which the anomaly scores of the pulse
envelope spectra affected by forward scattering generally
reached 0.6, whereas the score of the direct blast was approx-
imately 0.4. This result confirmed that the weak sound field
aberration in this set of data remains successfully detected as
an outlier. The ROC curve of the detection result presented
in Figure 6(b) is illustrated in Figure 6(c). The AUC for
the beam output and single hydrophone is 0.94 and 0.85,
correspondingly. The ROC curve of the detection result
demonstrated in Figure 6(e) is depicted in Figure 6(f). The
AUC for the beam output is 0.81 and that for the single
hydrophone signal is 0.74. Evidently, the detection perfor-
mance declined when intruders pass through the source–
receiver line at long ranges given the weak forward scattered
waves, but it could still be maintained at a high level. The
result from the array was remarkably better than that of the
single hydrophone, thus indicating that the beamforming on
the vertical array effectively suppresses the abnormalities
caused by other interferences that lead to FPs. Therefore, hor-
izontal beamforming output signals are used in the following
demonstrations.

IV. DISCUSSIONS
For the forward scattering detection system, the sonar equa-
tion associated with the difference between forward scattered

FIGURE 6. Processed results on the experimental data. Panels (a) and (d)
show the strength aberrations of received pulse obtained from the output
of beam steered to horizontal for Case 1 and Case 2, respectively.
In Panels (b) and (e), the dark and light lines show the score of each
pulse in Panels (a) and (d), correspondingly. Panels (c) and (f) show the
ROC curves for the detection results of Case 1 and Case 2, respectively.

signal and direct blast strengths can be used for perfor-
mance estimation and is derived using the following equation.
In the littoral waveguide, the transmission loss (TL) can be
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FIGURE 7. Panel (a) shows the relationship between distance and forward scattered signal–direct blast ratio.
A crossing point that is close to the midpoint of the baseline implies that a weak forward scattered signal–direct
blast ratio. Panel (b) shows the range of values for the strength aberrations at different distances.

evaluated using the following equation [24]:

TL(R) = 20 log10 R0 + 10 log10(R/R0)+ αR, (9)

R0 =
H

2 tanβ0
, (10)

whereH is the water depth for the waveguide,R is the source–
receiver range, α is the waveguide absorption loss in decibels
per kilometer, and β0 is the critical angle on the fluid bottom.
The SNR for the direct blast can be estimated as follows:

SNR0 = SL− TL(R)+ DI− NL, (11)

where SL is the source level, NL is the noise level, and DI
is the directivity index. The SNR for an intruder with a target
strength (TS) that crosses a distanceD away from the receiver
is expressed using the following equation:

SNR = SL− TL(R− D)− TL(D)+ TS+ DI− NL.

(12)

The forward TS associated with the projected cross-section
area A and wavelength λ can be approximated by the follow-
ing formula [25]:

TS = 20 log10(A/λ), (13)

The TS in an ocean waveguide might be smaller than its
value in a free space given the presence of absorption in the
medium [26]. If the NL is assumed to remain constant during
the crossing of the target, the forward scattered signal–direct
blast ratio 1S can be approximated as follows:

1S = SNR− SNR0

= TS+ 10 log10(
R

D(R− D)
)− 10 log10 R0. (14)

For the experimental environment and target used in
the experiment (A = 12 m2, λ = 0.15 m, and
TS≈38 dB), the relationship between D and 1S is displayed

in Figure 7(a). A crossing point that is close to the mid-
point of the baseline indicates a weak received forward scat-
tered waves. The strength aberrations 1 of received signals
caused by forward scattering can be approximated as follows:

1max = 10 log10
(
1+ 10

1S
10

)
1min = 10 log10

(∣∣∣1− 10
1S
10

∣∣∣) . (15)

The range of values for the strength aberrations 1 at dif-
ferent distances D is presented in Figure 7(b).
In this process, the same data set was performed for

training and testing because the experimental data are lim-
ited. Therefore, this process is similar to the post-processing
scheme. However, because the intruder is moving, the real-
time detection is practical in applications. Gaussian white
noise with a limited bandwidth of 4 kHz (transmitted sig-
nal frequency band) is added to the received signal of each
hydrophone with an SNR of 10 dB (the SNR is based on
the estimated energy of forward scattered waves in accor-
dance with (14)) due to the limited amount of the experimen-
tal data to simulate the effect of the dynamic environment
on the amplitude of the received signal. Thus, the testing
data are different from the training data. The noise-added
data are used as the new test data and subjected to feature
extraction processing, and the strength aberrations for new
test data illustrated in Figures 8(a) and 8(d). Monte Carlo
simulations are run for 500 times. The proposed method
can also detect the sound field aberration from this noise-
added data, and the averaged anomaly scores are depicted in
Figures 8(b) and 8(e). In comparison with the results demon-
strated in Figures 6(b) and 6(e), the anomaly scores generally
increased because the noise-added data are more isolated
compared with the original data. Therefore, with the differ-
ence between the test data and the training data expanding,
the detection threshold needs to be appropriately increased.
The anomaly scores of the pulse envelope spectra affected
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FIGURE 8. Processed results on the experimental data with added
Gaussian noise. Panels (a) and (d) are strength aberrations of normalized
noise-added signals that correspond to the signals displayed
in Figures 6(a) and 6(d), respectively. Panels (b) and (e) show the average
score of each pulse in Panels (a) and (d) after 500 Monte Carlo runs,
correspondingly. Panel (c) shows the ROC curve for the detection results
of Case 1, and Panel (f) shows the ROC curve for the detection results of
Case 2. Panels (c) and (f) show the ROC curves for the detection results of
Case 1 and Case 2 for 500 Monte Carlo runs.

FIGURE 9. AUC for different SNRs. Inconsistent signal-to-noise ratios
between training data and test data can cause performance degradation,
and detector performances approach the performance of random
detectors at low signal-to-noise ratios.

by forward scattering were generally higher than direct
pulse by 0.1 ∼ 0.2, which is lower than the difference
of 0.3 in Figures 6(b) and 6(e). This indicates a decrease
in detection performance. The ROC curves are illustrated
in Figures 8(c) and 8(f). The AUCs of the received data are

0.89 and 0.83 in the two cases when the intruder is close to
the source–receiver line.

The AUCs under different SNRs are depicted in Figure 9.
The detection performance gradually decreases, and the AUC
gradually approaches 0.5 with the decrease in SNR. The
random detector has an AUC of 0.5; thus, a detector with an
AUC higher than 0.5 is valuable. The results show that the
inconsistency of the signal-to-noise ratio of the training data
and the test data leads to a decline in detection performance.

V. CONCLUSIONS
The problem of underwater detection using sound field aber-
rations is interesting. However, this detection is a challenge
due to weak aberrations caused by a strong direct blast inter-
ference. This study presents a simple, robust, and data-based
method that addresses the problem.

This method is not dedicated to extracting or amplify-
ing the characteristics of the forward scattered signal but
to providing a real-time detection that relies only on the
weak effects generated by the forward scattered signals. The
method uses small-scale, unlabeled data for training to divide
a data space into normal and anomalous data spaces. The
normalized envelope spectrum is designed to achieve a robust
method in a fluctuating environment. Notably, this method
enables real-time detection after training. The application of
measured data shows that the detection is successful when
the sound field aberration is approximately 1 dB under the
interference of a strong direct blast. Moreover, when the
crossing point between an intruder and a source–receiver line
is close to the receivers, the possibilities of detection are
high because the strength of field aberration is evident in
accordance with the proposed sonar equation.

The size of the data used in this study is on the order of
hundreds. When additional experimental data are provided,
the proposedmethodmay achieve remarkable results. In addi-
tion, the data, which only include the undulating direct blasts,
may be utilized for training.
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