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ABSTRACT The notion of covariant–contravariant refinement (CC-refinement) is a generalization of
the notions of bisimulation and refinement, which is coinductively defined to describe behavior relation,
i.e., two related processes are required to be always able to provide matched transitions each other. The
notion of CC-n-refinement, where n is a natural number, presented in this paper, finitely approximates
the notion of CC-refinement through weakening the above-mentioned requirement. A process is said to
CC-n-refine another process whenever they can, within n-steps, match the transitions each other, and a
CC-n-refinement relation may be considered to be a CC-refinement relation if n is big enough. Based on this
kind of finite approximation, this paper presents CC-n-refinement modal logic (nCCRML) obtained from
the modal system K by adding CC-n-refinement quantifiers, establishes an axiom system for nCCRML,
and explores some important properties of this axiom system: soundness, completeness, and decidability.
CC-n-refinement quantifiers can be used to formalize some interesting problems in the field of formal
method.

INDEX TERMS Approximation, axiom system, covariant-contravariant n-refinement, modal logic.

I. INTRODUCTION
A number of different compatible relations between labeled
transitions systems (LTSs) have been presented in the liter-
ature (see [1], [2]), which are adopted to capture the behav-
ior relations between processes. Among them, the notion of
simulation is often used to describe the refinement between
reactive systems. However, for the systems having genera-
tive (active) actions (e.g., input/output (I/O) automata), such
notion is inappropriate to describe the refinement relations
between these systems [2], [3]. To remedy it, the notion
of covariant-contravariant refinement (CC-refinement, for
short) is presented in [2], which is a behavioral preorder over
LTSs and in which all actions are partitioned into three sorts:
covariant, contravariant, and bivariant actions. The covariant
actions represent the passive actions of a system, whose exe-
cution is under the control of the environment. The transitions
labeled with these actions in a given specification should be
simulated by any correct implementation. The contravariant
actions denote the generative actions under the control of
a system itself. The transitions labeled with these actions

in an implementation must be allowed by its specification.
The bivariant actions are treated as in the usual notion of
bisimulation. It is easy to see that the notion of CC-refinement
generalizes the notions of bisimulation and refinement con-
sidered in [1]. More work on it may be found in [2]–[5].

For the coinductively defined notions of behavior relations
(e.g., bisimulation, simulation, and CC-refinement, et al.),
two related processes are required to be always able to pro-
vidematched transitions each other. Throughweakening such
requirement, there is a natural way of finitely approximat-
ing these notions. For example, given a natural number n,
two processes are said to be n-bisimilar (bisimilar up to n)
whenever, within n steps, they can match the transitions
each other. These finite approximations are interesting and
useful. They may be used to search finite models for a given
modal formula, through which the finite model property of a
modal logic is established. Moreover, they are useful in for-
mal design and development of dynamic systems. For exam-
ple, LTSs may be considered as the models of optimization
problems in control theory. In this situation, the difference
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between LTSs occurring in the far future is not as important
as the difference occurring in the near future [6], and hence
two n-bisimilar LTSs may be considered to be ‘‘equivalent’’
if n is big enough.
It is well known that there exists a deep link between

behavior relations and modal logics. A number of modal
characterization theorems (e.g., HML theorem) have been
established for different behavior relations [7]. Recently,
another kind of modal logics related to behavior relations
are presented and explored with very different motivation.
Bozzelli et al. [1], [8] named them refinement modal logic
(RML). RML provides a more abstract perspective of future
event logic [9], [10] and arbitrary public announcement
logic [11]. In addition to usual modal operators, RML con-
tains refinement operator ∃B. Intuitively, the formula ∃Bα
says that we can refine the current model so that α is realized.
Thus, the problem where a specification, expressed by a
LTS M , has an implementation satisfying a given property ϕ
may be formalized as themodel checking problemM |H ∃Bϕ.
Inspired by Laura Bozzelli et al’s work, a refinement

modal logic (CCRML) is established based on the notion
of CC-refinement, and a sound and complete axiom sys-
tem for CCRML is provided [12]. We obtain its language
LCC from the standard modal language LK [13] by adding
CC-refinement operator ∃(A1,A2), where A1 (A2) is a set of all
covariant (contravariant, resp.) actions. The formula ∃(A1,A2)α
intuitively represents that there exists a refined model of
the current model which realizes α. If a given specification,
expressed by a LTS M , involves covariant and contravariant
actions, by applying CC-refinement operators, the problem
whether this specification has an implementation realizing
some given property ψ is boiled down to the model checking
problem: M |H ∃(A1,A2)ψ .
This paper presents the notion of CC-n-refinement, by con-

sidering, within n steps, the matching requirement in the
notion of CC-refinement, where n is a natural number.
In other words, CC-n-refinement weakens the requirement
of CC-refinement. This paper considers a refinement modal
logic based on this finite approximation and its language
LnCC is obtained from LCC by replacing CC-refinement oper-
ator ∃(A1,A2) with CC-n-refinement operator (or, quantifier)
∃
n
(A1,A2)

. This paper also gives an axiom system nCCRML
for LnCC and explores its important properties: soundness,
completeness, and decidability.

We organize this paper as follows. Section 2 gives
the notion of CC-n-refinement. Section 3 presents CC-n-
refinement modal logic. Section 4 establishes a sound and
complete axiomatization for CC-n-refinement modal logic.
Finally we end this paper with a brief summary and applica-
tion discussion of CC-n-refinement in Section 5.

II. CC-N-REFINEMENT
Given a finite set A of actions and a countable set P of
propositional letters, a model M is a triple 〈SM ,RM ,VM

〉,
where SM is a non-empty set of states, RM is an accessibility
function from A to 2S

M
×SM which assigns to each action b in

A a binary relation RMb ⊆ SM × SM , and VM
: P → 2S

M

is a valuation function. A pair (M , u) with u ∈ SM is said
to be a pointed model, often written as Mu. For any binary
relation R and u, R(u) , {v | uRv}, π1(R) , {s | ∃t(sRt)} and
π2(R) , {t | ∃s(sRt)}. For any sets B and B′ with B ⊆ B′,
iB,B′ is used to denote the graph of inclusion function from B
to B′, that is iB,B′ = {〈b, b〉 | b ∈ B}. We use ◦ to indicate the
composition operator of relations.

As usual, we writeM ]N to represent the disjoint union of
two modelsM and N such that SM ∩ SN = ∅, which is given
by SM]N , SM ∪ SN , RM]Nb , RMb ∪R

N
b for each b ∈ A and

VM]N (q) , VM (q) ∪ VN (q) for each q ∈ P.
Recall the notion of CC-refinement, in which, two related

models are required to be always able to provide matched
transitions each other [2]. Given a natural number n,
the notion CC-n-refinement is a finite approximation of the
notion of CC-refinement. That is, it is enough that the require-
ment to match the transitions each other is satisfied within
n steps.
Definition 1 (CC-n-refinement): Let A1,A2 ⊆ A such that

A1 ∩ A2 = ∅ and n < ω. Given two models M = 〈S,R,V 〉
andM ′ = 〈S ′,R′,V ′ 〉, a sequence of binary relations {Zi}i≤n
such thatZn ⊆ · · · ⊆ Z0 ⊆ S×S ′ is an (A1, A2)-n-refinement
relation between M and M ′ if, for each 0 < i ≤ n,
(atoms) uZ0 u′ implies u ∈ V (q) iff u′ ∈ V ′(q) for each q ∈

P;
(forth) for each b ∈ A− A2 and v ∈ S, uZiu′ and uRbv

imply u′R′bv
′ and vZi−1v′ for some v′ ∈ S ′;

(back) for each b ∈ A− A1 and v′ ∈ S ′, uZiu′ and u′R′bv
′

imply uRbv and vZi−1v′ for some v ∈ S.
Here A1 and A2 are said to be covariant and contravari-
ant set respectively. We say that M ′s′ (A1,A2)-n-refines Ms
(or, Ms (A1,A2)-n-simulates M ′s′ ), in symbols Ms �

n
(A1,A2)

M ′s′ , if there exists an (A1,A2)-n-refinement relation {Zi}i≤n
between M and M ′ with sZns′. We also write {Zi}i≤n :

Ms �
n
(A1,A2)

M ′s′ to indicate that {Zi}i≤n is an (A1,A2)-n-
refinement relation such that sZns′.
As usual, the (A1,A2)-ω-refinement relation

�
ω
(A1,A2),

⋂
n<ω

�
n
(A1,A2) .

We still write Z : Ms �(A1,A2) M
′

s′ to describe that Z is an
(A1, A2)-refinement relation between Ms and M ′s′ with sZs

′

(see [12] in detail).
Example 1: Consider two models M and N depicted

in Fig. 1, where A = {a, b, c}, A1 = {a}, A2 = {b}, and
VM (p) = ∅ and VN (p) = ∅ for each p ∈ P.
It is not difficult to observe that the relation sequence {Zi}i≤2
with

Zi =


{〈s, t〉} if i = 2
{〈s, t〉, 〈u, u1〉, 〈u, u2〉} if i = 1
{〈s, t〉, 〈u, u1〉, 〈u, u2〉, 〈v, v1〉, 〈v, v2〉} if i = 0,

represented by dash arrows, is an (A1,A2)-2-refinement rela-
tion between Ms and Nt . However, unfortunately, Nt does not
(A1,A2)-refine Ms as the matching fails in ‘‘the third level’’.
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FIGURE 1. ({a}, {b})-2-refinement.

The notion of CC-refinement [12] generalizes the notions
of bisimulation and refinement considered in [1]. Similarly,
an n-bisimulation relation is exactly an (∅,∅)-n-refinement,
and a B-n-refinement relation an (∅,B)-n-refinement. For
n-bisimulation, the reader may also refer to [13] and [14].
We write Z : Ms↔M ′s′ ({Zi}i≤n : Ms↔

nM ′s′ ) to indicate
thatZ (resp., {Zi}i≤n) is a bisimulation (resp., n-bisimulation)
which witnesses that Ms is bisimilar (resp., n-bisimilar)
to M ′s′ .
Proposition 1: The relation �n(A1,A2) is reflexive and

transitive.
Proof: For every pointed modelMs, it is easy to see that

{iSM ,SM }i≤n : Ms �
n
(A1,A2)

Ms, which implies that the relation
�
n
(A1,A2)

has the reflexivity.
Assume {Zi}i≤n : Ms �

n
(A1,A2)

M ′t and {Z ′i }i≤n :
M ′t �

n
(A1,A2)

M ′′u . For the transitivity, it is enough to show that
the sequence of composition relations {Zi ◦ Z ′i }i≤n satisfies
the conditions (atoms), (forth) and (back) in Definition 1,
which is straightforward. �
Proposition 2: �(A1,A2)⊆�

ω
(A1,A2)

.
Proof: Let Z : Mu �(A1,A2) Nv. Then, we have that for

all n < ω,

{Z}i<n : Mu �
n
(A1,A2) Nv.

It is clear that Z ⊆
⋂

n<ω �
n
(A1,A2)

. �
Proposition 3: Ms1↔M ′s2 �

n
(A1,A2)

N ′t2↔Nt1 implies that
Ms1 �

n
(A1,A2)

Nt1 .
Proof: Straightforward by Definition 1. �

Proposition 4: Ms↔
nM ′s′ �(A1,A2) Nt implies that

Ms �
n
(A1,A2)

Nt .
Proof: Straightforward by Definition 1. �

Recall the notion of tree and tree-like model in the
literature [13]. Here, we call a multi-agent model M
tree-like if the structure 〈SM ,

⋃
a∈A R

M
a , V

M
〉 is a tree.

In detail,
Definition 2 (Tree-like model): We say that a model M is

tree-like if the following conditions are satisfied:
(1) there is a unique s ∈ SM , called the root, such that

∀t ∈ SM − {s}∃b1, · · · , bn ∈ A(s
b1
→ v1 · · ·

bn
→ vn = t),

that is, each t ∈ SM − {s} is accessible from s;

(2) for each t ∈ SM − {s}, there is a unique immediate
(
⋃

a∈A R
M
a ) -predecessor, namely, there is a unique

t ′ ∈ SM such that t ′RMa t for some a ∈ A;

(3) ∀t ∈ SM¬∃b1, · · · , bn ∈ A(t
b1
→ v1 · · ·

bn
→ vn = t).

Let Ms �
n
(A1,A2)

Nt . As every rooted model is bisimilar
to a tree-like model [13], by Proposition 3, we may w.l.o.g.
assume that M and N are trees rooted at s and t respectively.
We use the notation depth(Ms, u) to denote the depth of the
state u in the tree M (depth(Ms, s) = 0). By removing all the
sub-trees of all the states whose depth is n, the modelM ′s will
be obtained from Ms, and similarly, the model N ′t from Nt .
Interestingly, we easily observe that M ′s is n-bisimilar to Ms,
N ′t is n-bisimilar to Nt , and N ′t (A1,A2)-refines M

′
s.

Definition 3 (n-model): Let M be a tree rooted at s. Its
n-model Mn,s is defined as follows.

SM
n,s
, SM − {u ∈ SM | depth(Ms, u) > n}

RM
n,s

b , RMb ∩ (S
Mn,s
× SM

n,s
) for each b ∈ A

VMn,s
(q) , VM (q) ∩ SM

n,s
for each q ∈ P.

Convention. In the remainder of the paper, we always sup-
pose that the modelM is a tree rooted at swhenever the model
Mn,s is used.
Proposition 5: Ms↔

nMn,s
s .

Proof: For each 0 ≤ i ≤ n, put

Zi , {〈u, u〉 | u ∈ SM and depth(Ms, u) ≤ n− i}.

It is clear that {Zi}i≤n : Ms↔
nMn,s

s . �
Proposition 6: Let Ms �

n
(A1,A2)

Nt . Then

Mn,s
s �(A1,A2) N

n,t
t .

Proof: Let {Zi}i≤n : Ms �
n
(A1,A2)

Nt . For each 0 ≤ i ≤ n,
we set

Z ′i , {〈u, v〉 ∈ Zi | depth(Ms, u) = depth(Nt , v) ≤ n− i}.

Clearly, sZ ′nt . Since Ms and Nt be trees rooted at s and t
respectively, by the definition of CC-n-refinement, we have
that {Z ′i }i≤n : Ms �

n
(A1,A2)

Nt . Further, it is straightforward to
check that ⋃

i≤nZ ′i : Mn,s
s �(A1,A2) N

n,t
t .�

�
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Proposition 7: The relation �n(A1,A2) satisfies Church-
Rosser property, that is, if Ms �

n
(A1,A2)

Nt andMs �
n
(A1,A2)

N ′t ′
then Nt �n(A1,A2) M

′

s′ and N
′

t ′ �
n
(A1,A2)

M ′s′ for some M
′

s′ .
Proof: Let Ms �

n
(A1,A2)

Nt and Ms �
n
(A1,A2)

N ′t ′ .

Then Mn,s
s �(A1,A2) N n,t

t and Mn,s
s �(A1,A2) (N ′)n,t

′

t ′ by
Proposition 6. As the relation �(A1,A2) has Church-Rosser
property [12], we haveN n,t

t �(A1,A2) M
′

s′ and (N
′)n,t

′

t ′ �(A1,A2)

M ′s′ for some M ′s′ . Next, by Proposition 5, Nt↔nN n,t
t and

N ′t ′↔
n(N ′)n,t

′

t ′ , which imply that Nt �n(A1,A2) M ′s′ and
N ′t ′ �

n
(A1,A2)

M ′s′ follows from Proposition 4, as desired. �
As CC-refinement, through taking compositions, any CC-

n-refinement may be captured by CC-n-refinements for sin-
gleton covariant and contravariant set.
Proposition 8: Let A1,A2 ⊆ A with A1 ∩ A2 = ∅. Then,

for each n < ω and A′1,A
′′

1,A
′

2,A
′′

2 such that A
′

1 ∪ A
′′

1 = A1
and A′2 ∪ A

′′

2 = A2, it holds that

�
n
(A′1,A

′

2)
◦ �

n
(A′′1,A

′′

2)
= �

n
(A1,A2) .

Proof: (⊆) Let Ms �
n
(A′1,A

′

2)
◦ �

n
(A′′1,A

′′

2)
Nt . Then

{Zi}i≤n : Ms �
n
(A′1,A

′

2)
N ′v and {Z ′i }i≤n : N ′v �

n
(A′′1,A

′′

2)
Nt for

some pointed model N ′v, {Zi}i≤n and {Z ′i }i≤n. It is routine to
verify that {Zi ◦ Z ′i }i≤n : Ms �

n
(A1,A2)

Nt .
(⊇) Let Ms �

n
(A1,A2)

Nt . By Proposition 6, we get
Mn,s
s �(A1,A2) N n,t

t . Recall that, in [12, Proposition 2.6],
we have that

�(A1,A2) ⊆ �(A′1,A
′

2)
◦ �(A′′1,A

′′

2)
.

Then,

Mn,s
s �(A′1,A

′

2)
◦ �(A′′1,A

′′

2)
N n,t
t .

By Proposition 2, this implies that

Mn,s
s �

n
(A′1,A

′

2)
◦ �

n
(A′′1,A

′′

2)
N n,t
t .

Further, due to Ms↔
nMn,s

s and Nt↔nN n,t
t by Proposition 5

and the transitivity of CC-n-refinement relation, it follows
that

Ms �
n
(A′1,A

′

2)
◦ �

n
(A′′1,A

′′

2)
Nt .�

�
Corollary 1: If A1 6= ∅ or A2 6= ∅ then, for each n < ω,

�
n
θ1
◦ �

n
θ2
◦ · · · ◦ �

n
θm
= �

n
(A1,A2)

Here, if A1 6= ∅ and A2 6= ∅ then {θi}1≤i≤m with m = |A1 ×
A2| is a permutation of all pairs in A1 × A2, otherwise, {θi |
1 ≤ i ≤ m} = Ak with m = |Ak | if Ak 6= ∅ (k = 1 or 2).

III. CC-N-REFINEMENT MODAL LOGIC
Based on CCRML, this section presents CC-n-refinement
modal logic (nCCRML, for short) by replacing CC-
refinement operators with CC-n-refinement operators.
Definition 4 (Language LnCC ): Let A be a finite set of

actions, P a set of propositional letters and n < ω. The
language LnCC of CC-n-refinement modal logic is generated

by the BNF grammar below, where ∅ 6= A1, A2 ⊆ A with
A1 ∩ A2 = ∅, q ∈ P, and b ∈ A:

ϕ ::= q | ¬ϕ | (ϕ1 ∧ ϕ2) | �bϕ | ∃n(A1,A2)ϕ

The modal operator ♦b and propositional connectives >, ⊥,
∨, →, and ↔ are used in the standard manner. We dually
write ∀n(A1,A2)ϕ for¬∃

n
(A1,A2)

¬ϕ. ∃(A1,A2) and ∀(A1,A2) are CC-
refinement operators in the language LCC of CCRML [12].

Here we suppose A1,A2 6= ∅ for the sake of simplicity,
resorting to similar declarations as in [12, Sec. 5]. If both
A1 and A2 are singleton set, say A1 = {a1} and A2 =
{a2}, we write ∃n(a1,a2)ϕ (or ∀n(a1,a2)ϕ) instead of ∃n(A1,A2)ϕ
(resp. ∀n(A1,A2)ϕ ). Furthermore, in order to ease the notation,
we shall write

∧
♦b∃

n
(a1,a2)

8 (or �b
∨
∃
n
(a1,a2)

8) for∧
ϕ∈8♦b∃

n
(a1,a2)

ϕ (resp. �b
∨
ϕ∈8 ∃

n
(a1,a2)

ϕ).
In this paper, we also adopt cover operator ∇b [15], [16].

As usual, for each b ∈ A, ∇b8 is defined by �b
∨
ϕ∈8 ϕ ∧∧

ϕ∈8♦bϕ, where 8 is a finite set of formulas. By the way,
the operators �b and ♦b may be defined in terms of ∇b.
Formally, �bψ and ♦bψ are captured by ∇b∅ ∨ ∇b{ψ} and
∇b{ψ,>} respectively.

Given a model M , the notion of a formula ϕ ∈ LnCC
being satisfied in M at a state u is defined inductively by:
Mu |H q iff u ∈ VM (q), where q ∈ P
Mu |H ¬ϕ iff Mu /|H ϕ

Mu |H ϕ1 ∧ ϕ2 iff Mu |H ϕ1 and Mu |H ϕ2
Mu |H �bϕ iff for all v ∈ RMb (u),Mv |H ϕ

Mu |H ∃
n
(A1,A2)

ϕ iff Mu �
n
(A1,A2)

Nv and Nv |H ϕ
for some Nv

As usual, for every ψ ∈ LnCC , we say ψ is valid, written as
|H ψ , whenever Mu |H ψ for each pointed model Mu. It is
not difficult to see that LnCC -satisfaction is invariant under
bisimilarity. This is a known result:
Proposition 9: If Mu↔Nv then

Mu |H ψ iff Nv |H ψ for each ψ ∈ LnCC .

Proof: Prove inductively by the structure of formulas.
�

Proposition 10: Mu↔
nNv |H ∃(a1,a2)ψ implies that Mu |H

∃
n
(a1,a2)

ψ .
Proof: Let Mu↔

nNv |H ∃(a1,a2)ψ . Then Nv �(a1,a2)
N ′v′ |H ψ for some N ′v′ . By Proposition 2, we have Nv �

n
(a1,a2)

N ′v′ . Next, Mu �
n
(a1,a2)

N ′v′ due to the transitivity of �n(a1,a2).
Hence it holds that Mu |H ∃

n
(a1,a2)

ψ . �
Proposition 11: For each n < ω and A′1, A

′

2, A
′′

1 , A
′′

2 ⊆ A
such that (A′1 ∪ A

′′

1) ∩ (A
′

2 ∪ A
′′

2) = ∅, we have that

|H ∃
n
(A′1,A

′

2)
∃
n
(A′′1,A

′′

2)
ψ ↔ ∃n(A′′1,A

′′

2)
∃
n
(A′1,A

′

2)
ψ.

Proof: By Proposition 8, immediately. �

IV. AXIOM SYSTEM
A sound and complete axiom system for nCCRML will be
presented in this section. Analogous to the axiom system
CCRML [12] and RML [1], the uniform substitution rule is
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TABLE 1. Axiom system of nCCRML.

also not sound in nCCRML. For instance, q → ∀n(a1,a2)q is
valid for each q ∈ P and n < ω, however, it is clear that

♦a2>→ ∀
0
(a1,a2)♦a2>

is not valid. Hence nCCRML is not a normal modal logic.
We use LK to denote the set of all LnCC formulas con-

taining no CC-n-refinement operators, and Lp the set of all
propositional formulas in LnCC . Obviously, LK is indeed the
multi-agent modal language, which may be axiomatized by
the system K [13].

We list the axiom schemes and rules for nCCRML
in Table 1. The axiom schemes nCCR, nCCRp1, nCCRp2,
nCCRD and nCCRKco1 depict the similar properties as
the axiom schemes CCR, CCRp1, CCRp2, CCRD and
CCRKco1 of CCRML [12], respectively. The axiom scheme
0CCRK reveals that ∃0(a1,a2)∇b preserves the consistency of
LK -formulas. nCCRKco2, nCCRKcontra and nCCRKbis
allow us to transform ∃n+1(a1,a2)

∇b8 into a formula of the form
Fb(∃n(a1,a2)8), where the format Fb depends on the sort of the
action b. nCCRKconj is the ∃n(a1,a2)-over-∧ distribution.
As usual, ` β (`K β) means that β is a theorem in

nCCRML (resp., K [13]).

A. TECHNICAL PRELIMINARY
In this subsection, we will make some technical preparations
in order to establish the soundness of the axiom system.

In verifying Lemma 3, 4, 5 and 6, we intend to apply
the validity of the axiom schemesCCRKco2,CCRKcontra,
CCRKbis and CCRKconj of CCRML [12], which are listed
in Table 2, where B ⊆ A, 0 ⊆f LK , and 8,8b ⊆f LCC .

To realize this, given {Zi}i≤n : Ms �
n
(a1,a2)

Nt , we intend
to obtain a model M ′s′ such that Ms ↔

n M ′s′ �(a1,a2) Nt .
Definition 5 gives such a model, denoted by Ms +{Zi}i≤n

Nt . In the following, we will explain its construction.

TABLE 2. Some axiom schemes of CCRML.

At first glance, since Ms↔
nMn,s

s , we may obtain the desired
model by modifying Mn,s

s . If uZ0 v with depth(Ms, u) =
depth(Nt , v) = n, we will append the v-generated submodel
of N to u and prescribe the behaviors between u and this
submodel according to the behaviors of v. Unfortunately,
there exists the possibility that uZ0 v and uZ0 w such that
the depth of u in M and v,w in N is n. To remedy it, we will
intend to replace u by the pairs 〈u, v〉 and 〈u,w〉. Moreover,
the transitions from these new states in Ms +{Zi}i≤n Nt are
prescribed according to the ones entering u in Mn,s and the
ones outgoing from v or w in N . In Definition 5, the set of
such u is denoted by ZN

0 , which is defined as

ZN
0 , {〈u, v〉 ∈ Z0 | depth(Ms, u) = depth(Nt , v) = n}.

Example 2: Consider two tree-like models M and N
rooted at s and t respectively, in which the submodels consist-
ing of the states whose depth is not less than n are depicted
in Fig. 2. Here A = {a, b, c}, the depth of u1, u2, v1, and
v2 is n, and {Zi}i≤n : Ms �

n
(a,b) Nt for some {Zi}i≤n

with 〈u1, v1〉, 〈u1, v2〉 ∈ Z0. The submodel of the model
Ms +{Zi}i≤n Nt obtained by the construction mentioned in the
preceding paragraph, consisting of the states whose depth is
not less than n, may be depicted as in Fig. 3.
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FIGURE 2. The submodels of M and N consisting of the states whose depth is not less
than n.

FIGURE 3. The submodels of Ms +{Zi }i≤n
Nt consisting of the states

whose depth is not less than n.

Definition 5: Given two disjoint tree-like models M and N
rooted at s and t respectively such that {Zi}i≤n : Ms �

n
(a1,a2)

Nt , the model M ′ is defined as follows.
(M ′1) S

M ′ , (SM
n,s
− π1(ZN

0 )) ∪ S
N
∪ ZN

0
(M ′2) For each b ∈ A, R

M ′
b ⊆ SM

′

× SM
′

is given by

RM
′

b , RNb ∪ {〈w, 〈u, v〉〉 | wR
M
b u and uZ

N
0 v} ∪

(RMb ∩ (S
M ′ )2) ∪ {〈〈u, v〉,w〉 | uZN

0 v and vRNb w}

(M ′3) For each q ∈ P,

VM ′ (q) , (VM (q) ∩ SM
′

) ∪ VN (q)

∪{〈u, v〉 | uZN
0 v and u ∈ VM (q)}

Here

ZN
0 , {〈u, v〉 ∈ Z0 | depth(Ms, u) = depth(Nt , v) = n}.

The model Ms +{Zi}i≤n Nt is the s-generated submodel of M
′,

which is indeed a tree rooted at s.
Convention. In the remainder of the paper, we always

suppose that the models M and N are trees rooted at
s and t respectively and they are disjoint whenever the model
Ms +{Zi}i≤n Nt is used.

The model Ms +{Zi}i≤n Nt enjoys the desired properties:
Proposition 12: With the notations as in Definition 5,

we have

Ms ↔
n (Ms +{Zi}i≤n Nt )s �(a1,a2) Nt .

Proof: Let M ′ , Ms +{Zi}i≤n Nt . Put

Z ′i ,
{
ZH
i if 1 ≤ i ≤ n

ZH
i ∪ {〈u, 〈u, v〉〉 | uZ

N
0 v} if i = 0

where

ZH
i , {〈u, u〉 | u ∈ S

M ′
∩ SM and depth(Ms, u) ≤ n− i}.

Clearly, {Z ′i }i≤n : Ms↔
nM ′s. For each 1 ≤ i ≤ n, set

Z ′′i , {〈u, v〉 ∈ Zi | depth(Ms, u) = depth(Nt , v) = n− i}

and then

Z ,
⋃

1≤i≤n

Z ′′i ∪ {〈〈u, v〉, v〉 | uZ
N
0 v} ∪ iSM ′∩SN ,SN .

It is routine to check that Z : M ′s �(a1,a2) Nt . �

B. SOUNDNESS
In this subsection, we devote ourselves to establish the
soundness of the axiom system, beginning with giving some
validities.
Lemma 1: If all the pairs in A1 × A2 are arranged in a

permutation {θi}1≤i≤|A1×A2| then

|H ∃
n
(A1,A2)ψ ↔ (∃nθ1 · · · ∃

n
θ|A1×A2|

)ψ.

Proof: By Corollary 1 and Proposition 11, immediately.
�

Actually, for every sequence {θi}1≤i≤m of the pairs in A1×A2
such that every action in A1 ∪ A2 occurs in θi for some 1 ≤
i ≤ m, we always have

|H ∃
n
(A1,A2)ψ ↔ (∃nθ1 · · · ∃

n
θm
)ψ.
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Lemma 2: Let 8b ⊆f LnCC for each b ∈ B(⊆ A). Then

|H ∃
0
(a1,a2)

∧
b∈B

∇b8b

whenever each ψ in
⋃

b∈B8b is satisfiable.
Proof: Let Ms be a pointed model. For each b ∈ B,

since each ψ in 8b is satisfiable, we may choose arbitrarily
and fix a pointed model N bψ

ubψ such that N bψ
ubψ |H ψ for each

ψ ∈ 8b. W.l.o.g., we assume that all these N bψ
ubψ (b ∈ B, ψ ∈

8b) are pairwise disjoint. The model N is obtained from⊎
b∈B,ψ∈8b

N bψ
ubψ by adding a new state s′ and imposing the

following clauses:
(i) for each b ∈ B, s′RNb w iff w = ubψ for some

ψ ∈ 8b, and
(ii) for each q ∈ P, s′ ∈ VN (q) iff s ∈ VM (q).

Obviously,

{〈s, s′〉} : Ms �
0
(a1,a2) Ns′ .

Moreover, for each b ∈ B, on the one hand, it is not
difficult to see that for each t ∈ RNb (s

′) = {ubψ | ψ ∈ 8b},
Nt |H ψ for some ψ ∈ 8b, hence Ns′ |H �b

∨
8b; on

the other hand, for each ψ ∈ 8b, there exists an corre-
sponding ubψ ∈ RNb (s

′) such that Nubψ |H ψ , which implies
Ns′ |H

∧
♦b8b. Together, Ns′ |H

∧
b∈B ∇b8b. Thus, Ms |H

∃
0
(a1,a2)

∧
b∈B ∇b8b due to Ms �

0
(a1,a2)

Ns′ . �
If |B| = 1 then we get that for each b ∈ A,

|H ∃
0
(a1,a2)∇b8 whenever each ψ in 8 is satisfiable.

Lemma 3: Let 8 ⊆f LnCC . Then
(1) |H ∃n+1(a1,a2)

∇a18→ �a1
∨
∃
n
(a1,a2)

8,
(2) |H �a1

∨
∃
n
(a1,a2)

8→ ∃n+1(a1,a2)
∇a18 whenever each

ψ in 8 is satisfiable.
Proof: (1) Suppose that Ms |H ∃

n+1
(a1,a2)

∇a18. Then for
some Nt ,

Ms �
n+1
(a1,a2)

Nt |H ∇a18.

So Nt |H �a1
∨
8, namely, for each v ∈ RNa1 (t), Nv |H ψ

for some ψ ∈ 8. From Ms �
n+1
(a1,a2)

Nt , it follows that for
each u ∈ RMa1 (s), Mu �

n
(a1,a2)

Nv′ for some v′ ∈ RNa1 (t).
Hence, for each u ∈ RMa1 (s), Mu |H ∃

n
(a1,a2)

ψ for some
ψ ∈ 8, which implies that Mu |H

∨
∃
n
(a1,a2)

8. Therefore
Ms |H �a1

∨
∃
n
(a1,a2)

8.
(2) LetMs |H �a1

∨
∃
n
(a1,a2)

8. Then, for each u ∈ RMa1 (s),
Mu |H ∃

n
(a1,a2)

ψ for some ψ ∈ 8. So we have {Zu
i }i≤n :

Mu �
n
(a1,a2)

N u
vu |H ψ for some fixed N u

vu and {Zu
i }i≤n.

W.l.o.g., suppose that M and all these N u (u ∈ RMa1 (s))
are pairwise disjoint. By Definition 5 and Proposition 12,
we have

Mu ↔
n (Mu +{Zu

i }i≤n
N u
vu )u �(a1,a2) N

u
vu |H ψ.

LetMu +{Zu
i }i≤n

N u
vu = 〈S

u,Ru,V u
〉. By renaming each state

w ∈ Su to 〈u,w〉 (assume, ({u} × Su) ∩ SM = ∅), we obtain
the model Mu from Mu +{Zu

i }i≤n
N u
vu . The purpose is to

make all the models in {M}∪
⋃

u∈RMa1 (s)
Mu pairwise disjoint.

Next, we construct the model M ′ from M ]
⊎

u∈RMa1 (s)
Mu

by removing all the a1-labeled transitions outgoing from s
inM and adding the a1-labeled transition s

a1
→ 〈u, u〉 for each

u ∈ RMa1 (s), which results in RM
′

a1 (s) = {〈u, u〉 | u ∈ R
M
a1 (s)}.

It is not difficult to see that for each u ∈ RMa1 (s), we still have

Mu ↔
n M ′
〈u,u〉 �(a1,a2) N

u
vu |H ψ

Then M ′s |H �a1
∨
∃(a1,a2)8. Fortunately, based on the

validity of the axiom scheme CCRKco2 (in Table 2) of
CCRML [12], we get

M ′s |H ∃(a1,a2)∇a18.

Further, Ms↔
n+1M ′s follows easily from Mu↔

nM ′
〈u,u〉. So

Ms |H ∃
n+1
(a1,a2)

∇a18 by Proposition 10. �
Lemma 2 implies the validity of the axiom scheme

0CCRK. However, we can not apply the following formula

∃
0
(a1,a2)

∧
b∈B

∇b8b whenever each ψ in
⋃
b∈B

8b is satisfiable

as an axiom scheme. The reason is that its side condition
involves a semantical concept. Similarly, Lemma 3 implies
the validity of the axiom scheme nCCRKco2, however the
formula

∃
n+1
(a1,a2)

∇a18↔ �a1
∨
∃
n
(a1,a2)8,

where each ψ in 8 is satisfiable, is also unavailable as an
axiom scheme.

Fortunately, in order to show the completeness of
nCCRML in Section IV-C, by relying on the completeness
of K, it is enough to require 8 ⊆f LK and to express the
side condition in terms of K-derivability (see, 0CCRK and
nCCRKco2 in Table 1).
Lemma 4: |H ∃n+1(a1,a2)

∇a28↔
∧
♦a2∃

n
(a1,a2)

8 for every
8 ⊆f LnCC .

Proof: Suppose that Ms |H ∃
n+1
(a1,a2)

∇a28. Then there
exists Nt such that

Ms �
n+1
(a1,a2)

Nt |H ∇a28.

We intend to check Ms |H ♦a2∃
n
(a1,a2)

ψ for every ψ ∈ 8.
Let ψ be any formula in 8. From Nt |H ∇a28, it follows
that Nv |H ψ for some v ∈ RNa2 (t). Next, since Ms �

n+1
(a1,a2)

Nt , we have that Mu �
n
(a1,a2)

Nv for some u ∈ RMa2 (s). Then
Mu |H ∃

n
(a1,a2)

ψ . Hence Ms |H ♦a2∃
n
(a1,a2)

ψ follows from
u ∈ RMa2 (s).
Let Ms |H

∧
♦a2∃

n
(a1,a2)

8 and 8 = {ϕ1, · · · , ϕm}. Then,
for each 1 ≤ j ≤ m, Muj |H ∃

n
(a1,a2)

ϕj for some uj ∈ RMa1 (s).

Next, we choose arbitrarily and fixed a pointed modelN j
vj and

a sequence of binary relations {Z j
i }i≤n such that {Z j

i }i≤n :

Muj �
n
(a1,a2)

N j
vj |H ϕj. W.l.o.g., we assume that M and all

these N j (1 ≤ j ≤ m) are pairwise disjoint. By Definition 5
and Proposition 12, it follows that

Muj ↔
n (Muj +{Z j

i }i≤n
N j
vj )uj �(a1,a2) N

j
vj |H ϕ

j.
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Let Muj +{Z j
i }i≤n

N j
vj = 〈S

j,Rj,V j
〉. By renaming each state

w ∈ S j to 〈j,w〉 (suppose, ({j} × S j) ∩ SM = ∅), the model
M j is obtained from Muj +{Z j

i }i≤n
N j
vj . Immediately, all the

models in {M} ∪
⋃

1≤j≤m{M
j
} are pairwise disjoint. Further,

the modelM ′ is constructed fromM ]
⊎

1≤j≤mM
j by adding

the a2-labeled transition s
a2
→ 〈j, uj〉 for every 1 ≤ j ≤ m.

Obviously, it still holds that

Muj ↔
n M ′
〈j,uj〉 �(a1,a2) N

j
vj |H ϕ

j,

and then we get M ′s |H
∧
♦a2∃(a1,a2)8. From the valid-

ity of the axiom scheme CCRKcontra (in Table 2) of
CCRML [12], it follows that

M ′s |H ∃(a1,a2)∇a28.

Moreover, it is easy to see that Ms↔
n+1M ′s due to

Muj↔
nM ′
〈j,uj〉. Together, by Proposition 10, it holds that

Ms |H ∃
n+1
(a1,a2)

∇a28 as desired. �
Lemma 5: Let b ∈ A and 8 ⊆f LnCC . Then
(1) |H ∃n+1(a1,a2)

∇b8→ ∇b∃
n
(a1,a2)

8 whenever b 6= a1, a2,
(2) |H ∇b∃n(a1,a2)8→ ∃

n+1
(a1,a2)

∇b8.
Proof: (1) Let Ms |H ∃

n+1
(a1,a2)

∇b8. By the analysis
similar to that in the proof of Lemma 4 and Lemma 3 (1),
we get that

Ms |H
∧
♦b∃

n
(a1,a2)8 and Ms |H �b

∨
∃
n
(a1,a2)8.

Immediately, Ms |H ∇b∃
n
(a1,a2)

8.
(2) Let Ms |H ∇b∃

n
(a1,a2)

8 and 8 = {ϕ1, · · · , ϕm}. Then
Ms |H

∧
♦b∃

n
(a1,a2)

8 and Ms |H �b
∨
∃
n
(a1,a2)

8. The analy-
ses similar to those in the proof of Lemma 4 and Lemma 3 (2)
give us the desired model M ′ here. Namely, the model M ′ is
obtained fromM ]

⊎
u∈RMb (s)M

u
]

⊎
1≤j≤mM

j by removing
all the b-labeled transitions outgoing from s inM and adding

the b-labeled transition s
b
→ 〈u, u〉 for each u ∈ RMb (s) and

s
b
→ 〈j, uj〉 for each 1 ≤ j ≤ m (8 = {ϕ1, · · · , ϕm}).

Also, it is not difficult to see that M ′s |H ∇b∃(a1,a2)8 and
Ms↔

n+1M ′s. Then, it follows from the validity of the axiom
scheme CCRKbis (in Table 2) of CCRML [12] that

M ′s |H ∃(a1,a2)∇b8.

Hence, by Proposition 10, Ms |H ∃
n+1
(a1,a2)

∇b8 holds. �
Note that Lemma 5 (1) would be invalid without the

assumption that b 6= a1, a2. We will give the following
counterexamples. Consider the models depicted in Fig. 4 (1).
We have that

{Zi}i≤1 : Ms �
1
(a1,a2) Nt

with

Zi ,

{
{〈s, t〉} if i = 1
{〈s, t〉, 〈u, v〉} if i = 0

and Nt |H ∇a18 with 8 = {p, q} ⊆ P. It is clear that Ms |H

∃
1
(a1,a2)

∇a18, but it is easy to see Ms /|H
∧
♦a1∃

0
(a1,a2)

8,
hence Ms /|H ∇a1∃

0
(a1,a2)

8.

FIGURE 4. Counterexamples used in Lemma 5 (1).

Analogously, for the models in Fig. 4 (2), we have that
{Z ′i }i≤1 : Ms �

1
(a1,a2)

Nt with

Z ′i ,
{
{〈s, t〉} if i = 1
{〈s, t〉, 〈u,w〉} if i = 0

and Nt |H ∇a28 with 8 = {p} ⊆ P. Thus Ms |H

∃
1
(a1,a2)

∇a28, however, obviously, Ms /|H �a2
∨
∃
0
(a1,a2)

8,
so Ms /|H ∇a2∃

0
(a1,a2)

8.
Lemma 6: Let 8b ⊆f LnCC for every b ∈ B(⊆ A). Then

|H ∃
n
(a1,a2)

∧
b∈B ∇b8b ↔

∧
b∈B ∃

n
(a1,a2)

∇b8b.

Proof: If β is unsatisfiable for some β ∈
⋃

b∈B8b, then

|H

∧
b∈B

∇b8b ↔ ⊥.

It is easy to see that

|H ∃
n
(a1,a2)

∧
b∈B

∇b8b ↔ ⊥ and |H
∧
b∈B

∃
n
(a1,a2)∇b8b ↔ ⊥.

Immediately, we get that

|H ∃
n
(a1,a2)

∧
b∈B

∇b8b ↔
∧
b∈B

∃
n
(a1,a2)∇b8b.

Below, we consider the nontrivial case where each β in⋃
b∈B8b is satisfiable. It is not difficult to observe that

|H ∃
n
(a1,a2)

∧
b∈B

∇b8b→
∧
b∈B

∃
n
(a1,a2)∇b8b.

28936 VOLUME 7, 2019



H. Xing: Refinement Modal Logic Based on Finite Approximation of CC Refinement

Next we prove the converse implication. Suppose that Ms |H∧
a∈B ∃

n
(a1,a2)

∇a8a. Consider two cases based on n.
(I) n = 0
By Lemma 2, ∃0(a1,a2)

∧
b∈B ∇b8b and ∃0(a1,a2)∇b8b for

each b ∈ B are valid, hence this implication holds trivially.
(II) n > 0
Let b ∈ B and 8b = {ϕ1, · · · , ϕmb}. For b = a1,

by Lemma 3 (1), it holds that Ms |H �a1
∨
∃
n−1
(a1,a2)

8a1 . For
b = a2, by Lemma 4, we get that Ms |H

∧
♦a2∃

n−1
(a1,a2)

8a2 .
For b 6= a1, a2, by Lemma 5 (1),Ms |H ∇b∃

n−1
(a1,a2)

8b follows
fromMs |H ∃

n
(a1,a2)

∇b8b. Through the analyses analogous as
those in the proof of Lemmas 3 (2), 4 and 5 (2), the desired
model M ′ here is obtained from M ]

⊎
b∈B,u∈RMb (s)M

bu
]⊎

b∈B,1≤j≤mb M
bj by modifying correspondingly the a1-

labeled, a2-labeled and b-labeled transitions respectively.
Thus, we may get that M ′s |H �a1

∨
∃(a1,a2)8a1 , M

′
s |H∧

♦a2∃(a1,a2)8a2 , M
′
s |H ∇b∃(a1,a2)8b (b 6= a1, a2),

and Ms↔
nM ′s. From the validity of the axiom schemes

CCRKco2, CCRKcontra and CCRKbis (listed in Table 2)
of CCRML [12], it follows that

M ′s |H
∧
b∈B

∃(a1,a2)∇b8b,

which implies

M ′s |H ∃(a1,a2)
∧
b∈B

∇b8b

due to the validity of the axiom scheme CCRK-
conj (in Table 2) of CCRML [12]. Finally, Ms |H

∃
n
(a1,a2)

∧
b∈B ∇b8b follows from Ms↔

nM ′s and Proposi-
tion 10. �
We now arrive at the soundness of the axiom system for

nCCRML.
Theorem 1 (Soundness): For eachψ ∈ LnCC , ` ψ implies

that |H ψ .
Proof: As usual, it suffices to check that all the axiom

schemes are valid, and the rules MP, NK and nNCCR are
sound. It is trivial to prove that the axiom schemes Prop,
K, nCCR, nCCRp1, nCCRp2 and nCCRKco1 are valid,
and the rules MP, NK and nNCCR are sound. Furthermore,
it follows from Lemma 1, 2, 3, 4, 5 and 6 that the axiom
schemes nCCRD, 0CCRK, nCCRKco2, nCCRKcontra,
nCCRKbis and nCCRKconj are valid. �

C. COMPLETENESS
In this subsection, we intend to establish the completeness
of the axiom system nCCRML, by the same method as in [1]
and [12].Wewill check that every nCCRML-formula is prov-
ably equivalent to a K-formula. Based on the completeness of
K, this brings the completeness of nCCRML,.

Firstly, some general statements will be given as the prepa-
rations for the reduction argument.
Proposition 13: Let ϕ1, ϕ2, ψ ∈ LnCC , and q ∈ P. Then

` ϕ1 ↔ ϕ2 implies ` ψ[ϕ1\q]↔ ψ[ϕ2\q]

Proof: Proceed by the induction on the formula ψ . �
Proposition 14:
(1) ` ∀n(a1,a2)(ϕ ∧ ψ)↔ ∀

n
(a1,a2)

ϕ ∧ ∀n(a1,a2)
ψ .

(2) ` ∃n(a1,a2)(ϕ ∨ ψ)↔ ∃
n
(a1,a2)

ϕ ∨ ∃n(a1,a2)
ψ .

(3) ` ∀n(a1,a2)ϕ ∨ ∀
n
(a1,a2)

ψ → ∀n(a1,a2)
(ϕ ∨ ψ).

(4) ` ∃n(a1,a2)(ϕ ∧ ψ)→ ∃
n
(a1,a2)

ϕ ∧ ∃n(a1,a2)
ψ .

Proof: Trivially. �
Proposition 15: For each α ∈ Lp, we have
(1) ` ∀n(a1,a2)α ↔ α

(2) ` ∃n(a1,a2)α ↔ α

Proof: By the same strategy as that applied in the proof
of [12, Proposition 4.12]. �

The above proposition generalizes the axiom schemes
nCCRp1 and nCCRp2, which guarantees that the
CC-n-refinement quantifiers over any propositional formula
may be eliminated by proof-theoretical method. However,
∃
n
(a1,a2)

β with β ∈ LK is not always logical equivalent to
β. Then we have 0 ∃n(a1,a2)β ↔ β due to the soundness. For-
tunately, ∃n(a1,a2)β is provably equivalent to someLK -formula
in nCCRML. To prove this, we require some auxiliary results
and notions.
Proposition 16: Let α ∈ Lp and ψ ∈ LnCC . Then

` ∃
n
(a1,a2)(α ∧ ψ)↔ (α ∧ ∃n(a1,a2)ψ).

Proof: Analogous to the proof of [12, Proposition 4.13].
�

Now recall the notion of disjunctive formula in cover logic
(df, for short) [17]. The df formulas are defined by the BNF
grammar as follows:

α ::= (α ∨ α) | α0 | (α0 ∧
∧
b∈B

∇b{α, · · · , α})

where ∅ 6= B ⊆ A and α0 ∈ Lp.
Proposition 17 ( [17]): For each ψ ∈ LK , there is a df

formula α such that `K ψ ↔ α.
So far, we can prove that any formula being of the form
∃
n
(a1,a2)

α (α ∈ LK ) can be provably reduced to a LK -formula.

Proposition 18: Let α ∈ LK . Then

` ∃
n
(a1,a2)α ↔ ξ for some ξ ∈ LK .

Proof: Since the axiom system K is involved in
nCCRML presented in this paper, by Proposition 17 and
Proposition 13, we may w.l.o.g. suppose that α is a df for-
mula. Below, we proceed inductively by the structure of α.
For α ∈ Lp, it follows from Proposition 15.
For α ≡ α1 ∨ α2, by Proposition 14 (2), it holds that

` ∃
n
(a1,a2)α←→ ∃

n
(a1,a2)α1 ∨ ∃

n
(a1,a2)α2.

Thus, by the induction hypothesis and Proposition 13,
we have

` ∃
n
(a1,a2)α←→ ξ1 ∨ ξ2 for some ξ1, ξ2 ∈ LK .
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For α ≡ α0 ∧
∧

b∈B ∇b8b with α0 ∈ Lp and 8b ⊆ df for
every b ∈ B, by Proposition 16, we obtain

` ∃
n
(a1,a2)α←→ α0 ∧ ∃

n
(a1,a2)

∧
b∈B

∇b8b.

Further, by nCCRKconj and Proposition 13, it holds that

` ∃
n
(a1,a2)α←→ α0 ∧

∧
b∈B

∃
n
(a1,a2)∇b8b.

Then, to complete the proof, we will prove that, for every
b ∈ B,

` ∃
n
(a1,a2)∇b8b←→ ξb for some ξb ∈ LK . (∗) (1)

Now we prove this by considering two cases based on n.
(I) n = 0
Since 8b ⊆ df ⊆ LK , we have that,

` ∃
0
(a1,a2)∇b8b←→⊥

whenever `K β ↔ ⊥ for some β ∈ 8b, or, by 0CCRK,

` ∃
0
(a1,a2)∇b8b←→ (¬q ∨ q)

whenever 0K β ↔ ⊥ for all β ∈ 8b, where q ∈ P.
(II) n > 0
Due to 8b ⊆ df ⊆ LK , applying the axiom schemes

nCCRKco1, nCCRKco2, nCCRKcontra and nCCRKbis,
we obtain ` ∃

n
(a1,a2)

∇b8b ←→ θ for some θ in which
the quantifiers ∃n−1(a1,a2)

only bind the formulas in 8b. Finally,
by the induction hypothesis and Proposition 13, the claim (∗)
follows, as desired. �

It is time to verify that every LnCC -formula can be provably
reduced to a LK -formula. This is crucial to establish the
completeness of nCCRML.
Proposition 19: For each ψ ∈ LnCC , we have that

` ψ ↔ α for some α ∈ LK .

Proof: Due to the axiom scheme nCCRD and Proposi-
tion 13, it suffices to deal with the formulas where all CC-n-
refinement quantifiers are of the form ∃n(a,b) with n < ω and
a, b ∈ A. We prove by the induction on the number num(ψ)
of the occurrences of the CC-n-refinement quantifiers in ψ .
For num(ψ) = 0, trivially.

For num(ψ) > 0, we can always find a subformula of
ψ being of the form ∃n(a,b)δ with δ ∈ LK . Further,
by Proposition 18 and Proposition 13, it is easy to see that
` ψ ↔ ψ ′ for some ψ ′ ∈ LnCC with num(ψ ′) < num(ψ),
which enables the induction proof to work well. �
Proposition 20: Let ψ ∈ LnCC and α ∈ LK such that `

ψ ↔ α. If α is a theorem in K, so is ψ in nCCRML.
Proof: Since nCCRML contains the axiom system K,

` α follows immediately from `K α. Further, we get ` ψ
due to ` ψ ↔ α. �
Theorem 2 (Completeness): For each ψ ∈ LnCC , |H ψ

implies ` ψ .
Proof: By Proposition 19, it follows that ` ψ ↔ α

for some α ∈ LK . So, by Theorem 1 (the soundness of

nCCRML), |H ψ ↔ α, next, we get |H α due to |H ψ .
Thus `K α due to the completeness of K. Finally, by Propo-
sition 20, we get ` ψ , as desired. �

In order to establish the completeness of nCCRML,
we have checked that all LnCC -formulas can be provably
reduced to LK -formulas. From our proof, we easily see that
there is an algorithm to transform every LnCC -formula ϕ into
a LK -formula α such that ` ϕ iff `K α. Then, due to the
decidability of the system K, we get
Theorem 3 (Decidability): nCCRML is decidable. �

V. CONCLUSIONS AND DISCUSSION
The notion of CC-n-refinement finitely approximates the
notion of CC-refinement, based on which, this paper con-
siders CC-n-refinement modal logic (nCCRML). In addi-
tion to the standard modal operators, the language LnCC of
nCCRML contains CC-n-refinement operator ∃n(A1,A2), where
A1 (A2) is a set of all covariant (contravariant, resp.) actions.
Intuitively, the formula ∃n(A1,A2)ψ represents that we can
CC-n-refine the current model so that ψ is satisfied in the
obtained CC-n-refined model. CC-refinement requires two
related models to be always able to provide matched tran-
sitions each other, nevertheless, for CC-n-refinement, two
related models are required to match each other just within
n steps and the farther future is not important. Focused on
this approximation, CC-n-refinement operator may be used
to formalize some interesting problems in the field of formal
method.

For example, given a specification expressed by a LTS
M which refers to the set A1 (A2) of passive (generative,
resp.) actions, we consider the problem: whether this specifi-
cation has an implementation to realize a given property ψ .
In this situation, the transitions of passive actions in the
given specification M should be simulated by any correct
implementation and the transitions of generative actions in
an implementation must be allowed by the specification M .
In some applications, e.g. programming verification online,
the above requirement in the far future is not as important
as that in the near future. Thus, a CC-n-refined model of
M may be considered to be an implementation of M if n is
big enough. So the above problem may be formalized as the
model checking problem:

M |H ∃n(A1,A2)ψ,

where realizing the given property ψ is described by the
satisfiability of the formula ψ on a CC-refined model N .
Hence, based on CC-n-refinement quantifiers, the problem
whether there exists a desired approximative implementation
such that some property of a given specification may be
solved using model checking technique.
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