
Received November 30, 2018, accepted January 21, 2019, date of publication January 31, 2019, date of current version March 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2896263

A Fast Approach to Scale Up Disk Arrays With
Parity Declustered Data Layout by
Minimizing Data Migration
ZHIPENG LI 1, YINLONG XU1, YONGKUN LI 1, CHENGJIN TIAN1,
AND JOHN C. S. LUI 2, (Fellow, IEEE)
1School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China
2Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

Corresponding author: Zhipeng Li (lizhip@mail.ustc.edu.cn)

This work was supported in part by the National Key R&D Program of China under Grant 2018YFB1003204, and in part by the National
Nature Science Foundation of China under Grant 61832011 and Grant 61772486.

ABSTRACT Parity declustering is widely deployed in erasure-coded storage systems so as to provide fast
recovery and high data availability. However, to perform scaling on such redundant array of inexpensive
disks (RAIDs), it is necessary to preserve parity declustered data layout so as to preserve the properties after
scaling. Unfortunately, existing scaling algorithms fail to achieve this goal so they cannot be applied for
scaling RAIDs with parity declustering. To address this challenge, we develop an efficient online scaling
scheme called parity declustering scaling (PDS), which employs an auxiliary balanced incomplete block
design to define the data migration so as to preserve parity declustered data layout. Furthermore, PDS can
also be applied to scale RAIDs for improving reliability and/or storage efficiency as options by allocating
more parity blocks and/or data blocks in stripes. We provide theoretical proofs to formally show that PDS
preserves parity declustered data layout, and achieves uniform distributions of data and parity blocks after
scaling while requiring only the minimal data migration. We implement PDS in Linux kernel 3.14.72 and
evaluate its performance with real-world traces. The results show that PDS can reduce 82.37 percent of
scaling time and 18.25 percent of user response time during scaling on average, compared with ‘‘moving-
everything’’ round-robin approach adapted to achieve parity declustered data layout after scaling.

INDEX TERMS Scaling, parity declustering, capacity expansion, reliability, data migration.

I. INTRODUCTION
Nowadays almost all professions in life, from enterprises to
research academies, are continuously producing large amount
of digital data, and as a result, the volume of digital data grows
explosively. To meet the demand of large storage capacity,
high I/O bandwidth, and data reliability, Redundant Array
of Inexpensive Disks (RAID) [18] and distributed storage
systems, both of which aggregate a set of individual storage
devices, are two kinds of common solutions. Since these
storage systems are typically built out of a large number
of individual components that can be unreliable, component
failures have become commonplace in modern storage sys-
tems [19].
Replication and erasure code are two common approaches

to protect data against failures. In particular, modern storage

The associate editor coordinating the review of this manuscript and
approving it for publication was Sing Kiong Nguang.

systems usually adopt erasure codes to provide reliabil-
ity with significantly lower storage overhead. However,
in erasure-coded storage systems, the data reconstruction pro-
cess for disk failures not only consumes a lot of bandwidth,
but also opens the window of vulnerability for data loss [28].
As the storage capacity of modern disk is growing at a much
faster rate than the disk I/O speed, the disk recovery process
for modern disks takes a much longer time. This implies the
lengthening of time in the window of vulnerability and it
increases the chance of data loss.

To speed up the failure recovery process and provide
highly-available arrays, parity declusteringwas first proposed
by Muntz and Lui [16] as a data layout technique, and it was
further realized by Holland and Gibson [13] based on Bal-
anced Incomplete Block Design (BIBD) in practical systems.
Due to the benefits of fast recovery and providing highly-
available arrays, parity declustering has been implemented in
the software RAID device driver RAIDFrame [6], it is also

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

23967

https://orcid.org/0000-0002-4478-6717
https://orcid.org/0000-0001-7466-0384
https://orcid.org/0000-0002-3743-8511

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

deployed in the Panasas file system [25] and modern erasure-
coded storage systems [2].

However, due to the increasing demand of storage capa-
bilities, applications often require larger storage capacities
and higher performance. This is normally achieved by adding
new disks to the existing RAID system [7], [29]. In order
to regain load balance, data need to be redistributed evenly
among all disks. Since the RAID system contains more disks,
concurrent disk failures are more likely to happen, and so the
reliability of the disk array may need to be improved during
data redistribution. Moreover, in today’s server environments
where applications access data constantly, the downtime cost
can be extremely high [17]. To provide uninterrupted service,
data redistribution needs to be performed online. Such disk
addition to RAID system is known as RAID scaling.
Several challenges arise in scaling RAIDs when parity

declustering is deployed. For scaling RAIDs with parity
declustering, we not only need to satisfy the traditional scal-
ing requirements, but also need to keep parity declustered
data layout after scaling so as to preserve its nice prop-
erties. However, it is not an easy task due to the require-
ment of keeping parity declustered data layout after scaling.
We describe more detailed discussions about the technical
challenges of scaling RAIDs with parity declustering in
Section III-B.

Even though there are many online scaling approaches,
such as ALV [33], GSR [26], PBM [15], and MiPiL [32] for
RAID-5 data layout; SDM [27], RS6 [30], and Xscale [31]
for RAID-6 data layout; Round-Robin (RR) [5], [9], Semi-
RR [8], and H-Scale [24] for different RAID levels, none
of them can be deployed for scaling RAIDs with parity
declustering except for RR only, which also needs some
changes in its design. Furthermore, RR requires to migrate
100 percent of data blocks during scaling. This ‘‘moving-
everything’’ approach will cause very expensive migration
cost, thus degrades the scaling performance greatly. This
motivates us to develop a new scheme for scaling RAIDs with
parity declustering.

In this paper, we propose a novel scaling approach, Parity
Declustering Scaling (PDS), to efficiently scale RAIDs with
parity declustering. PDS not only preserves parity declus-
tered data layout after scaling, but also evenly redistributes
data/parity blocks across all disks and minimizes the data
migration. To the best of our knowledge, this is the first
work to scale RAIDs with parity declustering, with the aim of
preserving parity declustered data layout with minimal data
migration.

The contributions of this work are as follows.
• We develop PDS with an auxiliary BIBD to define data
migration. In particular, PDS has the following benefits.
1) The volume of migrated blocks is minimized. 2) The
reliability and/or storage efficiency can be improved as
options. 3) All data/parity blocks are evenly distributed
across disks after scaling. 4) The data layout after scaling
can also satisfy the requirements of parity declustering,
i.e., it can also be defined by a BIBD.

• We provide theoretical proofs to formally show that PDS
achieves all the above mentioned benefits. In particular,
we theoretically prove the capability of our scheme for
scaling RAID from one BIBD-defined data layout to
another BIBD-defined data layout. That is, with our scal-
ing scheme, the scaled RAID is also parity declustered.
Thus, our scaling scheme supports successive scaling
multiple times, while still preserves parity declustered
data layout.

• We implemented PDS in the MD (Multiple Devices)
driver in Linux kernel 3.14.72, and conducted experi-
ments with real-world traces to show its performance.
Results show that PDS can reduce 82.37 percent of
scaling time and 18.25 percent of user response time dur-
ing scaling on average, while keeping almost identical
performance after scaling, compared with RR adapted
to achieve parity declustered data layout after scaling.

The remainder of this paper proceeds as follows. Section II
provides the background of parity declustering. Section III
reviews related work on existing RAID-5 scaling approaches
and then discusses the technical challenges of scaling for par-
ity declustered data layout. We describe our motivations and
present the main idea of PDS via an example in Section IV.
We propose PDS in Section V, present its addressing algo-
rithm in Section VI, prove its properties in Section VII, and
discuss some further optimizations for PDS in Section VIII.
We show experimental results in Section IX. Section X con-
cludes the paper.

II. BACKGROUND
We first provide a brief overview of two commonly used
erasure codes, RAID-5 and Reed-Solomon (RS) codes [20].
Next, we introduce basic concepts and properties of Balanced
Incomplete Block Design (BIBD), which is the foundation of
realizing parity declustered data layout. After that, we state
the lemma of BIBD, which will be used in the proof of our
Theorem 2. Finally, we take RAID-5 as an example to show
how parity declustering uses the mathematical properties of
BIBD to speed up disk failure recovery and provide high data
availability.

A. RAID-5 AND RS CODES
Given n equal-size data blocks, say B0, B1, · · · , Bn−1, RAID-
5 encodes them into one parity block P by simply XOR-
summing them as P = B0 ⊕ B1 ⊕ · · · ⊕ Bn−1. All of
these n + 1 blocks B0, B1, · · · , Bn−1 and P form a stripe
of size n + 1 and are distributed evenly across n + 1 disks.
Any one of the n + 1 blocks can be reconstructed with the
other n blocks in the same stripe. Therefore, RAID-5 code
can tolerate one disk failure. Fig. 1 shows a four-disk array
with a left-symmetric1 RAID-5 data layout, where the data
and parity blocks in each stripe are rotationally stored across

1 There is a variety of strategies in RAID-5 that evenly distributes the data
blocks and parity blocks, typically four types of data and parity distribution
are preferred, left-symmetric, left-asymmetric, right-symmetric and right-
asymmetric [34].

23968 VOLUME 7, 2019

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

FIGURE 1. Layout of the left-symmetric RAID-5.

disks for load balance. If d0,0 is lost for example, it can be
reconstructed as d0,0 = p0 ⊕ d0,1 ⊕ d0,2.

Reed-Solomon (RS) family of codes are proposed to pro-
vide higher reliability. An RS code is associated with two
parameters: k andm. A (k,m)-RS code encodes k data blocks
into m parity blocks in a manner that guarantees the recov-
erability of all the k data blocks from any k out of these
k + m blocks. This collection of these k + m data/parity
blocks is called a stripe. Therefore, by distributing a stripe
evenly across k +m disks, a (k,m)-RS code can tolerate any
m concurrent disk failures. RAID-5 and RS codes achieve the
so-called Maximum Distance Separable (MDS) property, as
they deliver optimal fault tolerance for the space dedicated to
coding.

B. BIBD
BIBD [10] is a type of design in combinatorial design theory
that concerns how to arrange elements of a finite set into
subsets for certain ‘‘balance’’ properties. BIBD has many
applications, such as experimental design, software testing,
network topology, cryptography, and data layout. In partic-
ular, BIBD is used to formulate the data layout of parity
declustering [13].
Definition 1: Given five positive integers b, v, k, r, λ and

a base set S = {s0, s1, · · · , sv−1} of v objects, a (b, v, k, r, λ)-
BIBD on S is an arrangement of its objects into b tuples2

B = (T0,T1, · · · ,Tb−1), which satisfies
1) |Ti| = k for 0 ≤ i ≤ b− 1,
2) each object sj is exactly in r tuples,
3) each pair of objects sj0 , sj1 appear exactly in λ tuples for

0 ≤ j0 6= j1 ≤ v− 1.
The five parameters b, v, k, r, λ of a BIBD satisfy the

following two equations [10],

bk = vr, (1)

λ(v− 1) = r(k − 1). (2)

A BIBD can also be represented by means of an incidence
matrix [10], the definition of an incidence matrix is as fol-
lows.
Definition 2: The incidence matrix of a (b, v, k, r, λ)-

BIBD is a 0–1 matrix M = (mi,j)b×v defined as

mi,j =

{
1 sj ∈ Ti,
0 sj /∈ Ti.

Furthermore, a BIBD satisfies the following lemma [23].

2The term tuple is called block in combinatorial design theory, but it is
easily confused with the commonly held definition of a block as a contiguous
chunk of data in storage. So we use tuple by following the work in [13].

Lemma 1: Suppose that M = (mi,j)b×v is the incidence
matrix of a (b, v, k, r, λ)-BIBD, and let 0 ≤ j0, j1 ≤ v − 1,
j0 6= j1. Then the following properties hold.

1) |{i | mi,j0 = 1,mi,j1 = 1}| = λ,
2) |{i | mi,j0 = 1,mi,j1 = 0}| = r − λ,
3) |{i | mi,j0 = 0,mi,j1 = 1}| = r − λ,
4) |{i | mi,j0 = 0,mi,j1 = 0}| = b− 2r + λ.

Fig. 2a shows an example of a (4, 4, 3, 3, 2)-BIBD of base
set S = {0, 1, 2, 3} and 2b shows its incidence matrix. There
are v = 4 objects and b = 4 tuples. Each tuple contains
k = 3 objects and each object appears in r = 3 tuples. Each
pair of objects appear in exactly λ = 2 tuples. Furthermore,
we present an example to illustrate Lemma 1, let (mi,j)4×4 be
the matrix shown in Fig. 2b and j0 = 0, j1 = 1, we have that

1) |{i | mi,0 = 1,mi,1 = 1}| = |{0, 1}| = λ = 2,
2) |{i | mi,0 = 1,mi,1 = 0}| = |{2}| = r − λ = 1,
3) |{i | mi,0 = 0,mi,1 = 1}| = |{3}| = r − λ = 1,
4) |{i | mi,0 = 0,mi,1 = 0}| = b− 2r + λ = 0.

C. PARITY DECLUSTERING
Parity declustering was first proposed byMuntz and Lui [16],
and it was further realized based on BIBD in [13]. Fig. 2d
is an example of parity declustered data layout constructed
from the BIBD shown in Fig. 2a. In this example, four stripes
of size three shown in Fig. 2c are distributed to four disks.
Refer to Figs. 2d and 2b, in parity declustered data layout,
stripes and disks correspond to tuples and objects in a BIBD
respectively. For example, tuple T0 defines the layout of stripe
S0, which consists of the three blocks on disksD0,D1, andD2,
respectively. As parity declustering assigns a block to the low-
est available offset on the identified disk, Fig. 2e illustrates
physical layout of the disk array. The storage space of a disk
array is divided into many regions and parity declustering is
performed within each region. Fig. 2e shows just one region.

Now assume that one disk in Fig. 2e (say disk D2) fails.
This disk contains three blocks which are parts of stripes
S0, S2, and S3 respectively. The other six surviving blocks
belonging to these three stripes are stored on the other three
surviving disks with two blocks on each disk. The shaded
areas in Fig. 2e show that we only need to read exactly two
blocks from each surviving disk to reconstruct the failed disk,
and that is only two-third of the volume in each surviving
disk. However, if a disk of RAID-5 shown in Fig. 1 fails,
we should read the whole volume in each surviving disk to
reconstruct the failed disk. Parity declustering requires less
additional load on surviving disks for data reconstruction
so that surviving disks can serve more user I/O requests,
therefore resulting in higher user throughput during recovery
and shorter recovery time.

More generally, in each region of a disk array with parity
declustering constructed from a (b, v, k, r, λ)-BIBD, b stripes
of size k are distributed across v disks with r blocks on
each disk, and each pair of disks store exactly λ pairs of
blocks belonging to the same stripe. Therefore, if a disk fails,
we need to read exactly λ blocks from each surviving disk

VOLUME 7, 2019 23969

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

FIGURE 2. An example of parity declustering.

storing r blocks in each region for reconstruction. Further-
more, the fraction of volume to be read from each surviving
disk is λ/r = (k − 1)/(v− 1) according to (2).

D. FULL BLOCK DESIGN TABLE
Parity blocks should be evenly distributed across the array.
Every data block update causes the update of the parity blocks
in the same stripe, and so an uneven parity distribution would
lead to imbalanced utilization, since the disks with more
parity blocks would experience more load. However, it is
apparent from Fig. 2e that parity blocks are not evenly dis-
tributed across the array within a region. But we can balance
the distribution of parity blocks within a group of k regions,
where k is a parameter in the (b, v, k, r, λ)-BIBD. We first
arrange the objects in all tuples of a BIBD as a sub-matrix
(e.g., the first four rows in the right side of Fig. 3), which
correspond to the data layout of a region. Then we group
k sub-matrices into a full block design table (e.g., the right
side of Fig. 3), to define the data layout of a group of k
regions, which is called a perfect-parity-declustering (abbr.
as PPD) area in this paper. In the i-th region of a PPD area,
parity blocks are stored in the disks corresponding to the
objects in the (k − i)-th column of the i-th sub-matrix of
the full block design table, as the shaded blocks in the left
side of Fig. 3. Because the full block design table duplicates
the original (b, v, k, r, λ)-BIBD k times, it corresponds to a
(kb, v, k, kr, kλ)-BIBD.

Furthermore, if b is a multiple of v, parity blocks can
be balanced perfectly within a region [21]. For example,

FIGURE 3. Full block design table.

FIGURE 4. Optimized full block design table.

b = v = 4 in the BIBD in Fig. 2a, parity blocks can be
distributed evenly across the array within a region as shown
in Fig. 4. To present our scaling algorithm more concisely
and save the pages, we will take Fig. 4 instead of Fig. 3 as an
example of the data layout in a PPD area in the following. We
also define a column of a PPD area as a PPD-column, which
corresponds to all blocks of this PPD area on a disk, as shown
in Fig. 12a. We will migrate blocks in unit of PPD-columns
during scaling.

III. RELATED WORK AND TECHNICAL CHALLENGES
In this section, we first review existing RAID-5 scaling
approaches, then we discuss the technical challenges of scal-
ing for parity declustered data layout.

A. RELATED WORK ON RAID-5 SCALING
Existing approaches to scale up a RAID-5 disk array include
Round-Robin (RR), ALV, GSR, MiPiL, H-Scale, CRAID,
etc. In this section, we use a left-asymmetric RAID-5 [34]
to illustrate the scaling processes of these approaches.
• Round-Robin (RR) is a traditional scaling approach
that migrates almost all data to preserve the round-
robin data distribution after adding disks. All parity
blocks need to be recalculated after data migration, and
the scaling process of RR is shown in Fig. 5. Large
data migration results in expensive cost of a RAID-
5 scaling. GA [9] controls the scaling speed to relieve
online performance degradation during scaling to avoid
downtime, and theGA’s datamigration process is similar
to the RR’s. Based on RR, Linux provides a reshape
toolkit named MD-Reshape [5] in the MD (Multiple
Devices) driver shipped with Linux kernel to support
online capacity expansion.

• ALV [33] improves the efficiency of the RR scaling
process by changing the transfer order of data blocks in

23970 VOLUME 7, 2019

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

FIGURE 5. RAID-5 scaling from 3 disks to 4 using the Round-Robin
approach.

order to aggregate migration I/Os for contiguous blocks.
For example, in Fig. 6 (state 3), reads for blocks 6 and 8
are aggregated into one read I/O, hence reducing the total
I/Os. ALV is an extension of the RR algorithm, and as
such it still suffers from large data migration.

• GSR [26] is proposed to accelerate RAID-5 scaling and
it achieves the minimal data migration. As illustrated
in Fig. 7, stripes are classified into three categories:
retained stripes (S0 ∼ S5), remapped stripes (S6 ∼
S8), and destructed stripes (S9 ∼ S11). Data blocks in
retained stripes are retained in the same disk; data blocks
in remapped stripes are retained in the same disk by
remapping to a new stripe; data blocks in destructed
stripes are migrated to the new disk D3. More generally,
GSR divides data on the original array into two consecu-
tive sections, and then moves the second section of data
to the new disks, while keeping the first section of data
unmoved. Its main limitation is the performance after
scaling, accesses to the first section of data are served
only by original disks, and accesses to the second section
of data are served only by new disks, which brings a
large performance penalty under the workload with a
strong locality.

• MiPiL [32] is a RAID-5 scaling approach, which min-
imizes data migration while maintaining uniform data
and parity distributions. Before data migration, MiPiL
introduces a normalizing operation to shuffle columns
and rows as illustrated in Fig. 8, then it moves the
minimum number of data blocks from old disks to the
new disk(s) for regaining a uniform data distribution.
Furthermore, MiPiL optimizes online migration process
by minimizing the number of mapping metadata writes.

• H-Scale [24] is a general scaling approach for different
RAID levels, and it achieves fast RAID scaling via
hybrid stripe layouts. H-Scale can performRAID-5 scal-
ing with minimal data migration. As illustrated in Fig. 9,
blocks 0, P1, and 5 are migrated to the new disk D3, and
their original positions are served for storing new data
blocks of a new stripe. H-Scale stores the parity block
of the new stripe, P′0, on the new disk D3, and as such
no existing blocks are overwritten, therefore providing
the reliability for the scaling process. However, it cannot
regain a uniform data/parity distribution after scaling.

• CRAID [36] is a RAID architecture that uses a dedicated
caching partition to capture frequently accessed data
and redistributes data in this partition to incremental
devices. As illustrated in Fig. 10, CRAID redistributes
only hot data when new disks are added, therefore reduc-
ing the migration even further. CRAID requires less data
migration for RAID scaling, while it has to identify
those frequently accessed data all the time and perform
additional I/O operations and parity computations for
dirty blocks. Therefore, CRAID performs extra statistics
of data accesses, and in turn suffers from additional
spatial and temporal overheads [31]. It should be noted
that RAID scaling involves occasional events, while
statistics of data accesses are performed all the time by
CRAID.

B. TECHNICAL CHALLENGES OF SCALING FOR
PARITY DECLUSTERING
When implementing an erasure code into a RAID system,
each disk is divided into many blocks. The erasure code
is independently performed in each stripe, which consists
of multiple blocks with exactly one block on a disk. The
stripe size is defined as the number of blocks in a stripe.
In traditional RAID systems, the stripe size is equal to the
total number of disks in the system, that is, the blocks of each
stripe are distributed across disks, with exactly one block on
each disk. However, parity declustering defines a mapping
that allows stripes with stripe size G to be distributed over
C disks (C is larger than G). Muntz and Lui define the ratio
(G− 1)/(C − 1) as α [16], and it is further called the declus-
tering ratio in [13]. This parameter indicates the fraction of

FIGURE 6. RAID-5 scaling from 3 disks to 4 using the ALV approach.

VOLUME 7, 2019 23971

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

FIGURE 7. RAID-5 scaling from 3 disks to 4 using the GSR approach.

each surviving disk that must be read for reconstruction, and
reconstruction time decreases as α drops [12], [13], [35].
Since any additional failure during the reconstruction pro-

cess may result in data loss especially for the RAID levels
with single fault-tolerant layouts, the reconstruction time is
often referred to as ‘‘window of vulnerability’’ [28] that
should be as small as possible. Parity declustering decreases
reconstruction time by both reducing the per-disk load for
reconstruction and utilizing all surviving disks in the array
to participate in the reconstruction. When adding disks to a
parity declustered array, reconstruction time is expected to
be reduced since the declustering ratio can be decreased with
the increasing number of disks in the array. Therefore, for
scaling a parity declustered array, it is desirable to maintain
parity declustered data layout within the whole array so as
to preserve its nice properties and reduce the reconstruction
time even further to minimize the window of vulnerability.

Even though CRAID [36] can expand volume for a parity
declustered RAID array, it cannot regain parity declustered

data layout after the expansion. Because CRAID is essen-
tially a collection of independent RAID arrays that have been
added to expand the storage capacity, only part of disks in
the CRAID array can be used to participate in the recon-
struction and reconstruction time cannot be further reduced
with more additional disks in the CRAID array. For the
other existing RAID scaling approaches, such as ALV [33],
GSR [26], PBM [15], andMiPiL [32] for RAID-5 data layout;
SDM [27], RS6 [30], andXscale [31] for RAID-6 data layout;
Round-Robin (RR) [5], [9], Semi-RR [8], and H-Scale [24]
for different RAID levels, they all have a constraint that the
stripe size of the erasure code deployed in the RAID system
should be equal to the number of disks in the array. Thus,
existing scaling approaches fail to scale RAIDs with parity
declustered data layout which is defined by BIBD.

Our main idea to improve the efficiency of scaling RAIDs
with parity declustered data layout is to minimize the data
migrations in the scaling process. However, this is not an
easy task due to the requirement of keeping parity declustered
data layout after scaling. That is, the data layout in the scaled
system must also satisfy the requirements defined by BIBD
so as to preserve its nice properties. Besides, we have to
also maintain the parity consistency so as to guarantee the
reliability. Thus, the first challenge is to design an efficient
data redistribution scheme which must achieve the parity
declustered data layout, minimal data migration, and uniform
data and parity distributions simultaneously.

Furthermore, as the reliability and/or storage efficiency
can be improved as options in the scaling process, another
technical challenge is to design a data allocation scheme for
new data blocks which will fill in the scaled RAID arrays
after data migration, and the data allocation scheme must
also maintain the property of parity declustered data layout,
uniform data and parity distributions, and provide higher
reliability and/or better storage efficiency.

IV. MOTIVATIONS AND AN EXAMPLE
In this section, we first present our motivations through the
design goals of scaling for parity declustered data layout,

FIGURE 8. RAID-5 scaling from 3 disks to 4 using the MiPiL approach.

23972 VOLUME 7, 2019

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

TABLE 1. Major notations used in this paper.

FIGURE 9. RAID-5 scaling from 3 disks to 4 using the H-Scale approach.

FIGURE 10. Addition of 3 disks to a 3-disk CRAID array.

then we show our main idea of our scaling algorithm PDS
via an example. To facilitate our discussion, we summa-
rize the major notations used for PDS in this paper in
Table 1.

A. DESIGN GOALS OF SCALING FOR PARITY
DECLUSTERING
Existing approaches to scale up RAID systems include ALV
[33], GSR [26], PBM [15], and MiPiL [32] for RAID-5 data
layout; SDM [27], RS6 [30], and Xscale [31] for RAID-
6 data layout; Round-Robin (RR) [5], [9], Semi-RR [8], and
H-Scale [24] for different RAID levels, but none of them
can be applied for scaling RAIDs with parity declustering
except for RR which also needs some changes in its design.
This motivates us to design an efficient scaling algorithm for
RAIDs with parity declustered data layout. In particular, our
scaling algorithm aims for the following five objectives.

• Objective 1 (Parity Declustered Data Layout): After
scaling, the data layout of the RAID should still be parity
declustered, i.e., the data layout can be defined by a
BIBD.

• Objective 2 (Higher Reliability and/or Better Storage
Efficiency): When a RAID deploys an (x, y)-RS code
with parity declustering, it can tolerate any y concurrent
disk failures and the storage efficiency is x/(x + y).
As parity declustering decouples stripe size from the
number of disks in the array, we expect that the reliability
and/or storage efficiency can be improved as options
with the help of the scaling process.

• Objective 3 (Uniform Data and Parity Distributions):
After scaling, each disk contains the same amount of

VOLUME 7, 2019 23973

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

FIGURE 11. A (7, 7, 4, 4, 2)-BIBD.

data blocks and the same amount of parity blocks so as
to maintain load balance.

• Objective 4 (Minimal Data Migration): Assume that n
new disks are added to an array of m old disks storing
S data/parity blocks in total. To achieve a uniform data
distribution, the minimal number of blocks that have to
be migrated from old disks to new disks for scaling is
S × n/(n+ m).

• Objective 5 (Fast Data Addressing): After scaling,
the location of a block can be computed by an algorithm
with low time and space complexities.

B. AN EXAMPLE OF SCALING
To understand how the PDS algorithm works and how it sat-
isfies the objectives as stated in Section IV-A, we take RAID
scaling from four disks to seven as an example. As shown
in Fig. 4, the data layout of an array with four disks is defined
by a primary (bp, vp, kp, rp, λp) = (4, 4, 3, 3, 2)-BIBD Bp
shown in Fig. 2a. We aim to scale up this RAID from four
disks to seven. We select an auxiliary (ba, va, ka, ra, λa) =
(7, 7, 4, 4, 2)-BIBDBa in Fig. 11 to define the datamigration.

We divide all PPD areas into multiple groups, with each
group consisting of ba PPD areas and being named as a per-
fect migrating entirety (abbr. as PME). PDS performs scaling
in unit of PMEs and migrates blocks in unit of PPD-columns.
We diagram the data migration process in Fig. 12, where
Fig. 12a is the physical data layout of a PPD area before data
migration, Fig. 12b is a PME where each row corresponds to
a PPD area in Fig. 12a, Fig. 12c is the auxiliary BIBD Ba for
datamigration, and Fig. 12d shows the data layout of the PME
after data migration. We scale up the RAID in unit of ba = 7
PPD areas, which form a PME. The data migration of the i-th
PPD area is defined by the i-th tuple in Ba. In Fig. 12b, one
row corresponds to a PPD area, and Ci,j denotes all blocks in

the j-th PPD-column of the i-th PPD area, which are stored in
disk Dj.
Now we migrate some PPD-columns from the four old

disks to the three new disks for scaling according toBa in Fig.
12c. DenoteBa = (T a0 ,T

a
1 , · · · ,T

a
6). We redistribute the data

layout of the i-th PPD area (i.e., the i-th row in Fig. 12b)
according to the i-th tuple T ai . We know that before redis-
tribution, the i-th PPD area consists of four PPD-columns,
Ci,0,Ci,1,Ci,2,Ci,3, which are stored in disksD0,D1,D2,D3
respectively. Suppose that T ai = {i0, i1, i2, i3}, we should
redistribute Ci,0,Ci,1,Ci,2,Ci,3 to disks Di0 ,Di1 ,Di2 ,Di3 .
For example, T a2 = {0, 2, 4, 6}, we should redistribute C2,0,
C2,1, C2,2, C2,3 to disks D0,D2,D4,D6. Since C2,0 and C2,2
are stored in disksD0,D2 respectively, tominimize the blocks
beingmigrated, we onlymigrateC2,1,C2,3 from disksD1,D3
to disks D4,D6 respectively, as shown in the third row of
Fig. 12d.
After data migration, we may exploit the free storage units

in the following ways, such as

• We use the same erasure code as which before the scal-
ing, i.e., we only increase the storage capacity and keep
the erasure code unchanged.

• We add some data blocks into the stripes to increase
the storage capacity and meanwhile increase the storage
efficiency. For example, if we increase the stripe size
from three to four in the above example by adding one
more data block into each stripe, the storage efficiency
increases from 2/3 to 3/4.

• We add some parity blocks into the stripes to increase
the reliability. For example, if we increase the stripe size
from three to four in the above example by adding one
more parity block into each stripe, the disk array will
tolerate two concurrent disk failures. However, adding
one more parity block in each stripe makes the storage
efficiency decrease from 2/3 to 2/4.

• We add some data blocks and some parity blocks simul-
taneously to increase storage efficiency and reliability.

Now we continue the example in Fig. 12 to explain how
we add one data block and one parity block to a stripe in the
scaled RAID while still keeping balanced distribution of data
blocks and parity blocks, which is diagramed in Fig. 14. In

FIGURE 12. Data migration during scaling from 4 disks to 7. (a) Physical layout of a PPD area. (b) Layout of a PME before data migration. (c) The
auxiliary BIBD. (d) Layout of a PME after data migration.

23974 VOLUME 7, 2019

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

FIGURE 13. A (3, 3, 2, 2, 1)-BIBD.

Fig. 12d, there are three disks containing free storage units
in each row. We use three objects 0, 1, 2 to represent the
first, the second and the third disks containing free storage
units in a row respectively, and use a tuple of two objects to
define the allocation of two data/parity blocks to the three
disks containing free storage units in a row. For example a
tuple T = {0, 1} means that we allocate two blocks to the
first and the second disks containing free storage units in a
row.

We diagram the allocation of new data/parity blocks
in Fig. 14, where there are 3 scaled PMEs in Fig. 14a and each
one has the same logical layout as the scaled PME in Fig. 12d.
All free storage units are shadowed and we show the logical
layout of a scaled PPD area with the new allocated data/parity
blocks in Fig. 14b. To keep the balanced distribution of data
blocks and parity blocks after adding one data block and one
parity block to each stripe, we first select an other auxiliary

(binc, vinc, kinc, rinc, λinc) = (3, 3, 2, 2, 1)-BIBD Binc shown
in Fig. 13. Then we use the full block design table constructed
fromBinc, which is shown in Fig. 14c, to define the allocation
of new data/parity blocks.

In Fig. 14c, the i-th tuple defines the allocation of new
data/parity blocks in the i-th PMEs. For example T0 = {0, 1}
and 1 is labeled with P0. So for each stripe in a row of the
first PME, we allocate a data block to the first disk containing
free storage units in the row and a parity block to the second
disk containing free storage units in the row. Similarly T1
and T2 define the allocation of new data/parity blocks in
the second PME and the third PME respectively. The logical
layout of the scaled array with the new allocated data/parity
blocks is shown in Fig. 14a. From Fig. 14a, we can find
the distributions of data blocks and parity blocks are still
balanced after adding new data/parity blocks due to the full
block design table in Fig. 14c.

V. PDS APPROACH
A. BASIC IDEAS OF PDS
1) DATA MIGRATION PROCESS
Suppose we are to scale an array of vp disks, which is
deployed with parity declustering, to an array of vo disks.
Suppose the data layout of the system before scaling is
defined by a (bp, vp, kp, rp, λp)-BIBD, Bp, called primary
BIBD in this paper. To achieve parity declustering in the

FIGURE 14. The allocation of a new parity block and a new data block into each stripe after data migration for improving
reliability and storage efficiency. (a) Logical layout after the stripe size being increased. (b) Logical layout of a PPD area
after the stripe size being increased. (c) Full block design table for increasing stripe size.

VOLUME 7, 2019 23975

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

scaled system, we should guarantee that, in the scaled system,
the data layout of the original blocks which belong to the old
system can be defined by some (bo, vo, ko, ro, λo)-BIBD, Bo,
called objective BIBD after data migration in this paper.
To migrate some blocks from old disks to new disks for

scaling, we use an auxiliary (ba, va, ka, ra, λa)-BIBD, Ba,
called auxiliary BIBD for data migration, to define data
migration of PDS. We set va = vo being the number of disks
in the scaled system and ka = vp being the number of disks in
the system before scaling. Moreover, ka is also the number of
objects in a tuple of Ba. We set ka = vp to redistribute blocks
from vp old disks to vo old/new disks according to the tuples
of Ba.

During the scaling process, we divide all PPD areas into
multiple groups, with each group consisting of ba PPD areas
and being named as a perfect migrating entirety (abbr. as
PME). PDS performs the data migration in unit of PMEs. The
data migration of the i-th PPD area in a PME is defined by the
i-th tuple of Ba, where each object in a tuple corresponds to
a PPD-column in a PPD area.

2) IMPROVING RELIABILITY AND/OR STORAGE EFFICIENCY
After data migration, we can improve reliability and/or stor-
age efficiency as options. We allocate new data/parity blocks
in the original stripes to improve the reliability and the storage
efficiency, then the stripe size of the system is increased. To
achieve parity declustering in the scaled system with stripe
size increased, we should guarantee that, in the scaled system,
the data layout of the original blocks which belong to the old
system and the new blocks allocated for increasing stripe size
can be defined by some (b∗o, v

∗
o, k
∗
o , r
∗
o , λ
∗
o)-BIBD, B∗o, called

objective BIBD after the stripe size being increased in this
paper.

To allocate new data/parity blocks in the original stripes
for improving the reliability and the storage efficiency,
we use another auxiliary (binc, vinc, kinc, rinc, λinc)-BIBD,
Binc, called auxiliary BIBD for increasing stripe size, to
define the allocation of new blocks. Because there are ba PPD
areas in a PME and there are bp stripes in a PPD area, so there
are totally ba× bp stripes in a PME. If we are to add xinc new
data blocks and yinc new parity blocks to each of the original
stripes, we need (xinc+ yinc)× ba× bp free storage units in a
PME. During the scaling process, we add va− vp disks to the
disk array. Because there are rp×ba storage units in each disk
of a PME, the scaling process adds (va − vp) × rp × ba free
storage units to each PME. To accommodate the new blocks
added to free storage units, we have

xinc + yinc ≤ (va − vp)× rp × ba/(ba × bp)

= (va − vp)× rp/bp (eliminating ba)

= (va − vp)× kp/vp. (by (1))

We set vinc = va − vp being the number of new added
disks in the scaling process and kinc = xinc + yinc being the
number of new blocks added to each original stripe. Further-
more, when we want to increase reliability (i.e., yinc 6= 0),

we set binc being a multiple of vinc so as to distribute parity
evenly among distinct objects of the full block design table
constructed from Binc.

Suppose that there are xp data blocks and yp parity blocks
in each original stripe before scaling. So the stripe size before
scaling is kp = xp + yp. After allocating xinc new data
blocks and yinc parity blocks into each of the original stripes,
the stripe size of the scaled array becomes k∗o = kp+xinc+yinc
and the scaled array can tolerate yp + yinc concurrent disk
failures with storage efficiency of (xp + xinc)/k∗o . Moreover,
as the number of disks in the scaled array is not changed in
the process of improving reliability and/or storage efficiency,
we have v∗o = vo.
To increase stripe size, we divide all PMEs into multi-

ple groups, with each group consisting of binc PMEs and
being named as a perfect increasing stripe size entirety (abbr.
as PIE). PDS performs the process of improving reliability
and/or storage efficiency with stripe size increased in units
of PIEs. The allocation of new data/parity blocks into the
original stripes of the i-th scaled PME is defined by the i-th
tuple of Binc. Each object in a tuple of Binc corresponds to the
allocation of a new data/parity block into each original stripe
of a scaled PME.

B. SCALING PROCESS OF PDS
Given an array of vp disks, which is deployed with par-
ity declustered data layout defined by a (bp, vp, kp, rp, λp)-
BIBD, Bp, we are to scale it up to vo disks and then add xinc
(xinc ≥ 0) data blocks and yinc (yinc ≥ 0) parity blocks into
each original stripe such that the data layout of the scaled
system can still be defined by a BIBD. We summarize the
following six steps to conduct PDS scaling.
Step 1 (Auxiliary BIBD Selection for Data Migration):

PDS needs an auxiliary (ba, va, ka, ra, λa)-BIBD, Ba, to
define data migration. We should select va = vo being the
number of disks in the system after scaling and ka = vp
being the number of disks in the system before scaling.
Furthermore, we select the minimum possible value for ba to
minimize the size of the full block design table of the scaled
system. Take Fig. 12c as an example.

Holland [12] gave a BIBD database, in which there are
(b, v, k, r, λ)-BIBDs for all k when v < 20, and almost all
k when 20 ≤ v ≤ 43. Hanani [11] also presented some
techniques to design (b, v, k, r, λ)-BIBDs for any k when
v ≤ 43. Therefore, we can obtain an auxiliary BIBD for
practical sizes of disk arrays.
Step 2 (Unit Identification for Data Migration): Given an

auxiliary (ba, va, ka, ra, λa)-BIBD Ba with va = vo, ka =
vp, and minimal ba, we group ba PPD areas into a PME and
denote the j-th PPD-column of the i-th PPD area asCi,j, which
comprises all blocks of the i-th PPD area on disk Dj. Take
Fig. 12b as an example. Then we design the data migration
algorithm within a PME.
Step 3 (Data Migration): Suppose thatBa = {T a0 ,T

a
1 , · · · ,

T aba−1}. The data migration in the i-th PPD area is defined

23976 VOLUME 7, 2019

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

by T ai .Wemigrate data/parity blocks in unit of PPD-columns.
For PPD-column Ci,j,
• if j ∈ T ai , we do not migrate Ci,j;
• otherwise, wemigrateCi,j to diskDjl , where jl is defined
as follows. We first define two difference sets between
base set Sp = {0, 1, · · · , vp− 1} and T ai as Sfrom = Sp−
T ai and Sto = T ai − Sp. Suppose that j is the l-th smallest
number in Sfrom, then jl is the l-th smallest number in Sto.

For example, in Fig. 12, Sp = {0, 1, 2, 3} and T a2 =
{0, 2, 4, 6}, whichmeans before scaling,C2,0,C2,1,C2,2,C2,3
in the second PPD area are stored in disks D0, D1, D2, D3
respectively, and we are to redistribute them to disks D0, D2,
D4, D6 in the scaled system. To minimize the blocks being
migrated during the scaling process, we migrate C2,1, C2,3
from D1, D3 to D4, D6 respectively. From Sp and T a2 , we can
get Sfrom = {1, 3} and Sto = {4, 6}, which means that the
blocks to be migrated are stored in disks D1, D3, and they are
to be migrated to disks D4, D6.
Step 4 (Auxiliary Full Block Design Table Construction

for Increasing Stripe Size): If we are not to add any new
data or parity blocks (i.e., xinc = 0 and yinc = 0) into the
original stripes, PDS just skips this step. Otherwise, suppose
that we are to add xinc data blocks and yinc parity blocks
to each of the original stripes with xinc + yinc > 0 and
xinc + yinc ≤ (va − vp)kp/vp.
We need to design an auxiliary full block design table

TBLinc for PDS to define the allocation of new blocks in the
original stripes. Let base set S ′ = {0, 1, . . . , va − vp − 1},
where va−vp is the number of new disks added to the system,
and it is also the number of disks containing free storage units
in a row after we have migrated the data/parity blocks from
old disks to new disks, such as va − vp = 3 in Fig. 12d. We
use j ∈ S ′ to represent the j-th disk containing free storage
units in the ascending order of the disk subscripts in a row for
0 ≤ j ≤ va − vp − 1.
Given v′ = va − vp and k ′ = xinc + yinc, we first select a

(b′, v′, k ′, r ′, λ′)-BIBD B′ from the BIBD database with base
set S ′. Then we construct a (binc, vinc, kinc, rinc, λinc)-BIBD,
Binc, from B′ as follows and finally construct TBLinc from
Binc.
• If yinc = 0, we choose Binc = B′;
• otherwise, let l = v′/ gcd(b′, v′), we choose Binc to
be l duplications of B′ so as to ensure binc is a multi-
ple of vinc. Then Binc is a (binc, vinc, kinc, rinc, λinc) =
(lb′, v′, k ′, lr ′, lλ′)-BIBD.

If yinc = 0, since there is no parity assignment in TLBinc,
we use Binc as TLBinc directly.
Otherwise (i.e., yinc > 0), we construct a TBLinc from

Binc = (lb′, v′, k ′, lr ′, lλ′). There are vinc = v′ = va −
vp elements in TBLinc and there are binc rows in TBLinc.
We select l = v′/ gcd(b′, v′) such that lb′ is a multiple of
vinc. In case of binc being a multiple of vinc, Schwable and
Sutherland [22] proposed an algorithm to label yinc distinct
objects with each of these yinc objects holding a distinct label
Pi (0 ≤ i ≤ yinc − 1), such that elements which correspond
to objects labelled with Pi (0 ≤ i ≤ yinc − 1) are balanced

perfectly among distinct objects of TBLinc. Take Fig. 14c as
an example.
Step 5 (New Block Allocation for Increasing Stripe Size): If

we do not add any new data/parity blocks (i.e., xinc = 0 and
yinc = 0) into the original stripes, PDS just skips this step.
Otherwise, suppose that we need to add xinc new data blocks
d ′i,0, d

′

i,1, · · · , d
′

i,xinc−1
and yinc new parity blocks p′i,0, p

′

i,1,
· · · , p′i,yinc−1 to the original stripe Si.
Denote Binc = {T inc0 ,T inc1 , · · · ,T incbinc−1

}, PDS allocates
new blocks in unit of PIEs. We allocate the new data/parity
blocks into the original stripes in the x-th scaled PME of a
PIE according to T incx . For the x-th scaled PME, we define
increasing stripe size block allocation group (abbr. as IBA-
group) Gdki,j and G

pk
i,j as follows, where subscript i means the

i-th PPD area in a PIE and j means the j-th disk containing
free storage units in a row, and dk and pk mean the k-th new
data block and the k-th new parity block to be added to an
original stripe, respectively.
• We first denote the set of the unlabelled objects in T incx
as Sdata. Suppose that j is the k-th smallest number in
Sdata, then we denote the bp new allocated data blocks
d ′bp×i+l,k (0 ≤ l ≤ bp − 1) as Gdki,j , where ba × x ≤ i ≤
ba(x + 1)− 1.

• Suppose that j is the object labelled with Pk in T incx , then
we denote the bp new allocated parity blocks p′bp×i+l,k
(0 ≤ l ≤ bp−1) asG

pk
i,j , where ba×x ≤ i ≤ ba(x+1)−1.

The IBA-groups Gdki,j and G
pk
i,j are added into bp original

stripes which belong to the (i mod ba)-th scaled PPD area
of the bi/bac-th scaled PME. We allocate Gdki,j and Gpki,j in
disk Dl , where l is defined as follows. The data migration
for the scaling process is defined by the auxiliary BIBD
Ba = {T a0 ,T

a
1 , · · · ,T

a
ba−1
}. We use T ay to migrate data/parity

blocks in the y-th PPD area of a PME. So we know from T ay
that, in the y-th PPD area, the storage units in which disks are
free. We first define the complement of tuple T ay in base set
Sa = {0, 1, · · · , va − 1} as T {

y = {z | z ∈ Sa and z /∈ T
a
y },

where each element in T {
y is the subscript of a disk in which

the storage units of the y-th PPD area is free. Then l is the j-th
smallest number in T {

i mod ba
. Take Fig. 14a as an example.

Step 6 (Remapping): In the scaled system, there are three
types of storage units. The first type corresponds to the stor-
age units storing data and parity blocks in the RAID before
scaling, such as all storage units occupied by Ci,j in Fig. 12d.
The second type corresponds to the storage units storing the
new allocated data and/or parity blocks for increasing stripe
size, such as all storage units occupied by IBA-groups Gd0i,j
and Gp0i,j in Fig. 14a. Note that if we do not increase the stripe
size of the scaled system, the second type of storage units
does not exist. The third type corresponds to the storage units
which are freed in old disks or are not used in new disks,
such as all free storage units in Fig. 12d when we do not
increase stripe size or in Fig. 14a when we increase stripe
size. The addressing algorithm for the three types of storage
units will be presented in the next section (i.e., Section VI) in
detail.

VOLUME 7, 2019 23977

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

Step 7 (Parity Update): Erasure codes guarantee data relia-
bility by maintaining the parity information in a stripe. When
we do not increase stripe size of the scaled system, because
we do not change content of any data/parity block in an
original stripe during the scaling process, the data migration
does not induce update of parity blocks in the first type of
storage units. However, when we increase the stripe size of
the scaled system, we should update the parity blocks to keep
the consistency due to new blocks added into the original
stripe, To maintain parity consistency of the original stripes
with the increased size, we need to read all data blocks to
compute the parity blocks of the stripes by using the (xp+xinc,
yp + yinc)-RS code, then write these parity blocks into their
corresponding storage units.

We can save disk I/O load for updating parity blocks of the
stripes in the first and the second types of storage units and
cleaning up the freed storage units of the third type in the old
disks in the following two ways respectively.

• Since the new allocated data blocks (when xinc 6= 0) and
the migrated data blocks have been read into memory in
the data migration, we can read these data blocks from
memory instead of reading these blocks from disks to
compute parity blocks to save I/O load.

• The freed storage units of the third type in old disks
are still containing content of migrated blocks after data
migration. If we clean up these storage units by writing 0
to maintain parity consistency, it will induce heavy disk
I/O load. In order to save I/O load, we can use a piggy-
back parity update scheme, which will be introduced in
Section VIII-A in detail.

VI. THE ADDRESSING ALGORITHM
After scaling, there are three types of storage units in the
system. The volume of the first type equals to the size of all
old disks, and the volume of the second type equals to the size
of all new allocated blocks for increasing stripe size. Note
that if we do not increase stripe size in the scaled system,
the volume of the second type is 0. Furthermore, the volume
of the second type and the third type in total equals to the size
of all new added disks.

In the scaled system, for a block x with logical series
number nls(x),

• if nls(x) is less than the size of all old disks, x is an
original block which exists before scaling and it is stored
in the first type of storage units;

• if nls(x) is between the size of all old disks and the size
of all blocks either in the original stripes that exist before
scaling or in the new allocated blocks for increasing
stripe size, x is a new allocated block for increasing
stripe size and it is stored in the second type of storage
units;

• otherwise, x is a new block and it is stored in the third
type of storage units.

Blocks stored in three different types of storage units are
located with the addressing algorithm in three different ways.

A. ADDRESSING THE FIRST TYPE OF STORAGE UNITS
If x is stored in a storage unit of the first type, PDS calculates
its physical address (d, f) in the old system, which means x is
stored in diskDd with offset f before scaling. Since each PME
has ba PPD areas and each PPD-column contains rp blocks,
we know that x is stored in the l = (bf /rpc mod ba)-th PPD
area of the bf /(rp×ba)c-th PME. Therefore x is stored inCl,d
in the bf /(rp × ba)c-th PME before scaling.
Tuple T al of the auxiliary BIBD Ba and disk number d

decide into which disk x is migrated. If d ∈ T al , PDS does not
migrate Cl,d during scaling, x is still stored in disk Dd with
offset f after scaling. Otherwise, PDS migrates Cl,d to disk
Dd ′ , where d ′ is calculated according to the migration algo-
rithm as follows. First, calculating Sfrom = {0, 1, · · · , vp −
1} − T al and Sto = T al − {0, 1, · · · , vp − 1}. Second, suppose
that d is the i-th smallest number in Sfrom, then d ′ is the i-th
smallest number in Sto. Note that PDS does not change the
offset of x during scaling, so x is stored in disk Dd ′ with the
same offset f after scaling.

B. ADDRESSING THE SECOND TYPE OF STORAGE UNITS
Suppose that x is stored in a storage unit of the second type.
Let the size of all old disks be sold , i.e., the old system can
store sold blocks. Suppose that when the size of all original
stripes increases from kp to kp + xinc + yinc, all original
stripes with increased size contain sinc storage units, i.e., the
scaled system can store sinc blocks. Then we have that sold ≤
nls(x) < sinc and n′ls(x) = (nls(x) − sold) is the logical series
number of x in the second type of storage units. Note that if
we do not increase stripe size in the scaled system, the second
type of storage units do not exist and then sold = sinc.

We know that the stripe size is increased by kinc =
xinc + yinc, i.e., there are kinc new allocated blocks added
to each original stripe. So block x is added to the sor (x) =
bn′ls(x)/kincc-th original stripe as the bna(x) = (n′ls(x) mod
kinc)-th new block added into the stripe for increasing its size.
As there are ba PPD areas in a PME and each PPD area
contains bp original stripes, so there are Nstripe = ba × bp
original stripes in a PME.We use a tuple in TBLinc to allocate
new blocks for all the Nstripe original stripes in a PME.
When block x is coming into the system and we are to

allocate x, in TBLinc, the number of tuples that has been
used to allocate new blocks for all the original stripes in a
PME is Ntuple = bsor (x)/Nstripec = bbn′ls(x)/kincc/Nstripec =
bn′ls(x)/(kinc × Nstripe)c. Furthermore, in the current tuple
which is now used to allocated block x, there are bna(x)
objects has been used. As each tuple in TBLinc contains kinc
objects, then when we allocate block x, in TBLinc, there are
Nobject = Ntuple × kinc + bna(x) objects that has been used.
Then we use series number

n∗ls(x) = Nobject
= Ntuple × kinc + bna(x)

= bn′ls(x)/(Nstripe × kinc)c × kinc
+ (n′ls(x) mod kinc)

23978 VOLUME 7, 2019

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

FIGURE 15. The placement of new data blocks dN,0, dN,1, dN,2 and their parity blocks pN,0, pN,1 in the storage
units of the third type. (a) Physical layout of the third PME with new data blocks. (b) Full block design table for new
data.

to calculate logical address (d, f) according to the parity
declustered data layout constructed from TBLinc. Note that
we use a tuple of TBLinc to allocated Nstripe stripes instead of
allocating just one stripe, i.e., we have that if Nstripe = 1, then
n∗ls(x) = bn

′
ls(x)/kincc × kinc + (n′ls(x) mod kinc) = n′ls(x).

Since a PPD area contains bp original stripes and kinc new
blocks are added to each original stripe, there are bp × kinc
new blocks added into a PPD area. So block x is allocated
into a stripe in the i = bn′ls(x)/(bp × kinc)c-th PPD area.
We know that the i-th PPD area is migrated according to the
(i mod ba)-th tuple of Ba (i.e., T ai mod ba

). Thus, we allocate
block x in disk Dd ′ , where d ′ is the d-th smallest number
in T {

i mod ba
.

Since a PIE contains binc PMEs and there are ba PPD areas
in a PME, there are binc × ba PPD areas in a PIE. So block
x is allocated into a stripe in the j = bi/(binc × ba)c-th PIE.
We allocate block x in the free storage unit with the lowest
available offset on diskDd ′ in the j-th PIE. Since each PIE has
the same data layout, the lowest available offset can be easily
computed. Let f ′ be the the lowest available offset on diskDd ′
in the j-th PIE, As each disk contains Ntotal = rp × ba × binc
storage units in a PIE, then block x is stored in disk Dd ′ with
offset f ′′, where f ′′ = j× Ntotal + f ′.

C. ADDRESSING THE THIRD TYPE OF STORAGE UNITS
Suppose that x is stored in a storage unit of the third type.
Then nls(x) ≥ sinc and n′′ls(x) = (nls(x) − sinc) is the logical
series number of x in the third type of storage units. To make
the data layout in the storage units of the third type be parity
declustering, we should select a (b′′, v′′, k ′′, r ′′, λ′′)-BIBD B′′
to define the data layout. In the scaled system, we should
deploy the same erasure code for both of the stripes in the
storage units of the third type and the stripes in the storage
units of the first type and the second type. Therefore we
set k ′′ = kp + xinc + yinc to ensure the same stripe size
in the scaled system. We should set v′′ = vo due to the
number of disks in the scaled system. Then we find a B′′ in
the BIBD database described in step 1 (i.e., Auxiliary BIBD
Selection for Data Migration) of the scaling process of PDS
in Section V-B.WithB′′, we can build a new full block design
table (denoted as TBLnew) to define the data layout in the stor-
age units of the third type. Suppose TBLnew corresponds to a
(bnew, vnew, knew, rnew, λnew)-BIBD Bnew, we have vnew = vo
and knew = kp + xinc + yinc.

For x’s series number n′′ls(x), we first calculate its logical
address (d, f) according to the parity declustered data layout
constructed from TBLnew, which means x should be stored in

VOLUME 7, 2019 23979

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

diskDd with offset f according to TBLnew. But note that here,
the offset f is limited in the storage units of the third type,
not the total storage space of the scaled RAID. So we should
further map the offset f in the storage units of the third type
to the physical address of x, i.e., the physical offset f ′ in the
scaled system. Then we store block x into the corresponding
storage unit in the scaled system. For example, let N be the
number of stripes before scaling, Fig. 15 shows the placement
of new data blocks dN ,0, dN ,1, dN ,2 and their parity blocks
pN ,0, pN ,1 in the storage units of the third type.
From the proof of Theorem 3 in the next section, we can

know that each disk contains Nthird = (ba − ra)(rp × binc −
bp× rinc) storage units of the third type in a PIE in the scaled
system. Therefore we store block x in the l = bf /Nthirdc-th
PIE onDd . In particular, we store x in the f ′′-th storage unit in
the l-th PIE onDd , which is the (f mod Nthird)-th storage unit
of the third type in the l-th PIE on Dd . As there are Ntotal =
rp × ba × binc storage units in each PIE of a disk, we have
f ′ = Ntotal × l + f ′′.
If we do not increase the stripe size in the scaling process,

we can just set binc = 1 such that a PIE just consists of binc =
1 PME and set rinc = 0 in the calculation of f ′.

This addressing algorithm is simply and can be easily
implemented. A block address can be calculated quickly with
low space overhead. Furthermore, several microseconds of
the addressing calculation time is negligible compared to
milliseconds of disk I/O time.

VII. THEORETICAL PROOFS OF PDS
We presented the addressing algorithm of PDS, which
shows fast data addressing (i.e., Objective 5 as stated in
Section IV-A) in the scaled system in the last section. In
this section, we formally prove that PDS achieves the other
objectives, i.e., Objectives 1, 3, 4 as stated in Section IV-A.
In the following, we assume that the primary BIBD, the
auxiliary BIBD for data migration, and the auxiliary BIBD
for increasing stripe size are (bp, vp, kp, rp, λp)-BIBD Bp,
(ba, va, ka, ra, λa)-BIBD Ba, and (binc, vinc, kinc, rinc, λinc)-
BIBD Binc respectively. We first prove that the data layout in
the scaled system after scaling can be defined by some final
(bf , vf , kf , rf , λf)-BIBD Bf with vf = va and kf = kp + kinc
(i.e., Objective 1), then prove that data blocks, and also parity
blocks, are evenly distributed among disks (i.e., Objective 3),
and finally prove the number of migrated blocks is minimal
(i.e., Objective 4).

A. DATA LAYOUT WITH PARITY DECLUSTERING
In this section, we show that PDS achieves Objective 1 as
stated in Section IV-A, i.e., the data layout after scaling is
parity declustering. We know that there are three types of
storage units in the scaled system. We will first show that the
data layout in the storage units of the first type can be defined
by a BIBD, then show that the data layout in the storage units
of the first type and the second type can be defined by another
BIBD, and finally show that the data layout in the scaled

system (i.e., all storage units of the three types) can be defined
by some final BIBD.
Theorem 1: The data layout in the storage units of first

type is still parity declustered after data migration.
Proof: We first come to the first type of storage units.

In each PME, we define bo tuples T o0 , T
o
1 , · · · , T

o
bo−1

with
base set S = {0, 1, · · · , vo − 1} as follows. T oi = {j | Stripe
Si has a block stored in disk Dj}.

Now we prove Bo = {T o0 ,T
o
1 , · · · ,T

o
bo−1
} is a

(bo, vo, ko, ro, λo) = (bp × ba, va, kp, rp × ra, λa × λp)-
BIBD. Note that in the following of this proof, the statement
is limited in a PME.
• bo: After data migration, there are bp×ba stripes, which
means there are bo = bp × ba tuples in Bo.

• vo: There are va disks in the array, which means there are
vo = va objects in base set S.

• ko: Since stripe size is unchanged during data migration,
each tuple containing ko = kp objects in S.

• ro: After data migration, there are rp× ra blocks on each
disk, which means each object appears in ro = rp × ra
tuples of Bo.

• λo: From Ba, we know that for each pair of disks, there
are exactly λa pairs of PPD-columns in the same PPD
areas. From Bp, we further know that each pair of PPD-
columns in the same PPD area has λp pairs of related
blocks.3 So each pair of disks has λa×λp pairs of related
blocks. Thus, each pair of objects appears in exactly
λo = λa × λp tuples in Bo.

According to Definition 1, Bo = {T o0 ,T
o
1 , · · · ,T

o
bo−1
} is a

(bp × ba, va, kp, rp × ra, λa × λp)-BIBD. So the data layout
in the storage units of the first type in a PME is defined by an
objective (bo, vo, ko, ro, λo)-BIBD Bo.
Theorem 2: The data layout in the storage units of the first

and the second types is parity declustered after the stripe size
being increased.

The complete proof of this theorem is given inAppendixA.
In the proof, for each PIE, we define b∗o tuples T ∗0 , T

∗

1 , · · · ,
T ∗b∗o−1 with base set S = {0, 1, · · · , v∗o − 1} as T ∗i = {j |
Stripe Si has a block stored in disk Dj}, then we prove that
B∗o = {T ∗0 ,T

∗

1 , · · · ,T
∗

b∗o−1
} is a (b∗o, v

∗
o, k
∗
o , r
∗
o , λ
∗
o) = (bp ×

ba×binc, va, kp+kinc, ra×binc×rp+ (ba−ra)rinc×bp, λa×
binc×λp+2(ra−λa)rinc×rp+(ba−2ra+λa)λinc×bp)-BIBD,
which implies that the data layout in the storage units of the
first and the second types in a PIE is defined by an objective
(b∗o, v

∗
o, k
∗
o , r
∗
o , λ
∗
o)-BIBD B∗o.

Note that if we do not increase stripe size (i.e., kinc = 0),
we set (binc, vinc, kinc, rinc, λinc) = (1, va−vp, 0, 0, 0) so as to
make (b∗o, v

∗
o, k
∗
o , r
∗
o , λ
∗
o) = (bo, vo, ko, ro, λo). Furthermore,

a PIE is just binc = 1 PME in this case.
Theorem 3: PDS keeps parity declustered data layout in

the scaled system.
Proof: Now we come to the total data layout in

the scaled system. The data layout in the storage units of

3A pair of related blocks means that the two blocks belong to the same
stripe, such that one block is read for the recovery of another.

23980 VOLUME 7, 2019

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

the third type is defined by TBLnew corresponding to a
(bnew, vnew, knew, rnew, λnew)-BIBD Bnew, where vnew = vo
and knew = kp + xinc + yinc. In the storage units of the
third type corresponding to all entries of a TBLnew, there
are rnew blocks stored in each disk. Furthermore, in a PIE,
there are r∗o storage units of the first and the second types
in each disk, while there are total Ntotal = binc × ba × rp
storage units in each disk. So in a PIE, there are Nthird =
Ntotal − r∗o = (ba− ra)(rp× binc− bp× rinc) storage units of
the third type in each disk, which is usually not equal to rnew.
So we should combine the storage units of the third type in
Npie = rnew/ gcd(Nthird , rnew) PIEs as a group, and divide
a group into Nnew = Nthird/ gcd(Nthird , rnew) parts, then the
data layout in each part can be defined by TBLnew.

Therefore, the data layout in Npie PIEs is defined by Npie
copies of B∗o and Nnew copies of Bnew. As vnew = v∗o and
knew = k∗o , the concatenation of the Npie copies of B∗o and
Nnew copies ofBnew is still a BIBDBf [23]. So the data layout
inNpie PIEs can be defined byBf . Thus, the data layout in the
scaled system is still parity declustering.
In the example shown in Section IV-B, we can prove that

Bo is a (28, 7, 3, 12, 4)-BIBD and B∗o is a (84, 7, 5, 60, 40)-
BIBD. From Fig. 15, we can see that Bnew is a
(21, 7, 5, 15, 10)-BIBD and each disk contains Nthird = 3
storage units of the third type in a PIE. So the data layout
in five PIEs is defined by five copies of B∗o and one Bnew.
Because their concatenation is a BIBD, the data layout after
scaling is still parity declustered.

B. UNIFORM DATA AND PARITY DISTRIBUTIONS
In this section, we show that PDS achieves Objective 3 as
stated in Section IV-A, i.e., data blocks, and also parity
blocks, are evenly distributed among all disks in the scaled
system.
Theorem 4: PDS maintains uniform data and parity dis-

tributions after scaling.
The complete proof of this theorem is given in Appendix B,

where we prove that, for the storage units of each type, data
blocks and parity blocks are distributed evenly among all
disks separately.

In the example shown in Section IV-B, from Fig. 12d we
can see that, after data migration, each disk, either old or new,
has ra = 4 PPD-columns in a PME. Each PPD-column
contains rp = 3 blocks including one parity block. So each
disk contains rp × ra = 12 blocks in the storage units of
the first type in a PME, including four parity blocks. So data
blocks and parity blocks in the storage units of the first type
are evenly distributed among disks after scaling.

From Fig. 14a, we can see that, after the stripe size being
increased, each disk, either old or new, has three IBA-groups
with data blocks and three IBA-groups with parity blocks in
a PIE. As each IBA-group contains four blocks, data blocks
and parity blocks in the storage units of the second type are
evenly distributed among disks after scaling.

From Fig. 15, we can see that Bnew is a (21, 7, 5, 15, 10)-
BIBD and by using all entries of TBLnew to place blocks, there

will be rnew = 15 blocks including six parity blocks stored
in each disk. So data blocks and parity blocks in the storage
units of the third type are evenly distributed among all disks
after scaling.

C. MINIMAL DATA MIGRATION
In this section, we show that PDS achieves Objective 4 as
stated in Section IV-A, i.e., the number of migrated blocks is
minimal.
Theorem 5: PDS performs the minimal data migration

during scaling.
Proof: There are vp disks in the old system and va disks

in the scaled system as va−vp new disks are added in the sys-
tem. In each PME of the old system, there are rp × ba blocks
in each disk and totally S = rp × ba × vp blocks in the array.
Therefore to reach even distribution of data/parity blocks,
the minimum number of blocks to be migrated from old disks
to new disks is S × (va − vp)/va = (va − vp)rp × ba × vp/va.
As the auxiliary BIBD Ba satisfies ka = vp, the minimum
number of migrated blocks is (va − vp)rp × ba × ka/va =
(va − vp)rp × ra, according to (1).
In a PME, each disk in the scaled system, either new or old,

contains rp×ra migrated blocks. PDS totally moves rp×ra×
(va − vp) blocks into new disks, and does not migrate blocks
among old disks. Therefore the number of migrated blocks is
rp × ra × (va − vp), which reaches the minimum.

In the example shown in Section IV-B, from Fig. 12b we
can see that, there are totally rp × ba × vp = 84 blocks in a
PME, and three disks are added to an array with four disks.
Thus, the minimal number of migrated blocks is 84× 3/(3+
4) = 36. From Fig. 12d we can see that PDS just migrates 36
blocks, which reaches the minimum.

VIII. FURTHER DISCUSSIONS
A. PIGGYBACK PARITY UPDATES
Data reliability is ensured by erasure codes by maintaining
the parity information in a stripe. When migrating a block,
PDS copies the block to its new storage unit while still
keeping its content in the freed storage unit, without need
of erasing the old block by writing 0 to the freed storage
unit. This does not maintain parity consistence of stripes in
the third type of storage units, and therefore requires parity
updates. PDS uses a piggyback scheme to minimize disk
I/Os for updating parity blocks of the stripes in the third
type of storage units. Before performing the scaling process,
new disks are cleaned up by writing 0. This ‘‘cleaning up’’
operation does not take up the scaling time. Since migrated
blocks will be read into memory during scaling, PDS encodes
blocks of the same stripe in the freed storage units of the third
type when they reside in memory, then writes the updated
parity blocks into disks, which requires less disk I/Os.

Fig. 16 shows the advantage of the piggyback parity update
scheme. After data migration, suppose that a stripe consists
of three storage units of the third typeU0,U1 in old disks and
U2 in a new disk storing A, B, and 0 respectively, storage unit

VOLUME 7, 2019 23981

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

FIGURE 16. Piggyback parity update to maintain parity consistency.

U2 belongs to the parity block. One way to maintain parity
consistence of the stripe is to make all ofU0,U1 andU2 store
0, which needs to write 0 to U0 and U1 with two disk I/Os.
However, A and B will be read into memory during scaling
because they need to be migrated from U0 and U1, we can
encode them as A ⊕ B when they are in memory, then write
the parity block to U2, which requires only one disk I/O.

B. SUPPORT TO RS CODES
By now we propose PDS with RAID-5, which can just tol-
erate a single disk failure, as an example. To achieve higher
reliability than RAID-5, we can deploy RS codes with parity
declustered data layout. For an (x, y)-RS code, a stripe con-
tains x data blocks and y parity blocks.Moreover, an (x, y)-RS
code can tolerate y concurrent disk failures. We can deploy
an (x, y)-RS code to an array with m disks as follows. First,
we select a (b, v, k, r, λ)-BIBD,B, with v = m and k = x+y.
Second, we use the BIBD with duplicating v/ gcd(b, v) times
of B to construct the full block design table according to the
‘‘parity assignment graph’’ in the work [22] so as to distribute
parity blocks evenly. Then the data layout with the RS code
can be defined by the full block design table. PDS succeeds
in scaling RS codes with parity declustering because it scales
up an array with parity declustered data layout according to
the full block design table.

C. SUCCESSIVE SCALING OPERATIONS
As time goes on, a scaled system may need scaling up again.
Now we explain how to apply PDS to a scaled system. After
the first scaling operation, the data layout in a number of PIEs
can be defined by some BIBD (see the proof of Theorem 3),
then we can redefine the PPD-column in the scaled system to
perform the next scaling operation. Suppose that the system
has already been performed t − 1 scaling operations, now we
are going to perform the t-th scaling operation.
• Suppose that TBLi is the full block design table in the
i-th scaled system for 0 ≤ i ≤ t , and it corresponds to
a (bi, vi, ki, ri, λi)-BIBD, which should satisfy that ki =
ki−1 + k inci for increasing the stripe size by k inci .

• Suppose that Bai is the auxiliary BIBD that defines the
data migration of the i-th scaling for 1 ≤ i ≤ t , and it
is a (bai , v

a
i , k

a
i , r

a
i , λ

a
i)-BIBD, which should satisfy that

vai = vi and kai = vi−1.
• Suppose that Binci is the auxiliary BIBD that defines
the block allocation to increase stripe size in the
i-th scaling process for 1 ≤ i ≤ t , and Binci is a
(binci , v

inc
i , k

inc
i , r inci , λinci)-BIBD, which should satisfy

that vinci = vi − vi−1. Note that if we do not increase
stripe size in the i-th scaling process (i.e., k inci = 0),
we just set binci = 1 and r inci = 0 in the equations from
(3) to (7).

During the i-th scaling process, vi − vi−1 new disks are
added to the array with vi−1 old disks, the number of blocks
in one PPD-column is leni (defined by (3)), i.e., one PPD area
contains leni blocks on each disk when performing the i-th
scaling process. Moreover, the number of stripes in one PPD
area isN stripe

i (defined by (4)). Because there are bai PPD areas
in a PME and there are N stripe

i stripes in a PPD area, so there
are totally bai ×N

stripe
i stripes in a PME. If we are to add k inci

new data/parity blocks to each of the original stripes, we need
k inci × b

a
i ×N

stripe
i free storage units in a PME. Because there

are leni × bai storage units in each disk of a PME, the scaling
process adds (vi− vi−1)× leni× bai free storage units to each
PME. To accommodate the new blocks added to free storage
units, we have that

k inci ≤ (vi − vi−1)× leni × bai /(b
a
i × N

stripe
i)

= (vi − vi−1)× leni/N
stripe
i . (eliminating bai)

After the i-th scaling, the number of storage units of the
third type on each disk in one PIE is N third

i (defined by (5)).
Since the data layout of the third type of storage units is
defined by TBLi after the i-th scaling, by using all entries of
TBLi to place blocks N new

i (defined by (6)) times, the new
placed blocks will occupy the storage units of the third type in
exactly N pie

i (defined by (7)) PIEs. Therefore, the data layout
of N pie

i PIEs can be defined by a BIBD. So PDS succeeds
in successive scaling operations with parity declustered data
layout preserved. As a summary, we have

leni =

{
r0, if i = 1;

leni−1 · bai−1 · b
inc
i−1 · N

pie
i−1, if i > 1.

(3)

N stripe
i =

b0, if i = 1;

N stripe
i−1 · b

a
i−1 · b

inc
i−1 · N

pie
i−1

+bi−1 · N new
i−1 , if i > 1.

(4)

N third
i = (leni · binci − N

stripe
i · r inci) · (bai − r

a
i), for i ≥ 1.

(5)

N new
i =

N third
i

gcd(N third
i , ri)

, for i ≥ 1. (6)

N pie
i =

ri
gcd(N third

i , ri)
, for i ≥ 1. (7)

IX. PERFORMANCE EVALUATION
We evaluate PDS and compare with the existing ‘‘moving-
everything’’ solution, i.e., the round-robin scheme, in differ-
ent practical aspects, including scaling time, user response
time during scaling, and user response time after scaling.

A. EVALUATION METHODOLOGY
We implement parity declustered data layout, PDS and round-
robin scaling schemes in the MD (Multiple Devices) driver
shipped with Linux kernel 3.14.72. The MD driver is a soft-
ware RAID system that forms a common framework for all
RAID systems, including RAID-5 and Linux RAID-6 [4].

23982 VOLUME 7, 2019

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

In Linux RAID-6, a stripe contains two parity blocks such
that the system could tolerate the failure of any two disks. The
MD driver provides a reshape toolkit namedMD-Reshape [5]
to support online capacity expansion.

We conduct our evaluation on a storage server with an
Intel Xeon E5-2609 2.40 GHz quad-core processor and 8 GB
memory, running Ubuntu 14.04 with Linux kernel 3.14.72.
Via a 6 GB/s SATA expansion card, 12 disks are connected
to this server. Table 2 gives the key parameters of the disks.
We set the block size as 256 KB throughout the evaluation. In
all experiments, 10 GB capacity of each disk is used because
using the whole volume of each disk will take quite a long
time.

TABLE 2. Disk parameters.

We evaluate our design by running trace-driven experi-
ments over a real system. To replay I/O traces and collect
block-level I/O information, we use the blktrace tool [1].
Our experiments use the following three real-system disk I/O
traces with different characteristics. Table 3 gives a summary
of the trace characteristics.
• Financial1 and Financial2 are from SPC (Storage Per-
formance Council) [3]. They were collected from OLTP
(On-Line Transaction Processing) applications running
at two large financial institutions. Financial1 is write-
dominated, while Financial2 is read-dominated.

• WebSearch2 is also from SPC. It was collected from
a system running a web search engine. WebSearch2 is
read-dominated and exhibits strong access locality.

B. PERFORMANCE DURING SCALING
We evaluate the scaling time and user I/O latency during
scaling under different workloads. As data migration and user
applications share and contend for the limited I/O resource
of the storage system, migration I/Os and user I/Os interfere
with each other. We can achieve different tradeoffs between
the scaling time and user I/O response time by adjusting the
parameters of sync_speed_max and sync_speed_min
in MD-Reshape.

We conduct a scaling operation of adding n (n = 1, 2, 3)
disks to an array of seven disks with stripe size five,
including one parity per stripe. By default, with the round-
robin approach, the parameters of sync_speed_min and
sync_speed_max are set as 2 MB/s and 200MB/s respec-
tively. To fairly compare the user I/O latency of PDS and
round-robin, for both scaling schemes, we should issue the
same amount of data migration I/Os in each time slot.

TABLE 3. Trace characteristics.

Because the volume of migrated data by PDS is less than
that by round-robin, when adding n = 1, 2, 3 disks, we
set sync_speed_min with PDS as 16, 9, 6.66 MB/s (i.e.,
2×(7+n)/nMB/s) respectively so as to ensure approximately
the same volume of migrated data with round-robin in a time
slot. The parameter of sync_speed_max with PDS is set
as 200 MB/s, the same as round-robin.

Furthermore, we conduct a successive scaling operation
by adding two disks each time without increasing stripe
size to evaluate the performance during the second scaling
process. For the second scaling process of PDS, we set
sync_speed_min and sync_speed_max as 11 MB/s
(i.e., 2× ((7+ 2)+ 2)/2 MB/s) and 200 MB/s respectively.

1) SCALING TIME
We compare the online scaling time between PDS and round-
robin under different workloads, and we also measure the
scaling time when the scaling process is performed offline,
i.e., no traces are replayed during the scaling process. Fig. 17
shows the scaling time under the three workloads and in
the offline case (marked as ‘‘offline’’). We use (n, x, y) to
represent the numbers of new added disks, new data blocks
added to an original stripe and new parity blocks added to an
original stripe, respectively. And the second scaling operation
of adding two disks each time without increasing stripe size
is marked as ‘‘2nd’’.

From Fig. 17, we find that the scaling time when running
online workloads is much longer than that in the offline case.
This is because the RAID also need to serve the user I/O
requests in addition to the I/O migration requests, which
burdens the storage system and so severely prolongs the
scaling time. Note that only 10 GB capacity of each disk
is used in the experiments, so the benefit of PDS must be

FIGURE 17. Scaling time comparison between PDS and Round-Robin
under different workloads and in the offline case both for different
(n, x, y) values, where n, x , y represent the numbers of new added disks,
new data blocks added to an original stripe and new parity blocks added
to an original stripe respectively, and for the second scaling operation of
adding two disks each time (marked as ‘‘2nd’’).

VOLUME 7, 2019 23983

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

larger in practical systems storing large amounts of data.
Compared with round-robin, PDS significantly reduces the
scaling time by 82.37 percent on average. In particular, for the
WebSearch2 workload with (n, x, y) = (2, 0, 0), the scaling
time is reduced by 91.22 percent.

For round-robin, all blocks have to be migrated. However,
PDS only migrates part of the blocks, for example, only
2/(2 + 7) = 22.22 percent for adding two disks to an
array of seven disks. The significant reduction of migrated
data contributes to the most of the reduction of the scaling
time. Furthermore, for round-robin, the storage units in old
disks, which are invalid but still containing the content of the
blocks that have already been migrated, need to be cleaned
up so as to maintain parity consistence. This ‘‘cleaning up’’
process brings additional writes. While PDS updates parity
blocks with piggyback scheme (discussed in Section VIII-A)
that greatly reduces the additional writes to maintain parity
consistence.

2) USER RESPONSE TIME
Now we compare the user I/O response time during the scal-
ing process. Fig. 18 plots the average latency computed for
every 100 seconds when adding two disks without increasing
stripe size under the Financial2 workload. We denote the
beginning time of running the two algorithms as tb, and then
denote the ending time of scaling with PDS and round-robin
as tep and ter , respectively. It also illustrates that round-robin
takes a longer time for scaling than PDS. Note that we can
trade off the scaling time for the user I/O latency during
scaling, and we issue the same amount of data migration I/Os
in each time slot for both scaling schemes so as to fairly
compare the user I/O latency of PDS and round-robin.

FIGURE 18. Performance comparison between PDS and Round-Robin
when adding two disks without increasing stripe size under the
Financial2 workload.

Fig. 19 shows the average latency of PDS and round-robin,
the latency with round-robin is computed as the average
latency of all requests between tb and ter , while for PDS,
we measure the average latency between tb and tep, which
is denoted as ‘‘PDS (on-scaling)’’, as well as the average
latency between tb and ter , which is denoted as ‘‘PDS (on-
scaling + post-scaling)’’. The results demonstrate that PDS
can significantly reduce the user I/O latency compared with
round-robin. On average, the latency of PDS (on-scaling +
post-scaling) is only 81.75 percent of which with round-
robin. This is because PDS has a much shorter scaling time

FIGURE 19. Average latency comparison between PDS and Round-Robin
under different workloads for different (n, x, y) values and the second
scaling operation of adding two disks each time during the scaling
process.

than round-robin, and then it has a smaller influence on the
user I/O response time. It should be noted that only 10 GB
capacity of each disk is used in the experiments, so the benefit
of PDSmust be much larger in practical systems storing large
amounts of data. Thus, scaling process may greatly degrade
the storage system performance with ongoing applications,
and efficient scaling schemes are very important to scale
large-scale storage systems.

We also notice that the latency of PDS (on-scaling + post-
scaling) is higher than that of PDS (on-scaling) under the
Financial1 workload in Fig. 19, which implies that, for PDS
under the Financial1 workload, the average latency after
scaling is even higher than that during scaling. We analyze
all the three trace files and find that the request rate of the
Financial1 workload between tep and ter happens to be much
higher than those between tb and tep.

C. PERFORMANCE AFTER SCALING
The data layout of a RAID scaled by PDS differs from
‘‘standard’’ parity declustered data layout preserved by the
round-robin scaling scheme. Hence in this section we evalu-
ate the storage performance, in terms of the average response
time, after the RAID is scaled. Specifically we use the three
workloads to measure the performance of the two RAIDs,
scaled from the sameRAID using PDS and round-robin. Each
experiment lasts 30 minutes, records the latency of each user
requests, and then computes the average latency.

First, we compare the performance of the two RAIDs, after
one scaling operation using the two scaling approaches by
adding n (n = 1, 2, 3) disks to a seven-disk array with stripe
size five, including one parity per stripe. We use (n, x, y) to
represent the numbers of new added disks, new data blocks
added to an original stripe and new parity blocks added to
an original stripe, respectively. Fig. 20 plots the average
latencies for the two data layouts. It illustrates that, under the
same situation, the average latencies of PDS and round-robin
are almost identical. The reason why the two data layouts
have approximately the same latencies is as follows. Since the
stripe size after scaling is the same for both scaling methods
under the same circumstances, and the number of blocks in
one PPD-column is quite small, data parallelism is almost the
same for the two data layouts in the scaled systems.

23984 VOLUME 7, 2019

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

FIGURE 20. Average latency comparison between PDS and Round-Robin
under different workloads after one scaling operation for different
(n, x, y) values and two scaling operations of adding two disks each time
(marked as ‘‘twice’’).

Second, we compare the storage performance after the
RAID is scaled twice without increasing stripe size by adding
two disks each time. Fig. 20 (marked as ‘‘twice’’) also shows
the average latency for the two data layouts of the RAIDs
that have been scaled twice. It again illustrates that their
performances are almost identical under each workload.

X. CONCLUSION
This paper proposes PDS, a parity declustering scaling
scheme that efficiently scales up RAIDs deployed with parity
declustered data layout while requiring minimal data migra-
tion and allows to improve the reliability and/or storage
efficiency of the RAID during scaling. PDS uses a BIBD-
based data migration scheme to move blocks across disks,
so as to guarantee parity declustered data layout with mini-
mal data migration. It also allows to increase the reliability
and/or storage efficiency by defining the allocation of new
data/parity blocks, while still preserving parity declustered
data layout. Theoretical proofs show that PDS can keep parity
declustered data data layout while requiring the minimal
data migration and improving the reliability and/or storage
efficiency. Experimental results show that PDS can efficiently
decrease the user response time during scaling and shorten
the scaling time compared with RR adapted to achieve parity
declustered data layout after scaling.

APPENDIX
A. PROOF OF THEOREM 2
Theorem 2: The data layout in the storage units of the first
and the second types is parity declustered after the stripe size
being increased.

Proof: For the data layout in the storage units of the first
type and the second type, in each PIE, we define b∗o tuples T

∗

0 ,
T ∗1 , · · · , T

∗

b∗o−1
with base set S = {0, 1, · · · , v∗o−1} as follows.

T ∗i = {j | Stripe Si has a block stored in disk Dj}.
Now we prove B∗o = {T ∗0 ,T

∗

1 , · · · ,T
∗

b∗o−1
} is a

(b∗o, v
∗
o, k
∗
o , r
∗
o , λ
∗
o) = (bp×ba×binc, va, kp+kinc, ra×binc×

rp+ (ba− ra)rinc× bp, λa× binc×λp+ 2(ra−λa)rinc× rp+
(ba − 2ra + λa)λinc × bp)-BIBD. Note that in the following
of this proof, the statement is limited in a PIE.
• b∗o: Since each PIE consists of binc PMEs and each PME
contains bp×ba stripes, so there are bp×ba×binc stripes

in a PIE after the stripe size being increased. So there are
b∗o = bp × ba × binc tuples in B∗o.

• v∗o: There are va disks in the array, which means there
are v∗o = va objects in the base set, S.

• k∗o : Since kinc blocks are added into each stripe, each
stripe contains kp+kinc blocks after the stripe size being
increased, which means each tuple containing k∗o =
kp + kinc objects in S.

• r∗o : r
∗
o is the number of blocks stored in the storage units

of the first and the second types in a PIE of each disk.
We calculate r∗o as follows.
After the stripe size being increased, each disk contains
ra PPD-columns in a PME and there are binc PMEs in
a PIE. Moreover, each PPD-column contains rp blocks.
So Nfirst = ra×binc× rp blocks are stored in the storage
units of the first type on each disk.
Nowwe come to calculating the number of blocks stored
in the storage units of the second type. Before scaling,
there are ba PPD areas in a PME.While after data migra-
tion, on each disk in a PME, the PPD-columns of just ra
PPD areas still stores the blocks in the system before
scaling, i.e., the storage units in these PPD-columns are
of the first type. The blocks in other ba − ra PPD areas
on the disk in a PME are migrated and the corresponding
storage units are freed.
Denote

Nfree = ba − ra. (8)

Given diskDl , suppose that theNfree PPD areas onDl are
the h0, h1, · · · , hNfree−1-th PPD areas in the PME, where
0 ≤ h0 < h1 < · · · < hNfree−1 ≤ ba − 1. Suppose the
disk number l is the wi-th smallest number in T {

hi , where
i ∈ {0, 1, · · · ,Nfree − 1}. Since we set vinc = va − ka,
we have 0 ≤ wi ≤ vinc − 1. Let M = (mi,j)binc×vinc be
the incidence matrix of Binc.
When we allocate blocks in the storage units of the sec-
ond type, according to the incidencematrixM , ifmi,wj =
1, we allocate an IBA-group on diskDl for increasing the
stripes in the hj-th PPD area (0 ≤ j ≤ Nfree − 1) of the
i-th PME (0 ≤ i ≤ binc − 1). Therefore, the number of
IBA-groups allocated on disk Dl is

NG =
binc−1∑
i=0

Nfree−1∑
j=0

mi,wj (summing first on j)

=

Nfree−1∑
j=0

binc−1∑
i=0

mi,wj (summing first on i)

=

Nfree−1∑
j=0

rinc (by Defination 1)

= (ba − ra)rinc. (by (8))

SinceNG = (ba−ra)rinc is independent of the disk num-
ber l, the number of IBA-groups allocated on each disk is
NG. As each IBA-group contains bp blocks, the number

VOLUME 7, 2019 23985

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

of blocks stored in the storage units of the second type
on each disk is Nsecond = NG× bp = (ba− ra)rinc× bp.
Thus, there are Nfirst + Nsecond blocks stored in the
storage units of the first and the second types on each
disk, which means each object appears in r∗o = Nfirst +
Nsecond = ra×binc×rp+ (ba−ra)rinc×bp tuples of B∗o.

• λ∗o: Now we prove that, there is a constant λ∗o such that
for each pair of disksDj0 andDj1 (0 ≤ j0 < j1 ≤ va−1),
there are just λ∗o stripes where both Dj0 and Dj1 store
blocks in the storage units of the first and the second
types.
Given Dj0 and Dj1 , we define that a PPD-column or an
IBA-group in Dj0 is related to another PPD-
column or IBA-group in Dj1 when they contain blocks
of the same stripes in the storage units of the first and
the second types. Given Dj0 and Dj1 for 0 ≤ j0 < j1 ≤
va − 1, we define some symbols in the following.

– (C,C), a pair of related PPD-columns on disks Dj0
and Dj1 .

– (C,∅), a PPD-column on Dj0 while there is no
related PPD-column on Dj1 .

– (∅,C), a PPD-column on Dj1 while there is no
related PPD-column on Dj0 .

– (∅,∅), neither disk Dj0 nor disk Dj1 contains a
PPD-column in a PPD area.

– (C,G), a PPD-column on disk Dj0 and a related
IBA-group on disk Dj1 .

– (G,C), an IBA-group on disk Dj0 and a related
PPD-column on disk Dj1 .

– (G,G), a pair of related IBA-groups on disks Dj0
and Dj1 .

– NX , the number of Xs in a PME before allocating
IBA-groups, where X ∈ {(C,C), (C,∅), (∅,C),
(∅,∅)}.

– N ∗X , the number of Xs in a PIE after allocating
IBA-groups, where X ∈ {(C,C), (C,G), (G,C),
(G,G)}.

In the above definition, we use C to represent a PPD-
column where the storage units are of the first types
after the RAID scaling, while use∅ to represent a PPD-
column where the storage units are freed in the old
disks or still free in the new disks after the data migration
and before allocating the blocks of the second types for
increasing stripe size. After we allocating blocks in a
PPD-column of ∅, it will become a PPD-column of G.
In the following, we will calculate the number of pairs
(C,C), (C,G), (G,C) and (G,G) based on the auxiliary
BIBD Ba and Binc to get λ∗o.
As we migrate PPD-columns according to Ba, we can
apply the four properties of Lemma 1 and show that

N(C,C) = λa, (9)

N(C,∅) = ra − λa, (10)

N(∅,C) = ra − λa, (11)

N(∅,∅) = ba − 2ra + λa. (12)

Since there are binc PMEs in a PIE, we have that
N ∗(C,C) = N(C,C) × binc = λa × binc.
We know that the N(C,∅) (C,∅)’s are in N(C,∅) PPD
areas in a PME before allocating IBA-groups. Suppose
that the N(C,∅) PPD areas are the l0, l1, · · · , lN(C,∅)−1-
th PPD areas in the PME, where 0 ≤ l0 < l1 <

· · · < lN(C,∅)−1 ≤ ba − 1. Suppose that the disk
number j1 is the xi-th smallest number in T {

li , where
i ∈ {0, 1, · · · ,N(C,∅) − 1}. Since we set vinc = va − ka,
we have 0 ≤ xi ≤ vinc − 1. Let M = (mi,j)binc×vinc
be the incidence matrix of Binc. We know that there is
a PPD-column as a (C,∅) in the lj-th PPD area (0 ≤
j ≤ N(C,∅) − 1) of the i-th PME (0 ≤ i ≤ binc − 1) on
disk Dj0 before allocating IBA-groups, we will allocate
a related IBA-group on disk Dj1 when mi,xj = 1. Then a
(C,∅) becomes a (C,G) in this case and we have that

N ∗(C,G) =
binc−1∑
i=0

N(C,∅)−1∑
j=0

mi,xj (summing first on j)

=

N(C,∅)−1∑
j=0

binc−1∑
i=0

mi,xj (summing first on i)

=

N(C,∅)−1∑
j=0

rinc (by Defination 1)

= (ra − λa)rinc. (by (10))

Similarly, we can prove that N ∗(G,C) = N ∗(C,G) = (ra −
λa)rinc.
We know that there areN(∅,∅) (∅,∅)’s in a PME before
allocating IBA-groups. Suppose that these N(∅,∅) PPD
areas are the f0, f1, · · · , fN(∅,∅)−1-th PPD areas in the
PME, where 0 ≤ f0 < f1 < · · · < fN(∅,∅)−1 ≤ ba − 1.
Suppose that the disk numbers j0, j1 are the yi-th and the
zi-th smallest numbers in T {

fi (0 ≤ i ≤ N(∅,∅) − 1),
respectively. Since j0 < j1 and we set vinc = va − ka,
we have 0 ≤ yi < zi ≤ vinc − 1. We know that the
fj-th PPD area (0 ≤ j ≤ N(∅,∅) − 1) of the i-th PME
(0 ≤ i ≤ binc − 1) is a (∅,∅) before allocating IBA-
groups, we will allocate a pair of related IBA-groups on
disks Dj0 and Dj1 when mi,yj = 1 and mi,zj = 1. Then a
(∅,∅) becomes a (G,G) in this case and we have that

N ∗(G,G) =
binc−1∑
i=0

|{j | mi,yj = 1,mi,zj = 1,

0 ≤ j ≤ N(∅,∅) − 1}| (summing on i)

=

N(∅,∅)−1∑
j=0

|{i | mi,yj = 1,mi,zj = 1,

0 ≤ i ≤ binc − 1}| (summing on j)

=

N(∅,∅)−1∑
j=0

λinc (by Defination 1)

= (ba − 2ra + λa)λinc. (by (12))

23986 VOLUME 7, 2019

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

Since a (C,C) contains λp pairs of related blocks, a
(C,G) or a (G,C) contains rp pairs of related blocks
and a (G,G) contains bp pairs of related blocks, we
have that a pair of disks Dj0 and Dj1 has Nrelated =
N ∗(C,C)×λp+ (N ∗(C,G)+N

∗

(G,C))rp+N
∗

(G,G)×bp pairs of
related blocks. Then each pair of disks has Nrelated pairs
of related blocks, which means that each pair of objects
appears in exactly λ∗o = Nrelated = λa × binc × λp +
2(ra − λa)rinc × rp + (ba − 2ra + λa)λinc × bp tuples
in B∗o.

According to Definition 1, B∗o = {T ∗0 ,T
∗

1 , · · · ,T
∗

b∗o−1
} is a

(bp× ba× binc, va, kp+ kinc, ra× binc× rp+ (ba− ra)rinc×
bp, λa×binc×λp+2(ra−λa)rinc×rp+(ba−2ra+λa)λinc×bp)-
BIBD. So the data layout in the storage units of the first
and the second types in a PIE is defined by an objective
(b∗o, v

∗
o, k
∗
o , r
∗
o , λ
∗
o)-BIBD B∗o.

B. PROOF OF THEOREM 4
Theorem 4: PDS maintains uniform data and parity distri-
butions after scaling.

Proof: In the following, for the storage units of each
type, we prove that data blocks and parity blocks are dis-
tributed evenly among all disks separately.

• For the first type of storage units, from Ba, we know
that in each PME of the scaled system, there are ra
PPD-columns stored in each disk. Each PPD-column
contains rp blocks including the same number of parity
blocks. So each disk contains ro = rp × ra blocks
including the same number of parity blocks in of storage
units of the first type, i.e., the scaled system achieves
even distribution of data blocks and parity blocks among
distinct disks in the storage units of the first type in a
PME.

• If we do not increase stripe size, the capacity of the
storage units of the second type is 0. Otherwise, from
the proof in Theorem 2, we know that each disk contains
Nsecond = (ba − ra)rinc × bp blocks in the storage units
of the second type in a PIE. When we do not increase
the reliability (i.e., yinc = 0), there is no parity blocks in
the second type of storage units and each disk contains
Nsecond data blocks in the storage units of the second type
in a PIE.
When we increase the reliability (i.e., yinc 6= 0),
according to step 4 (i.e., Auxiliary Full Block Design
Table Construction for Increasing Stripe Size) of the
scaling process of PDS in Section V-B, we know that
there are binc tuples in Binc and each tuple has an object
labelled with Px (0 ≤ x ≤ yinc − 1), so there are
binc objects labelled with Px in TBLinc. Furthermore,
these binc objects labelled withPx in TBLinc are balanced
perfectly among the vinc distinct objects of TBLinc. Thus,
we have that the number of object j (0 ≤ j ≤ vinc − 1)
in TBLinc labelled with Px is binc/vinc. Note that binc
is a multiple of vinc in this case. That is to say, for
∀x ∈ {0, 1, · · · yinc − 1} and ∀j ∈ {0, 1, · · · vinc − 1},

we have that

|{i | j in T inci is labelled with Px ,

0 ≤ i ≤ binc − 1}| = binc/vinc. (13)

We calculate the number of parity blocks with parity
type Px stored in the storage units of the second type on
each disk as following. From the proof of Theorem 2 (see
the calculation for r∗o), we know that for any disk, say
disk Dl , where 0 ≤ l ≤ va− 1, there are Nfree = ba− ra
(i.e., (8)) PPD areas that do not contain a PPD-column
on disk Dl in a PME before allocating IBA-groups.
Moreover, in the proof of Theorem 2 (see the calculation
for r∗o), we have already assumed that 1) these Nfree PPD
areas are the h0, h1, · · · , hNfree−1-th PPD areas in the
PME, where 0 ≤ h0 < h1 < · · · < hNfree−1 ≤ ba − 1;
2) the disk number l is the wi-th smallest number in T {

hi ,
where i ∈ {0, 1, · · · ,Nfree − 1}.
We allocate IBA-group Gpxi×ba+hj,wj , which represents bp
parity blocks of type Px , on disk Dl for the stripes in
the hj-th PPD area (0 ≤ j ≤ Nfree − 1) of the i-th PME
(0 ≤ i ≤ binc− 1) when object i in tuple T incwj is labelled
with parity type Px (0 ≤ x ≤ yinc − 1). Therefore,
the number of IBA-groups with parity blocks of parity
type Px allocated on disk Dl is

N p
G =

binc−1∑
i=0

|{j | wj in T inci is labelled with Px ,

0 ≤ j ≤ Nfree − 1}| (summing on i)

=

Nfree−1∑
j=0

|{i | wj in T inci is labelled with Px ,

0 ≤ i ≤ binc − 1}| (summing on j)

=

Nfree−1∑
j=0

binc/vinc (by (13))

= (ba − ra)binc/vinc. (by (8))

Since N p
G = (ba − ra)binc/vinc is independent of disk

number l and x in parity type Px , the number of IBA-
groups with parity blocks allocated on each disk is a
constant, N p

G. As each IBA-group with parity blocks
contains bp parity blocks, each disk contains N p

G × bp
parity blocks with parity typePx (0 ≤ x ≤ yinc−1) in the
storage units of the second type in a PIE. So data blocks
and parity blocks in the storage units of the second type
is uniformly distributed among all disks in a PIE.

• For the third type of storage units, as the data layout of
the third type of storage units is defined by full block
design table TBLnew, by using all entries of TBLnew to
place blocks once, there will be rnew blocks including the
same amount of parity blocks stored in each disk. Thus,
we have that the scaled system achieves even distribution
of data blocks and parity blocks among all disks in the
storage units of the third type.

VOLUME 7, 2019 23987

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

Above all, we have that data blocks and parity blocks are
both distributed evenly among all disks in the storage units of
each type. Thus, the scaled system achieves even distribution
of data blocks and parity blocks among all disks.

ACKNOWLEDGMENT
This paper was presented in part at the 46th IEEE Interna-
tional Conference on Parallel Processing (ICPP), 2017 [14].
In the conference paper, we proposed an efficient scaling
algorithm, PDS (Parity Declustering Scaling), to scale up
disk arrays with parity declustered data layout. However,
the disk array remains the same reliability and storage effi-
ciency after the scaling process. In this journal version,
we extend our prior work in the following aspects.

• We propose a scheme within PDS to improve the reli-
ability and/or storage efficiency during the scaling pro-
cess as options.

• We provide theoretical proofs to formally show the ben-
efits of the proposed scheme.

• We implement the scheme in Linux kernel 3.14.72 and
conduct more experiments with real-world traces to
evaluate its performance.

REFERENCES
[1] Linux Man Page. Blktrace. Accessed: Apr. 2, 2018. [Online]. Available:

https://linux.die.net/man/8/blktrace
[2] NetBSD Documentation. NetBSD RAIDframe. Accessed: Apr. 2, 2018.

[Online]. Available: http://www.netbsd.org/docs/guide/en/chap-rf.html
[3] University of Massachuestts. OLTP Application I/O and Search Engine

I/O.UMass Trace Repository. Accessed: Apr. 2, 2018. [Online]. Available:
http://traces.cs.umass.edu/index.php/Storage/Storage

[4] H. P. Anvin. (Jan. 2004). The Mathematics of RAID-6.
Accessed: Apr. 2, 2018. [Online]. Available: https://mirrors.edge.kernel.
org/pub/linux/kernel/people/hpa/raid6.pdf

[5] N. Brown. RAID-5 Resizing, Drivers/MD/Raid5.C in the Source Code
of Linux Kernel 3.14.72. Accessed: Apr. 2, 2018. [Online]. Available:
https://www.kernel.org

[6] I. I. Courtright, V. William, G. Gibson, M. Holland, L. N. Reilly, and
J. Zelenka, ‘‘RAIDframe: A rapid prototyping tool for RAID systems,’’
School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU-CS-97-142, 1997.

[7] S. Ghandeharizadeh and D. Kim, ‘‘On-line reorganization of data in scal-
able continuous media servers,’’ in Proc. Int. Conf. Database Expert Syst.
Appl., 1996, pp. 751–768.

[8] A. Goel, C. Shahabi, S. D. Yao, and R. Zimmermann, ‘‘SCADDAR:
An efficient randomized technique to reorganize continuous media
blocks,’’ in Proc. 18th Int. Conf. Data Eng. (ICDE), 2002, pp. 473–482.

[9] J. L. Gonzalez and T. Cortes, ‘‘Increasing the capacity of RAID5 by
online gradual assimilation,’’ in Proc. Int. Workshop Storage Netw. Archit.
Parallel I/Os (SNAPI), 2004, pp. 12–24.

[10] M. Hall, Combinatorial Theory. Hoboken, NJ, USA: Wiley, 1986.
[11] H. Hanani, ‘‘Balanced incomplete block designs and related designs,’’

Discrete Math., vol. 11, no. 3, pp. 255–369, Jan. 1975.
[12] M. Holland, ‘‘On-line data reconstruction in redundant disk arrays,’’

Ph.D. dissertation, School Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, USA, 1994.

[13] M. Holland and G. A. Gibson, ‘‘Parity declustering for continuous oper-
ation in redundant disk arrays,’’ in Proc. 5th Int. Conf. Archit. Support
Program. Lang. Oper. Syst. (ASPLOS), 1992, pp. 23–35.

[14] Z. Li, Y. Xu, Y. Li, C. Tian, and Y. Bai, ‘‘PDS: An I/O-efficient scaling
scheme for parity declustered data layout,’’ in Proc. 46th Int. Conf. Parallel
Process. (ICPP), 2017, pp. 402–411.

[15] Y.Mao, J.Wan, Y. Zhu, and C. Xie, ‘‘A new parity-basedmigration method
to expand RAID-5,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 8,
pp. 1945–1954, Aug. 2014.

[16] R. R. Muntz and J. C. S. Lui, ‘‘Performance analysis of disk arrays under
failure,’’ in Proc. 16th Int. Conf. Very Large Data Bases (VLDB), 1990,
pp. 162–173.

[17] D. A. Patterson, ‘‘A simple way to estimate the cost of downtime,’’ in Proc.
16th Large Installation Syst. Admin. Conf. (LISA), 2002, pp. 185–188.

[18] D. A. Patterson, G. A. Gibson, and R. H. Katz, ‘‘A case for redundant
arrays of inexpensive disks (RAID),’’ in Proc. ACM Int. Conf. Manage.
Data (SIGMOD), 1988, pp. 109–116.

[19] E. Pinheiro, W. D. Weber, and L. A. Barroso, ‘‘Failure trends in a large
disk drive population,’’ in Proc. 5th USENIX Conf. File Storage Technol.
(FAST), 2007, pp. 17–28.

[20] J. S. Plank, ‘‘A tutorial on reed-solomon coding for fault-tolerance in
RAID-like systems,’’ J. Softw. Pract. Exper., vol. 27, no. 9, pp. 995–1012,
Sep. 1997.

[21] E. J. Schwabe and I. M. Sutherland, ‘‘Improved parity-declustered lay-
outs for disk arrays,’’ J. Comput. Syst. Sci., vol. 53, no. 3, pp. 328–343,
Dec. 1996.

[22] E. J. Schwabe and I. M. Sutherland, ‘‘Flexible usage of redundancy in disk
arrays,’’ Theory Comput. Syst., vol. 32, no. 5, pp. 561–587, Oct. 1999.

[23] D. R. Stinson, Combinatorial Designs: Constructions and Analysis. New
York, NY, USA: Springer-Verlag, 2004.

[24] J. Wan, P. Xu, X. He, J. Wang, J. Li, and C. Xie, ‘‘H-scale: A fast approach
to scale disk arrays via hybrid stripe deployment,’’ ACM Trans. Storage,
vol. 12, no. 3, p. 16, Jun. 2016.

[25] B.Welch et al., ‘‘Scalable performance of the Panasas parallel file system,’’
in Proc. 6th USENIX Conf. File Storage Technol. (FAST), 2008, pp. 17–33.

[26] C. Wu and X. He, ‘‘GSR: A global stripe-based redistribution approach
to accelerate RAID-5 scaling,’’ in Proc. 41st Int. Conf. Parallel Process.
(ICPP), 2012, pp. 460–469.

[27] C. Wu, X. He, J. Han, H. Tan, and C. Xie, ‘‘SDM: A stripe-based data
migration scheme to improve the scalability of RAID-6,’’ in Proc. IEEE
Int. Conf. Cluster Comput. (CLUSTER), Sep. 2012, pp. 284–292.

[28] Q. Xin, E. L. Miller, T. Schwarz, D. D. E. Long, S. A. Brandt, and
W. Litwin, ‘‘Reliability mechanisms for very large storage systems,’’ in
Proc. 20th IEEE/11th NASA Goddard Conf. Mass Storage Syst. Technol.
(MSST), Apr. 2003, pp. 146–156.

[29] X. Yu et al., ‘‘Trading capacity for performance in a disk array,’’ in Proc.
4th Conf. Symp. Oper. Syst. Design Implement. (OSDI), 2000, pp. 17–32.

[30] G. Zhang, K. Li, J.Wang, andW. Zheng, ‘‘Accelerate RDPRAID-6 scaling
by reducing disk I/Os and XOR operations,’’ IEEE Trans. Comput., vol. 64,
no. 1, pp. 32–44, Jan. 2015.

[31] G. Zhang, G. Wu, Y. Lu, J. Wu, and W. Zheng, ‘‘Xscale: Online X-
code RAID-6 scaling using lightweight data reorganization,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 12, pp. 3687–3700, Dec. 2016.

[32] G. Zhang, W. Zheng, and K. Li, ‘‘Rethinking RAID-5 data layout for
better scalability,’’ IEEE Trans. Comput., vol. 63, no. 11, pp. 2816–2828,
Nov. 2014.

[33] G. Zhang,W. Zheng, and J. Shu, ‘‘ALV: A new data redistribution approach
to RAID-5 scaling,’’ IEEE Trans. Comput., vol. 59, no. 3, pp. 345–357,
Mar. 2010.

[34] E. K. Lee and R. H. Katz, ‘‘The performance of parity placements in disk
arrays,’’ IEEE Trans. Comput., vol. 42, no. 6, pp. 651–664, Jun. 1993.

[35] M. Holland, G. A. Gibson, and D. P. Siewiorek, ‘‘Architectures and
algorithms for on-line failure recovery in redundant disk arrays,’’ Distrib.
Parallel Databases, vol. 2, no. 3, pp. 295–335, Jul. 1994.

[36] A.Miranda and T. Cortes, ‘‘CRAID:Online RAID upgrades using dynamic
hot data reorganization,’’ inProc. 12thUSENIXConf. File Storage Technol.
(FAST), 2014, pp. 133–146.

ZHIPENG LI received the bachelor’s degree in
computer science from the University of Science
and Technology of China, in 2013, where he
is currently pursuing the Ph.D. degree with the
School of Computer Science and Technology. His
research interests include storage systems, solid-
state devices, and erasure codes.

23988 VOLUME 7, 2019

Z. Li et al.: Fast Approach to Scale Up Disk Arrays With Parity Declustered Data Layout

YINLONG XU received the B.S. degree in math-
ematics from Peking University, in 1983, and
the M.S. and Ph.D. degrees in computer science
from the University of Science and Technology of
China, in 1989 and 2004, respectively, where he is
currently a Professor with the School of Computer
Science and Technology, and is leading a research
group in doing some networking and high perfor-
mance computing research. His research interests
include network coding, storage systems, combi-

natorial optimization, design and analysis of parallel algorithms, and parallel
programming tools. He received the Excellent Ph.D. Advisor Award of the
Chinese Academy of Sciences, in 2006.

YONGKUN LI received the B.Eng. degree in
computer science from the University of Science
and Technology of China, in 2008, and the Ph.D.
degree in computer science and engineering from
The Chinese University of Hong Kong, in 2012.
He was a Postdoctoral Fellow with the Insti-
tute of Network Coding, The Chinese Univer-
sity of Hong Kong. He is currently an Associate
Researcher with the School of Computer Science
and Technology, University of Science and Tech-

nology of China. His research interests include performance evaluation and
architectural design of networking and storage systems.

CHENGJIN TIAN received the bachelor’s degree
from the School of Computer Science and Tech-
nology, University of Science and Technology of
China, in 2016, where he is currently pursuing
the master’s degree with the School of Computer
Science and Technology. His research interests
include storage systems, including scaling and
reliability issues.

JOHN C. S. LUI received the Ph.D. degree in
computer science from UCLA. He is currently a
Professor with the Department of Computer Sci-
ence and Engineering, The Chinese University of
Hong Kong. His current research interests include
communication networks, network/system secu-
rity, network economics, network sciences, cloud
computing, large scale distributed systems, and
performance evaluation theory. He is an elected
member of the IFIP WG 7.3, a fellow of ACM

and IEEE, and Croucher Senior Research Fellow. He serves on the Edi-
torial Board for the IEEE/ACM TRANSACTIONS ON NETWORKING, the IEEE
TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, the Journal of Performance Evaluation, and the Inter-
national Journal of Network Security.

VOLUME 7, 2019 23989

	INTRODUCTION
	BACKGROUND
	RAID-5 AND RS CODES
	BIBD
	PARITY DECLUSTERING
	FULL BLOCK DESIGN TABLE

	RELATED WORK AND TECHNICAL CHALLENGES
	RELATED WORK ON RAID-5 SCALING
	TECHNICAL CHALLENGES OF SCALING FOR PARITY DECLUSTERING

	MOTIVATIONS AND AN EXAMPLE
	DESIGN GOALS OF SCALING FOR PARITY DECLUSTERING
	AN EXAMPLE OF SCALING

	PDS APPROACH
	BASIC IDEAS OF PDS
	DATA MIGRATION PROCESS
	IMPROVING RELIABILITY AND/OR STORAGE EFFICIENCY

	SCALING PROCESS OF PDS

	THE ADDRESSING ALGORITHM
	ADDRESSING THE FIRST TYPE OF STORAGE UNITS
	ADDRESSING THE SECOND TYPE OF STORAGE UNITS
	ADDRESSING THE THIRD TYPE OF STORAGE UNITS

	THEORETICAL PROOFS OF PDS
	DATA LAYOUT WITH PARITY DECLUSTERING
	UNIFORM DATA AND PARITY DISTRIBUTIONS
	MINIMAL DATA MIGRATION

	FURTHER DISCUSSIONS
	PIGGYBACK PARITY UPDATES
	SUPPORT TO RS CODES
	SUCCESSIVE SCALING OPERATIONS

	PERFORMANCE EVALUATION
	EVALUATION METHODOLOGY
	PERFORMANCE DURING SCALING
	SCALING TIME
	USER RESPONSE TIME

	PERFORMANCE AFTER SCALING

	CONCLUSION
	PROOF OF THEOREM 2
	PROOF OF THEOREM 4

	REFERENCES
	Biographies
	ZHIPENG LI
	YINLONG XU
	YONGKUN LI
	CHENGJIN TIAN
	JOHN C. S. LUI

