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ABSTRACT Hyperspectral anomaly detection is a research hot spot in the field of remote sensing. It can
distinguish abnormal targets from the scene just by utilizing the spectral differences and requiring no prior
information. A series of anomaly detectors based on Reed–Xiaoli methods are very important and typical
algorithms in this research area, which generally have the hypothesis about background subject to the
Gaussian distribution. However, this assumption is inaccurate to describe a hyperspectral image with a
complex scene in practice. Besides, due to the unavoidable existence of abnormal targets, background statis-
tics will be affected which will reduce the detection performance. To address these problems, we propose
a sparse dictionary learning method by using a capped norm to realize hyperspectral anomaly detection.
Moreover, a new training data selection strategy based on clustering technique is also proposed to learn a
more representative background dictionary. The main contributions are concluded in threefold: 1) neither
making any assumptions on the background distribution nor computing the covariance matrix, the proposed
method is more adaptive to all kinds of complex hyperspectral images in practice; 2) owing to the good
qualities of the capped norm, the learned sparse background dictionary is resistant to the effect of anomalies
and has stronger distinctiveness to anomalies from background; 3) without using the traditional sliding
hollow window technique, the proposed method is more effective to detect different sizes of abnormal
targets. The extensive experiments on four commonly used real-world hyperspectral images demonstrate
the effectiveness of the proposed method and show its superiority over the benchmark methods.

INDEX TERMS Anomaly detection, hyperspectral images, sparse, dictionary learning, capped norm.

I. INTRODUCTION
Hyperspectral image (HSI), as a 3-D cube data, can deliver
both rich spectral and spatial information [1]. Its high spectral
resolution with hundreds of narrow and approximately con-
tinuous spectral bands can provide a strong guarantee for dis-
criminating the subtle differences of surface substances [2].
Owing to this advantage, hyperspectral image (HSI) process-
ing techniques have been widely applied in different research
fields, such as hyperspectral target detection [3], [4], hyper-
spectral image classification [5], [6], band selection [7], [8],
and hyperspectral unmixing [9], [10].

Hyperspectral anomaly detection aims at locating the pixel
as an abnormal target when it deviates significantly from
the given reference background [11]. Since during the detec-
tion process any prior information about both the spectra of
background and target is unknown [11], anomaly detection
can be regarded as an unsupervised target detection problem.
Benefiting from this unsupervised characteristic, hyperspec-
tral anomaly detection technique has a high value of practical
application in agriculture [12], geology [13], etc.

In more recent decades, lots of hyperspectral anomaly
detection methods have been proposed [14]–[19].
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Generally, the basic idea of these methods mainly follows
some core procedures containing background information
obtainment, anomaly measurement definition, and deviation
estimation between background and anomalies. Among all
these detectors, the Reed-Xiaoli (RX) [20] method is widely
acknowledged as one classic algorithm. It has the hypothesis
that background obeys amultivariate normal distribution. The
mahalanobis distance is consequently used to measure the
difference between the test pixel and its designated reference
background. Depending on the scale of the background, RX
method has two versions: local RX (LRX) (The local neigh-
borhoods are usually defined as background), and global RX
(GRX) (The whole image pixels or a large part of them are
commonly regarded as background).

However, some intrinsic problems of RX method will
result in high false alarms [21]. The original gaussian dis-
tribution hypothesis is not optimum to accurately describe
different hyperspectral images, especially for the real
image scenes which is usually complex in practice. When
implementing RX, researchers are accustomed to directly
calculating background statistics depending on the hyper-
spectral pixels in local regions or the whole image. But these
used pixels may contain some potential abnormal pixels.
As a result, the mahalanobis distance mainly based on the
computation of covariance matrix will be affected by the
contamination of anomaly targets. Despite the fact that a
sliding-dual-window technique [22] is commonly adopted to
mitigate the effect of anomalies asmuch as possible, however,
it is hard to get rid of all the possible abnormal pixels from
the defined background region. At the same time, it will cause
the problem of sensitiveness to the window size.

To tackle the related problems of RXmethod, a large num-
ber of methods have been presented. Some of them are with
the purpose of restraining the effect of abnormal targets on
the background estimation. For example, Du and Zhang [23]
propose a random-selection-based anomaly detector (RSAD),
which designs a random selection approach to pick some
representative background pixels out of the hyperspectral
image. When this random selection is performed in a suffi-
cient number of times, the proper and accurate background
will be obtained. Zhao et al. [24] present an algorithm
named robust nonlinear anomaly detection (RNAD), which
is capable of constantly purifying the background through
adopting a regression strategy and consequently realizes
suppression of contamination of anomalies. Some methods
take advantage of kernel technique to nonlinearly project the
original hyperspectral image into a high dimensional fea-
ture space to strengthen the separability between anomalies
and background. The Kernel-RX (KRX) [25] is a typical
nonlinear form of RX algorithm. As for the support vector
data description (SVDD) [26], it is a non-parametric kernel-
based anomaly detection method. Through constructing an
minimum enclosing hypersphere to envelop the background
pixels, it recognizes the pixels falling outside this hypersphere
as anomalies in the high dimensional feature space. In addi-
tion, the background suppression is also a good strategy to

improve anomaly detection ability. For example, the subspace
RX [27] adopts the orthogonal subspace projection approach
to project the data onto a subspace that is orthogonal to
the background clutter in order to suppress the undesired
background.

A number of representation-based methods [28]–[33]
have been proposed of late years which commonly have
the philosophy that hyperspectral pixels can be well rep-
resented by a dictionary. For example, Wei and Du [34]
propose a collaborative-representation-based detector (CRD)
to detect anomalies through considering that a background
pixel commonly has a approximately linear representation
of its surrounding samples, which is based on a sparse
representation-based detector (SRD). Yuan et al. [29] pro-
pose an anomaly detection method based on the local spar-
sity divergence, which directly adopts a sliding window
to compute the sparsity difference between anomalies and
background. Li et al. [32] use the background joint sparse
representation to detect anomalies in the hyperspectral image.
This method aims to select the most active dictionary bases
regarded as the representative background. In general, back-
ground is also supposed to have low rank property because
of lying in a low-dimensional subspace; anomalies usually
have a sparse property for their low occurrence probabilities.
Therefore, some researchers also utilize these properties
to design their detectors. For example, Zhang et al. [30]
propose a low-rank and sparse matrix decomposition-based
mahalanobis distance method (LSMAD) for Hyperspectral
anomaly detection through using the low-rank characteristic
to estimate the background and further applying mahalanobis
distance to detect the probable anomalies.

Based on the aforementioned methods, it is easy to draw a
conclusion that sparse representation is really a good model
to describe the hyperspectral images. Owing to its virtue,
in this paper we propose a novel hyperspectral anomaly detec-
tion method via sparse dictionary learning of capped norm
(SDLCN) to overcome the problems involved in the RX based
methods. It is formulated based on two facts: 1) for the back-
ground pixel in a hyperspectral image scene, it is commonly
similar to its local surroundings, and 2) the total number
of background classes contained in the hyperspectral image
is limited. Consequently, the background usually contains a
great deal of redundant information [32], and a dictionary
can be definitely learned to well characterize the background
knowledge. Specifically, when finishing learning the back-
ground dictionary, a background pixel will be represented
sparsely by some bases, but abnormal pixels can not satisfy
this condition. Generally, in order to learn the dictionary,
we need firstly build the training data. It is a simple and
direct way to construct this data set through picking a great
number of pixel patches out of the entire hyperspectral image.
Nevertheless, in spite of anomalies having low probabili-
ties to be selected to contribute to learning the background
dictionary for their low population, it is still hard to com-
pletely avoid the existence of anomalies in the training set.
Consequently, the representation ability of dictionary will be
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affected by the potential abnormal targets which can further
result in the reduction of detection performance. Therefore,
in this work, we impose the capped norm [35], [36] on the
learning process, which can be understood as a weight con-
straint capable of suppressing anomalies’ effect. To conclude,
our main contributions can be identified as follows.

1) Neither making any assumptions on the background dis-
tribution nor computing the covariance matrix, the proposed
method ismore adaptive to all kinds of complex hyperspectral
images in practice.

2) Owing to the good qualities of capped norm, the learned
sparse background dictionary is resistant to the effect of
anomalies and has stronger distinctiveness to anomalies from
background.

3) Without using the traditional sliding hollow window
technique, the proposed method is more effective to detect
different sizes of abnormal targets.

In addition, we need to state that this work is actually
an extension version of our previous published conference
paper [36]. The major extensions consist of the improvement
on the method technique, substantial experiments and new
promising results. Overall, this work contains more than
60% new material over the original version. Here, we will
briefly introduce the main extensions. In terms of method
innovation, we propose a new training data selection strategy
based on clustering technique in order to learn a more rep-
resentative background dictionary. Some important formula
deductions are added to make it more rigorous and compre-
hensible as well. In the experiment, we add other three real-
world hyperspectral images with higher used frequency to
make the performance evaluation more convincing. We also
add parameters setting discussion, convergence speed analy-
sis and time consumption comparison. Besides, many more
state-of-the-art methods are used to compare with the pro-
posed method and demonstrate its performance. In this paper,
we make sufficient experiments, in-depth analyses, and com-
prehensive discussions.We have obtainedmany novel results.

The remainder of this paper is organized as follows.
Section II introduces the proposed SDLCN method in detail.
In Section III, experimental results on four commonly
used real-world hyperspectral images and the corresponding
analyses are reported. Finally, we conclude this paper in
Section IV.

II. SDLCN
We propose a novel anomaly detection method via sparse dic-
tionary learning of capped norm named SDLCN in this work.
The philosophy of our method is that a background pixel can
be well represented by a sparse background dictionary, while
an anomaly pixel can not satisfy this condition for it will have
a large reconstruction error. In order to avoid the effect of
anomalies on the background dictionary learning, the capped
norm is employed to deal with anomalies existing in the
original background training set. Consequently, the anoma-
lies with the larger reconstruction errors will be penalized
in the dictionary learning process. The learned background

dictionary can only codewell for the definite background pix-
els but not find codings for anomalies. We also adopt a novel
strategy to construct the training data for dictionary learning.
In order to learn a dictionary with a stronger representative
ability, a clustering method is applied in this work. A number
of samples are selected from each clusters to construct the
training data and further to generate the initial dictionary. The
proposed method will be introduced in detail in the following
parts.

A. BACKGROUND DICTIONARY
This part will elaborate the proposed background dictionary
learning process. Based on the sparse representation frame-
work, it is commonly thought that the background pixel can
be sparsely linearly represented by some dictionary bases. For
a 3-D hyperspectral image, with height of m pixels, width of
n pixels, and B spectral bands, we reshape it into a 2-D rep-
resentation I ∈ Rmn×B. Here mn is the total number of whole
hyperspectral pixels.We selectN pixels from the entire image
in order to build the training data H = [h1, ..., hN ] ∈ RB×N ,
and each column of matrix H denotes a hyperspectral pixel.
Thus, the classic sparse dictionary learning [37] technique
can be formulated as:

min
D,A,‖di‖≤1

‖H − DA‖2F + λ‖A‖1. (1)

Here, A ∈ RK×N denotes the sparse coefficient matrix,
and D ∈ RB×K denotes the background dictionary matrix
consisting of K bases to learn. In addition, λ is the balance
parameter. Generally, the constraint that the l2 norm value
of each column vector in D is not larger than 1, is usually
used to ensure the l2 norm of D not being extremely larger
and consequently the element values in matrix A not being
arbitrarily small.

In this work, we aim to propose a novel anomaly detec-
tion method from the perspective of learning a good dictio-
nary having a superb ability to characterize the background.
However, since the quadratic loss function is used, the
traditional dictionary learning method can be affected by
anomalies to an extent. Specifically, when there are some
anomalies, dictionary learning process will be deeply dis-
turbed and degenerate. Even though anomalies in a hyper-
spectral image scene usually have a very low population,
to completely ensure their absence from the training data is
still impossible. As a result, the final performance of anomaly
detection will be decidedly affected. To address this problem,
we impose the capped l1 norm on the loss function to learn a
superb background dictionary. Through penalizing anomalies
in the learning process, the dictionary will be resistant to the
effect of anomalies in the training set.

In this work, we define the capped l1 norm based loss
function as follows:

lε (ri) = min (|ri| , ε) , (2)

where ri is the recovery error of the i-th sample, and ε denotes
a boundary parameter. When |ri| is bigger than ε, the loss
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function is directly equal to ε. This means that if a sample
has a large error, then it will be penalized by capped l1 norm.
Therefore, the proposed sparse dictionary learning based on
capped l1 norm is formulated as follows:

min
D,A,‖di‖≤1

N∑
i=1

min (‖hi − Dai‖2, ε)+ λ‖A‖1. (3)

Our objective function is composed of a concave function
(the first item) and a convex function (the second item). This
function is equivalent to (4) as follows.

min
D,A,‖di‖≤1

∑
{i|‖hi−Dai‖2≤ε}

‖hi − Dai‖2

+

∑
{i|‖hi−Dai‖2>ε}

ε + λ ‖A‖ 1. (4)

The second term of (4) is a constant, which will not affect
solving the optimal values of parameters. Thus (4) is further
equivalent to the following function:

min
D,A,‖di‖≤1

∑
{i|‖hi−Dai‖2≤ε}

‖hi − Dai‖2 + λ ‖A‖ 1. (5)

From (5), it can be clearly seen that ourmethod can adaptively
select the samples with lower reconstruction errors to conduct
the dictionary learning. Consequently, the background pixels
will be selected from the original training data set to learn
the dictionary. But anomalies contained in the training data
will not participate in the dictionary learning due to their
larger reconstruction errors. Therefore, the learned dictionary
has a good ability to represent background through directly
restraining the effect of anomalies. By introducing the auxil-
iary variables si, (5) can be rewritten as (6) which is expressed
as:

min
D,A,‖di‖≤1

N∑
i=1

si ‖hi − Dai‖22 + λ‖A‖1

si =


1

2‖hi − Dai‖2
, if ‖hi − Dai‖2 ≤ ε

0, otherwise
(6)

Wemake use of a re-weighted technique to solve (6). In this
case, we alternatively update D, A, and si to get its solution.
Specifically, with A fixed, the above mentioned problem
becomes:

min
D,‖di‖≤1

N∑
i=1

si‖hi − Dai‖22. (7)

It is equivalent to the following function:

min
D,‖di‖≤1

N∑
i=1

‖xi − Dzi‖22, (8)

where xi =
√
sihi and zi =

√
siai. We adopt the same method

proposed in [37] to solve this problem.

Through fixing D, we can decompose (6) into N indepen-
dent subproblems as follows:

ai = argmin
a
si‖hi − Dai‖22 + λ‖a‖1. (9)

When si 6= 0, it can be rewritten as :

ai = argmin
a
‖hi − Dai‖22 +

λ

si
‖a‖1. (10)

Obviously, as a Lasso problem, the solution of formula-
tion (10) will be obtained efficiently. The convergence anal-
ysis of the proposed SDLCN is similar to [35].

B. DATA PREPARATION FOR LEARNING
This paper aims to learn a sparse dictionary which has an
excellent ability to express the background and the stronger
distinctiveness to anomalies. In order to learn the dictionary,
some data preparations should be made for training. In the
aforementioned method, both training data H and initial dic-
tionary D play very important roles in the learning process.

A direct approach is to randomly select some pixels from
the hyperspectral image to build the training data H , and
further pick out some samples from H to generate the initial
dictionaryD. Although our method does not need to consider
the contamination of anomalies probably contained in the
training set, because it can effectively suppress their effects
on learning the background dictionary, random selection may
result in the problem of inadequate representativeness of the
selected samples. The reason is that random selection tends
to choose the major materials while other materials with
relatively low population will be missed. This problem may
not be significant when the image scene is relatively simple,
but it becomes serious for a complex image scene covering
many kinds of materials that is quite common in practice.
As a result, it will lead to a high false alarm rate because of
easily recognizing the material with the low population as an
anomaly.

Inspired by the traditional clustering, a simple
K-means++ technique [38], [39] is used to prepare the train-
ing data for its good stability. A hyperspectral image is firstly
divided intoC clusters.We set the number of training samples
as N . Then from each cluster we select some samples which
are nearest to each cluster center. The number of the selected
samples from each clustering is directly in proportion to the
amount of each cluster with insuring that the sum of samples
in H is N . As for the initial background dictionary, when the
value of dictionary size K is given, the selection way is the
same as the construction of training set.

C. ANOMALY DETECTION
In this part, the final anomaly detection process will be briefly
introduced. Using the above proposed dictionary learning
technique with capped norm, we have obtained the back-
ground dictionary D. Therefore, according to the reconstruc-
tion representation shown in (1), the sparse reconstruction
error of each hyperspectral pixel can be computed, which
can be regarded as the corresponding anomaly probability.
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FIGURE 1. The visualization figures and the corresponding ground truth maps of
different HSIs. The upper row presents the false color pictures of Urban, AVIRIS1,
AVIRIS2, and D1F12H1 respectively. The lower row shows the ground truths.

In this case, the entire hyperspectral image matrix I is used
to construct sample data H , D is the learned background
dictionary and the same λ is used to detect anomalies. The
sparse coefficient matrix A is firstly computed, and then
reconstruction errors are obtained.

III. EXPERIMENTS AND ANALYSES
In this section, we carry out several experiments and analyze
the performance of the proposed method deeply. First, four
commonly used real hyperspectral images are introduced.
Then, we elaborate experimental setup, containing evalu-
ation metrics, related competitors, and parameter setting.
Afterward, the parameter selection rules and their effects are
discussed. Finally, we illustrate the experimental results and
analyze the effectiveness of the proposed method in detail.

A. DATA SETS
In the experiment, four commonly used real-world hyper-
spectral images are used to evaluate the performance of our
proposed SDLCN.Wewill introduce the detailed information
of these images as follows.

The first data set is the HYDICE Urban image. It can
be downloaded from the website of U.S. Army Engineer
Research and Development Center.1 This data is collected
by HYDICE on an airborne platform which scans an urban
scene. Its spectra range from 400 nm to 2500 nm with
the resolution of 10 nm. Its spatial resolution is about
1 m. By convention, researchers commonly crop a relatively
smaller sub-image from the upper right part of the original
hyperspectral image with a larger size of 307× 307, because
of the undefined ground truth for the whole scene. Therefore,
in this work, we also obtain the sub-image having a size of
80× 100 according to the same criterion. As for the spectral
bands, considering the low-SNR and water vapor absorp-
tion, we finally remain 160 bands after removing totally

1http://www.erdc.usace.army.mil/Media/FactSheets/FactSheetsArticle
View/tabid/9254/Article/476681/hypercube.

50 bands in accordance with [40]. The ground truth map for
the sub-image is defined in consistent with literature [41],
in which several cars and roofs are defined as abnormal
targets. The visualization picture and ground truth map of this
cropped hyperspectral image are shown in the first column
of Fig. 1.

The second and the third data sets are called as
AVIRIS1 and AVIRIS2 respectively referring to the
work [42]. They are different sub-images of one same hyper-
spectral image which is collected by the Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) from San Diego,
CA, USA. Their spatial resolution is 3.5 m, and the spectral
resolution is about 10 nm. As for the spectral information,
considering that the original 224 bands with spectra ranging
from 370 nm to 2510 nm contain some useless bands due
to water absorption regions or low-SNR, we remove several
bands and finally retain 189 bands in the experiment accord-
ing to [4]. The size of AVIRIS1 is 60 × 60 and it contains
14 planes as anomalies. As for AVIRIS2, its size is 200×240
including 6 planes as abnormal targets. Their visualization
pictures and ground truth maps are shown in the second and
third columns of Fig. 1 respectively.

The fourth data named D1F12H1 is collected by visible
near infrared (VNIR) camera of SIM.GA sensor fromViareg-
gio, Italy [43]. Its spectral range is from 400 nm to 1000 nm.
Its spectral resolution is up to 2.3 nm, and spatial resolution is
about 0.6 m. This data set has 511 spectral channels with the
size of 450× 375 mainly covering parking lot, suburban, and
vegetated area. Five kinds of different targets are defined as
anomalies including a blue vehicle, a green vehicle, a white
vehicle covered with red tarp, three green panels, and a
bright green panel in this image. The fourth column of Fig. 1
presents its visualization picture and ground truth map.

B. EXPERIMENTAL DETAILS
In this section, we introduce the evaluation criteria, the com-
petitors and parameter setup in detail as follows.
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1) EVALUATION CRITERIA
It is very important to utilize a valid evaluation criterion
to impartially estimate and analyze one anomaly detection
method’s performance. The receiver operating characteristic
(ROC) curve is a classic comparison measurement. It is plot-
ted by a set of values of target detection rates and false alarm
rates reflecting the relationship between these two rates. The
two rates can be effectively computed under a given discrimi-
nation threshold. The ROC curve can illustrate the qualitative
analysis. For an accurate quantitative analysis, the area under
the curve (AUC) is further calculated through integrating the
area under the ROC curve. The AUC value can intuitively
reflect the performance of one detector.

2) COMPETITORS
In order to accurately demonstrate the effectiveness of the
proposed method, our method is compared with eight state-
of-the-art detectors by comprehensively taking popularity,
recency, and variety into consideration: global RX (GRX),
local RX (LRX), RSAD, SVDD, SRD, CRD, LSMAD, and
the traditional sparse dictionary learning method (DL) [37]
that is used to directly demonstrate the effectiveness of our
method using capped norm to restrain the effect of anomalies
on background. These competitors are usually used as bench-
mark detectors in the experiment of hyperspectral anomaly
detection research area. Therefore, it is convincing to com-
pare with them for analyzing and evaluating one method’s
performance.

3) PARAMETER SETUP
Some critical parameters involved in the experiments are
elaborated in this part. For the proposed SDLCN, the main
parameters containing the number of training data N , the dic-
tionary size K , the number of clusters C , the boundary
parameter ε, and the balance parameter λ should be given. For
simplicity, we fix N at 1000 for each hyperspectral image.
The K is determined according to the number of spectral
bands B of each HSI. In order to obtain a complete dictionary,
it requires that K > B. Therefore, the values of K are set as
300, 300, 500, and 600 for Urban, AVIRIS1, AVIRIS2 and
D1F12H1 respectively. Their corresponding number of
clusters C are set as 10, 3, 2, and 10 mainly based on the
complexity of each image scene. Due to the low occur-
rence probability and small population of abnormal targets,
we empirically take 99.5 percentile of all the reconstruction
errors as the value of ε during iterations in the training
process. In addition, λ is fixed at 0.01 for all the data sets. The
detailed parameter selection rules will be further discussed in
section III-C.

For other competitors, since LRX, SVDD, SRD, and CRD
require the sliding window technique, the sizes of outside
window and inner window should be set. Due to different
hypespectral images having different targets, proper sizes are
pretty necessary because different sizes will greatly affect the
detection performance. In order to make a fair and convincing

comparison, different pairs of window sizes are selected to
fully test these four methods and obtain their best detection
performance. Considering the largest expected size of anoma-
lies in all the image scenes, two different inner window sizes,
7× 7 and 9× 9, are defined in the experiment. Consequently
outer window sizes with larger values are required for better
detection performance. Since the former three hyperspec-
tral images have similar spectral band number, we simply
set the same window size for these data sets. In this case,
the detailed window sizes for different competitors are intro-
duced as follows. For LRX method, 4 pairs of window sizes
(wout,win) containing (17, 7), (17, 9), (19, 7), and (19, 9)
are used in the experiments by comprehensively taking all
the spectral dimensions of the three images into considera-
tion and simultaneously avoiding covariance matrix singular
problem. As for SVDD, owing to its heavy computation
burden, we finally select (13, 7), (13, 9), (15, 7), and (15, 9).
In addition, six pairs of different sizes consisting of (13, 7),
(15, 7), (17, 7), (17, 9), (19, 7), and (19, 9) are defined for
SRD and CRD. The regularization parameter λ of CRD is
fixed at 10−6 consistent with the original work [34]. Since
D1F12H1 data set has a larger number of bands, we con-
sistently select (25, 7) and (25, 9) for LRX, SRD, and CRD.
SVDD is not compared on this data because of the foreseeable
unaffordable time consumption. As for RSAD, we set the size
of the randomly selected image block as 70. We define the
parameter of LSMAD in strict accordance with the original
literature [30], through setting the maximal rank of back-
ground matrix r as 2 and the cardinality of the sparse matrix
k as 0.005. For the implementation of DL, all the processing
setup is exactly the same as our SDLCN except for without
using the capped constraint.

C. PARAMETERS SETTING DISCUSSION
In this part, the problems of parameters setting related to
the proposed SDLCN method are discussed. The first one
is about the dictionary size K and the number of clusters C .
The second one is to analyze and determine the proper value
of the balance parameter λ.

1) SENSITIVITY TO CLUSTERS AND DICTIONARY SIZES
The proposed method adopts a clustering technique and
sparse representation to construct the anomaly detection
approach. In this process, two parameters including the num-
ber of cluster C , and the number of background dictionary
bases K will be set with different values to analyze the
parameter selection problem. We carry out the parameter
experiment on the four hyperspectral images to completely
and accurately discuss parameters’ effect. Considering the
different complexities of different hyperspectral image scene,
the number of cluster C is set as 2, 3, 4, 5, 6, 8, 10, 15,
and 20 changing in a wide range. The dictionary size K is
respectively set as different values from 200 to 1000 for the
former three images, and from 600 to 1000 for the fourth
image at the interval of 100. The corresponding results are
orderly shown from Fig. 2 to Fig. 5.

VOLUME 7, 2019 16137



Y. Yuan et al.: Hyperspectral Anomaly Detection via Sparse Dictionary Learning Method of Capped Norm

The results of Urban image are shown in Fig. 2. When C
varies within 10, the AUC values nearly remain unchanged
alongwith the increasing ofK . Then the AUC value gradually
becomes larger as C increases at each dictionary bases num-
ber K . When C becomes larger than 10, AUC still achieves
better performance with K within 700. Overall, for the Urban
data set, when the number of bases K is limited within 700
and the number of clusters takes a relatively bigger value,
our SDLCN can stably achieve good detection performance.
Therefore, it can be concluded that SDLCN can perform
well over a wide range of K values and different C values
will have some impacts on performance. The number of
clusters C tends to be set as a larger value when the tested
hyperspectral image is complex covering many categories of
ground materials. So we finally set C as 10 and K as 300 for
Urban image.

FIGURE 2. Performance of the proposed method under different values
of C and K on Urban.

The results in Fig. 3 generally show that the proposed
method is assuredly robust to parameter K on AVIRIS1
image. As for C , the detection performance of SDLCN
improves as the number of clusters C increases to 3. After
that, the detection performance firstly obviously decreases
and then almost stably changes with minor fluctuations as
C increases. The behind reason for this phenomenon may
be explained as follows. For one thing, since the propor-
tion of abnormal targets is very large, anomaly detection for

FIGURE 3. Performance of the proposed method under different values
of C and K on AVIRIS1.

AVIRIS1 is more difficult. Consequently, when C is smaller,
a few abnormal targets may be contained in the training
data set and SDLCN can effectively restrain their effects on
background dictionary. But whenC becomes larger, toomany
anomalies will be contained in the training data set and some
of them tend to be regarded as background which results in
the reduction of restraining. For another, the whole scene of
AVIRIS1 is relatively simple and it has two or three dom-
inate categories. Therefore, a smaller value for C is better.
Therefore, we finally set C as 3 and K as 300 for AVIRIS1.

From the results of AVIRIS2 in Fig. 4, there is a same con-
clusion that the changes of K do not have obviously effects
on detection performance. As for C , the AUC values tend to
go down firstly then gradually up as C increases within 15.
After that, AUC decreases again as C increases. However,
it is worth noting that all the AUC values are gradually
changing limited in a higher value range, which demonstrates
the good robustness to parameters’ effects. Since the scene of
AVIRIS2 is relatively simple, we finally fix C at 2 and K at
500 for a promising detection result. Fig. 5 shows the results
of D1F12H1 image. It can be seen that the analysis about K
on this data is also similar. Our method is really robust to the
variation of K . As for the effect of C , the AUC values tend
to increase firstly as C increases to 10. After that, the AUC

FIGURE 4. Performance of the proposed method under different values
of C and K on AVIRIS2.

FIGURE 5. Performance of the proposed method under different values
of C and K on D1F12H1.
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values remain almost unchanged as C increases. We finally
set C as 10 and K as 600 because the scene of D1F12H1 is
relatively complex.

Although different images have different proper parameter
values for better performance, it is difficult to find a per-
fect value to satisfy all the hyperspectral images. However,
through analyzing all the results, our method has nearly
obtained the decent performance for all the images even
on different parameter values instead of finding the optimal
parameter values. Considering conveniently implementing
our method in practice, we have some good suggestions of
parameter selection. For the number of clusters C , it can be
selected from the range of 2 to 10. A smaller value will be
set when the hyperspectral contains less categories, while
a larger value is required for a complex scene. Since our
method is really robust to the number of bases K , it can be
assigned to some relatively smaller values under the condition
of complete dictionary for efficiency.

2) SELECTION OF BALANCE PARAMETER λ
The balance parameter λ reflects the strength of the sparse
constraint. A proper λ is also important for the detector.
This experiment is also conducted on all the hyper-
spectral images. The λ is chosen from

{
10−5, 10−4,

10−3, 10−2, 10−1, 0.2, 0.4, 0.6, 0.8
}
, while the other param-

eters are fixed. The results of the proposed method with
different λ values are illustrated in Fig. 6. The trends of
four curves are almost the same. They all begin to gradually
improve, then slowly go down, and finally almost main-
tain stable only having some slightly floating changes as λ
increases within 0.2. After that, they obviously descend as λ
increases to 0.8. It can be seen that the detection performance
is relatively stable and promising when λ ∈ [0.01 0.2] for all
the hyperspectral images. Therefore, we have empirically set
λ as 0.01 instead of selecting the optimal valueS for all the
employed data sets in our experiments for simplicity.

FIGURE 6. The AUC values of the proposed method SDLCN with different
λ values on Urban, AVIRIS1, AVIRIS2, and D1F12H1.

D. COMPARISON RESULTS
Before analyzing the detection results, we experimen-
tally discuss the speed of convergence of our proposed

SDLCN firstly. This experiment is conducted on all the
hyperspectral images. The involved parameters are set as the
above mentioned. The sparse reconstruction errors of each
iterations during the background dictionary learning period
are shown in Fig. 7. For the four different images, our method
can converge quickly. Considering efficiency and effective-
ness, we fix the iteration time at 5 for all the experiments.
In the following part, wewill continue analyzing the detection
performance.

FIGURE 7. The reconstruction errors of each iteration during the
background dictionary learning period on Urban, AVIRIS1, AVIRIS2,
and D1F12H1.

We evaluate our method’s performance through comparing
with eight competitors. All the experiments are conducted
on the machine with Intel Core i3-2130 3.4-GHz CPU and
16-GB RAM in the MATLAB platform. Through the qualita-
tive and quantitative comparisons, we analyze the experimen-
tal results in depth. Considering the convenience of typogra-
phy, for the competitors using the sliding window technique,
we only illustrate their visualization results and ROC curves
corresponding to the optimal window sizes and underline
these values as shown in Table 1 and Table 3. Table 1 to
Table 4 report AUC values and time consumption obtained
by using all of window sizes. We also highlight the best AUC
values in bold for each data set.

The visualization comparison results of Urban data set
are presented in Fig. 8. The results in sequence correspond
to GRX, RSAD, LRX, SVDD, SRD, CRD, LSMAD, DL,
and our SDLCN. It can be observed visually that RSAD’s
performance is really poor with a very high false alarm
rate. GRX and SVDD seem to have some omissions, and
LRX is not intuitive to analyze. For other methods, each of
them almost detects all the abnormal targets, only assigning
different intensities to each anomaly intuitively. However,
it is clear that an accurate estimation cannot be obtained by
visual inspection. We need to make a further quantitative
comparison. Fig. 10 illustrates the ROC curves of all the
detectors. The trends of all the curves are complex and no one
obviously stands out. Our method exhibits a slightly lower
detection probability when the false alarm rate is within about
0.004; fortunately, it quickly goes up and nearly keeps above
all other curves except for SRD and CRD in the case of a
larger false alarm rate. But CRD is really sensitive to window
sizes as shown in Table 1. If the size is not inappropriate,
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FIGURE 8. The visualization of the anomaly detection results of different detectors on Urban. (a) GRX. (b) RSAD. (c) LRX: window
size (19,7). (d) SVDD: window size (13,7). (e) SRD: window size (15,7). (f) CRD: window size (13,7). (g) LSMAD. (h) DL. (i) SDLCN.

TABLE 1. AUC values of all the competitors on Urban, AVIRIS1, and
AVIRIS2. We underline the better results corresponding to the optimal
window sizes. The highest AUC value is highlighted in bold.

CRD even fails to detect targets. As for SRD, our AUC is
higher than all of its results in different window sizes. Our
method also performs better than DL, which verifies the
good ability of capped norm to suppress anomaly. Moreover,
the time consumption of SDLCN is relatively low as shown
in Table 2. In conclusion, the good performance of tour
proposed method has been demonstrated by experimental
results. It can accurately characterize background resistant to
anomalies and has a good ability to detect different abnormal
targets.

Fig. 9 illustrates the detection results on AVIRIS1. This
hyperspectral image is relatively more difficult to detect
anomalies because the number of targets is larger and their

TABLE 2. Time consumption of all the competitors on Urban, AVIRIS1,
and AVIRIS2 (s).

locations are relatively intensive. It can be seen that RSAD
method tends to regard the local background region as anoma-
lies but fails to detect the real targets. SRD and CRD nearly
lose the ability to identify anomaly from background because
they have a serious problem of high false alarm rate. GRX,
LRX and SVDD have many omissions and their detected
targets are not remarkable compared with the intensities of
background. The results of LSMAD, DL, and SDLCN are
relatively similar, and the positions of their detected targets
are nearly consistent. However, SDLCN assigns the higher
scores to some targets and meanwhile shows the better abil-
ity to suppress the background than LSMAD and DL do.
Fig. 11 plots the ROC curves of all the detectors on this
image. It can be seen that among all the detection curves
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FIGURE 9. The visualization of the anomaly detection results of different detectors on AVIRIS1. (a) GRX. (b) RSAD. (c) LRX: window
size (17,9). (d) SVDD: window size (13,7). (e) SRD: window size (13,7). (f) CRD: window size (15,7). (g) LSMAD. (h) DL. (i) SDLCN.

TABLE 3. AUC values of all the competitors on D1F12H1. We underline their better results corresponding to the optimal window sizes.
The highest AUC value is highlighted in bold.

FIGURE 10. The ROC curves of the anomaly detection results on Urban.

when the false positive rate is relatively low, SDLCN only
exhibits a slightly lower detection probability than that of
LSMAD. But when false positive rate increases a little bit,
SDLCN steeply goes upward and keeps staying over the other
curves gaining a higher detection probability than all the other
competitors. On the whole, the detection performance of our
SDLCN is still better. The highest AUC value of SDLCN
further demonstrates the excellent ability to detect anomalies
as shown in Table 1. Comparedwith other competitors’ barely
satisfactory or even bad results, the proposed SDLCN appar-
ently performs the best. Moreover, its significant superiority
to DL demonstrates that the capped norm is useful to restrain
anomalies’ effects on the background dictionary learning
which can enhance the discrimination between anomaly and
background.

For AVIRIS2 image, the visualization results are shown
in Fig. 12. The performance of RSAD is still poor for
it has recognized many background pixels as anomalies.

FIGURE 11. The ROC curves of the anomaly detection results on AVIRIS1.

SRD and CRD also have the problem of high false alarm
rate. As for GRX, LRX, SVDD, and LSMAD, they can locate
some anomalies but the targets do not stand out saliently.
The results of DL and our SDLCN are similar, and both of
them can detect all of the abnormal targets with high detec-
tion values. The ROC curves of all the methods are shown
in Fig. 13. Compared with SVDD, although our method
exhibits a lower detection probability as the false alarm rate
increases to about 0.02, however, it completely defeats SVDD
after that. The curve of SDLCN almost coincides with that of
DL, and they are obviously above the curves of another seven
competitors. Both of them nearly achieve the highest detec-
tion probabilities for all false alarm rates. The corresponding
AUC values are presented in Table 1. Our method obtains the
highest AUC value. When compared with DL, our SDLCN
shows the slight superiority. Nevertheless, it significantly
outperforms other competitors with a convincing margin.
Although SVDD also has achieved a relatively good AUC
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FIGURE 12. The visualization of the anomaly detection results of different detectors on AVIRIS2. (a) GRX. (b) RSAD. (c) LRX: window
size (19,9). (d) SVDD: window size (15,9). (e) SRD: window size (19,9). (f) CRD: window size (19,9). (g) LSMAD. (h) DL. (i) SDLCN.

TABLE 4. consumption of all the competitors on D1F12H1 (s).

FIGURE 13. The ROC curves of the anomaly detection results by different
algorithms on AVIRIS2.

value 0.9555 with window size (15, 9), its time consumption
is actually almost 11 hours as shown in Table 2. However, our
method is much more efficient. To conclude, all the results
and analyses have demonstrated the superiority of our pro-
posed method. The SDLCN has the stronger distinctiveness
to anomalies.

Fig. 15 illustrates the detection results on D1F12H1 image.
It can be seen that RSAD and LSMAD have poorer perfor-
mance because of a very high value of false alarm rate. The
results of LRX and CRD are not intuitive to analyze because
there are not many remarkable detected pixels through
observing their visualization pictures. As for other methods,
each of them almost detects all the abnormal targets, only
assigning different intensities to each anomaly intuitively.
The ROC curves of all the methods are shown in Fig. 14.
We can observe that the curve of SDLCN keeps above the
curves of all the other competitors except for SRD. When

FIGURE 14. The ROC curves of the anomaly detection results by different
algorithms on D1F12H1.

compared with SRD, our method also has the comparable
and even better performance. It can be seen that when the
false positive rate is in the range of approximately less
than 10−4, the proposed SDLCN obtains higher true positive
rate than SRD does for each false positive rate.When the false
positive rate continues increasing, the detection probability of
SDLCN is slightly lower than that of SRD with the false pos-
itive rate changing in a small range at the beginning, then our
ROC curve quickly goes up and gets the 100% detection rate
more rapidly than SRD does. On the whole, the performance
of our method is still outstanding. The highest AUC value
achieved by SDLCN as shown in Table 3 further demon-
strates its effectiveness. The good advantage of capped norm
makes the learned dictionary have a good ability to represent
background because the abnormal target is suppressed in the
dictionary learning process. Consequently, the discrimination
between anomaly and background is significantly enhanced.
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FIGURE 15. The visualization of the anomaly detection results of different detectors on D1F12H1. (a) GRX.
(b) RSAD. (c) LRX: window size (25,9). (d) SRD: window size (25,9). (e) CRD: window size (25,9). (f) LSMAD.
(g) DL. (h) SDLCN.

All the experimental results demonstrate the good
performance of the proposed method. Compared with other
state-of-the-art methods which may only perform well occa-
sionally on one data set or be very sensitive to window
sizes, the proposed method almost achieves the best detec-
tion results on all the four images, which shows its good
adaptiveness to different hyperspectral image scenes and
stronger capability to detect different kinds of anomalies.
Besides, it is also efficient through the time consumption
comparison shown in Table 2 and Table 4. It can be seen that
GRX is the most efficient method, while SVDD is extremely
inefficient. Compared with the methods using the sliding
window technique, to a certain degree, our method still has
the superiority in time consumption. On the whole, although
the proposedmethod is not themost efficient detector, its time
consumption is promising on all the data sets. To conclude,
all the experimental results have demonstrated the superiority
of the proposed SDLCN by using capped norm to restrain the
effect of anomalies on background dictionary.

IV. CONCLUSION
In this paper, we propose a novel anomaly detection method
via sparse dictionary learning of capped norm named
SDLCN. In order to suppress the effect of potential anomalies
on the background dictionary, the capped norm is employed
to penalize the larger reconstruction errors during the dictio-
nary learning process. Consequently, the learned background
dictionary has a good expressive ability and is resistant to
anomalies as well. In order to demonstrate the effectiveness
of the proposedmethod fairly, several benchmark competitors
are used to obtain the convincing comparison. Four com-
monly used real-word hyperspectral images are employed to
test all the methods. Extensive experiments demonstrate the
effectiveness of the proposed method and show its superiority
over the benchmark methods. Without making any assump-
tions on the background distribution, our SDLCN method is
more adaptive to all kinds of complex hyperspectral images.
Using the Capped norm to restrain the effects of anomalies,

our method can accurately characterize the background with
stronger distinctiveness to anomalies through suppressing
their effects. Moreover, it also shows a good ability to detect
different sizes of abnormal targets. All of these desirable
characteristics ensure that the proposedmethod has important
application value.
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