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ABSTRACT This paper presents a novel observer-based control strategy to improve the vehicle roll
behavior performance through magneto-rheological (MR) dampers under steering wheel input and various
road excitation conditions. Since the vehicle roll with sudden steering input is an essential part of driving
safety and possesses inherent nonlinearities, the full-car nonlinear Takagi-Sugeno (T-S) fuzzy model is first
established to describe the vehicle roll dynamics considering nonlinear coupling dynamics of tire lateral force
andMR damper force under road excitation input. Furthermore, a T-Smodel-based fuzzy observer is adapted
to estimate the vehicle roll angle and roll rate. The stability conditions for the used T-S observer are calculated
using linear matrix inequalities (LMIs), and the proposed observer is induced by solving the proposed LMI.
Based on the Lyapunov function, sliding mode theory and prescribed performance function, a novel state
observer-based prescribed performance control strategy is developed to constrain the controlled vehicle roll
angle and roll rate state within the prescribed performance boundaries. Finally, the proposed techniques are
validated through the J-turn and Fishhook tests conducted via a high-fidelity CarSim software platform.

INDEX TERMS Vehicle roll dynamics, prescribed performance control, Takagi-Sugeno fuzzy observer,
state estimation, vehicle system.

I. INTRODUCTION
Vehicle roll behavior plays a critical role in the safety of
vehicle driving. According to the National Highway Traffic
Safety Administration (NHTSA), vehicle rollover occurred
in about 3% of all passenger-vehicle crashes in 2002, and
33% of all fatalities had vehicle rollover as a contributor
in 2014 [1]–[4]. Hence, advanced control algorithms for
rollover prevention, such as Roll Stability Control (RSC)
systems, are highly desired for vehicle systems [5], [6].
However, since closed-loop realizations are based on the
knowledge of many roll angle and roll rate sensors, such
systems are commercially unattractive due to the high cost
of sensors for measuring these states. Therefore, to save
costs, the determination of unmeasurable states for control-
lable suspension systems is key to the application of such
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methods [7], [8]. Furthermore, accuracy of state estimation
and transient optimal control exert a significant effect on
the vehicle roll dynamics control [8]. Based on the above
analysis, many approaches have been adopted to improve the
vehicle roll dynamic performance [9], [10]. Among them,
the Takagi-Sugeno (T-S) control strategy is commonly used
to enhance the performance of the controlled system.

The T-S fuzzy model should be introduced first when
discussing the T-S observer-based control algorithm. In the
1980s, based on the use of a set of fuzzy rules, the Takagi-
Sugeno (T-S) fuzzy model [11] was first presented to
describe a global nonlinear system. Since a set of lin-
ear models were used in the calculation of nonlinear
issues, this approach has been widely applied to the field
of vehicle nonlinear system. Dahmani et al. [12] used
a T-S observer-based robust controller to improve vehi-
cle rollover in critical situations. The nonlinear of lateral
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forces were considered under various road friction condi-
tions. The proposed observer-based H∞ controller was ver-
ified through CarSim R© software using a Fishhook maneu-
ver. Peng et al. [13] developed an observer-based controller
to optimize the performance of a controlled system under an
imperfect premise matching condition. Using the practical
truck-trailer system, the problem of the original was indi-
cated the usefulness of the proposed observer-based control
approach. Du et al. [14] proposed a state observer-based
T-S fuzzy controller design for a semi-active quarter-car sus-
pension installed with a magneto-rheological (MR) damper.
Simulations and tests were conducted on a quarter-car semi-
active suspension under various road profiles input. Nguyen
et al. [15] used a new constrained T-S fuzzy model to design
a model-based controller under a large variation range of
vehicle speed condition. Extensive simulations and experi-
mental tests were carried out to validate the performance of
the proposed method. Jin et al. [16] proposed a robust fuzzy
controller to improve the stability performance of vehicle
lateral dynamic using a T-S fuzzy modeling approach. Sim-
ulations with the high-fidelity CarSim R© software illustrated
the effectiveness of the proposed model-based state-back
controller under J -turn and Fishhook maneuvers.

Meanwhile, a particular performance constraint control
technique was developed in [17] and [18] based on a
specially designed prescribed performance function (PPF).
Huang et al. [19] developed an adaptive prescribed per-
formance function control for vehicle active suspension to
stabilize the vertical and pitch motions, and the transient and
steady-state suspension response is guaranteed in this pro-
cess. Hua et al. [20] designed a novel prescribed performance
control strategy to deal with unknown dead-zone input and
improve the system performances. Simulations are also used
to verify the performances of the designed control scheme.

The methods presented above did not consider the vari-
ations of road profile. The nonlinear properties of the tire
or the damper characteristics are considered to design the
observer and controller to optimize the steady performance
of vehicle roll behavior, and the transient performance of
vehicle roll behavior is seldom considered. However, since
the real road conditions are complex and uncertain, and the
accuracy of state estimation, the response of vehicle system
and the transient performance of observer-based controller
for vehicle roll behavior should be considered under steering
wheel input and various road excitation conditions. The main
contributions lie in considering the coupling state estimation
and transient performance of vehicle roll behavior under
various road conditions, as well as the fact that a coupling
vehicle roll dynamics using full-car models is proposed to
improve the observer-based control’s overall performance.

To deal with the above-mentioned issues, this paper con-
siders the following contributions:

• A full-car model-based T-S fuzzy observer is developed
to estimate vehicle coupling roll state, and the accuracy
of state estimation is verified using CarSim R© software.

• The optimal control of observer-based PPF is adopted,
and its transient and steady performance is analyzed
and compared with traditional model predictive con-
trol (MPC) algorithm using CarSim-Matlab R© software.

In this paper, a nine degrees of freedom (9-DOFs) full-car
model considering vehicle roll coupling dynamics is first
developed. Second, a model-based fuzzy observer based on
T-S algorithm is used to acquire the higher accuracy of state
estimation for vehicle coupling system. Then, a PPF is used to
constrain the error transformation of controlled roll behavior
state within the prescribed performance boundaries. Based on
a sliding mode surface approach, the fuzzy observer and PPF
are tuned and utilized to form the observer-based prescribed
performance control (PPC) algorithm. Comparedwith the tra-
ditional MPC algorithm, the proposed observer-based control
method will further improve the transient performance for
vehicle roll behavior under steering wheel input and various
road excitation conditions.

The rest of this paper is organized as follows. The vehi-
cle roll, lateral and vertical dynamics models are briefly
described in Section II. In Section III, the model-based
T-S observer is designed to obtain the accuracy of vehicle
roll state under complex driving conditions. In Section IV,
the PPC controller based sliding mode surface and PPF is
proposed to constrain the roll angle and roll rate within the
appropriate range. Section V shows the simulation results
of the proposed observer-based PPC algorithm for vehicle
roll behavior and a comparison of its control performance
with the MPC algorithm under the same driving conditions
in CarSim-Matlab R© software. Section VI presents the final
conclusions.

II. VEHICLE DYNAMICS MODELLING
In this section, a full-car dynamic model along with T-S
model for the identification of both nonlinear tire force and
MR damper force are presented.

A. FULL-CAR DYNAMICS MODELING
To further illustrate the practical vehicle driving condition,
a 9-DOFs full-car model is established based on the following
assumptions [4], as shown in Fig. 1.

1) Effect of slip between the tires and road surface was
ignored, and longitudinal acceleration of the vehicle
was not considered.

2) Effect of the air force was excluded.
3) Effect of the steering system was ignored.
4) Suspension in steering wheel alignment parameters

was ignored.
The 9-DOFs model includes of lateral, vertical and roll

dynamics model utilized to illustrate yaw motion, lateral
motion, vertical motion and roll motion. Table 1 describes the
symbols used in Fig. 1, and the corresponding vehicle param-
eters originate from CarSim R© (D-Class, SUV) [21], [22].
Furthermore, the three-dimensional (3-D) road roughness

with straight driving condition and steering working condi-
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FIGURE 1. 9-DOFs vehicle dynamics model. (a) Full-car model (b) Lateral
model (c) Roll model.

TABLE 1. Symbols used for 9-DOFs full-car model.

tion are used in this paper. Refer to [8] for a more detailed
description of the 3-D road roughness.

According to Table 1, i = 1, 2, 3, 4 represents left front
side, right front side, left rear side and right rear side for the
vehicle system, respectively.

To further illustrate the relationship among different parts
of the full-car system, the frame of earth-fixed inertial
coordinate and vehicle-fixed non-inertial coordinate should
be established to describe the translation of sprung mass
center of C.G., the unsprung mass C.G. and rotations of the
C.G. of unsprung mass. Refer to [4], [23], and [24] for the
detailed corresponding equations.

Using Newton’s second law, the 9-DOFs model can be
expressed as follows.

Vehicle sprung mass vertical motion:

Fs =
4∑
i=1

Fsi = −msz̈b (1)

where Fs is the total suspension force. Corresponding
equations can be obtained as follows.

Fs1 = −ks1(zb1 − zw1)− f1;

Fs2 = −ks2(zb2 − zw2)− f2;

Fs3 = −ks3(zb3 − zw3)− f3;

Fs4 = −ks4(zb4 − zw4)− f4; (2)

And,

zb1 = zb +
B
2
sinφ − a sin θ;

zb2 = zb −
B
2
sinφ − a sin θ;

zb3 = zb +
B
2
sinφ + b sin θ;

zb4 = zb −
B
2
sinφ + b sin θ; (3)

Unsprung mass vertical motion:

mw1z̈w1 = −ks1(zw1 − zb1)− f1 − kt1(zw1 − zr1);

mw2z̈w2 = −ks2(zw2 − zb2)− f2 − kt2(zw2 − zr2);

mw3z̈w3 = −ks3(zw3 − zb3)− f3 − kt3(zw3 − zr3);

mw4z̈w4 = −ks4(zw4 − zb4)− f4 − kt4(zw4 − zr4); (4)

Vehicle sprung mass pitch motion:

My =

4∑
i=1

Myi = Iyθ̈ = (Fs1 + Fs2)a− (Fs3 + Fs4)b

+msghroll sin θ (5)

where My, i = 1, 2, 3, 4 is vehicle pitch moment.
Vehicle sprung mass roll motion:

Mx =

4∑
i=1

Mxi = Ix φ̈ = (Fs2 + Fs4)
B
2
− (Fs1 + Fs3)

B
2

+mshroll(g sin θ + asy) (6)

where Mx, i = 1, 2, 3, 4 is vehicle roll moment.
Vehicle lateral motion:

Fy =
4∑
i=1

Fyi = msasy +
4∑
i=1

mwiawyi = (Fy1 + Fy2) cos δf

+ (Fy3 + Fy4) cos δr ; (7)
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where Fy, i = 1, 2, 3, 4 is tire lateral force. The vehicle lateral
force can be calculated using the Magic Formula (MF), more
details can be obtained in [23].

Eq. (8) for the vehicle yaw motion:

Mz =

4∑
i=1

Mzi = Izω̇ = b(Fy3 + Fy4) cos δr

− a(Fy1 + Fy2) cos δf
−B
/
2(Fy2 − Fy1) sin δr −

B/
2(Fy4 + Fy3) sin δf

+Mzz1 +Mzz2 +Mzz3 +Mzz4 (8)

where Mzzi, i = 1, 2, 3, 4 is tire self-aligning moment.

B. REPRESENTATION FOR T-S FULL-CAR VEHICLE MODEL
Firstly, the MF tire model cannot work well since it depends
on many nonlinearities that should be known under various
parameters situation. Therefore, a T-S fuzzy approach of the
tire model is proposed to describe the nonlinearities of the tire
lateral forces. The T-S fuzzy rules state the following:

If |α| is M1, then
{
Fyf = Cf 1αf
Fyr = Cr1αr

(9)

If |α| is M2, then
{
Fyf = Cf 2αf
Fyr = Cr2αr

(10)

where Cfi, Cri are the front and rear tire cornering stiffness;
αf, αr are the front and rear tire slip angle; M1, M2 are the
small and large fuzzy set for slip angle.
Remark: The Pacejka tire model (a nonlinear model) indi-

cates the relationship between cornering forces and slip angle,
as shown in Fig. 2 [23] Since both αf and αr have similar
values, the proposed fuzzy rules are only applied for αf.

FIGURE 2. Comparison results of T-S and nonlinear lateral tire model.

Based on the vehicle theory and T-S fuzzy approach,
the overall lateral forces are given by:

Fyf = µ1
(∣∣αf ∣∣)Cf 1αf + µ2

(∣∣αf ∣∣)Cf 2αf
Fyr = µ1

(∣∣αf ∣∣)Cr1αr + µ2
(∣∣αf ∣∣)Cr2αr (11)

where µj (j = 1, 2) is the jth bell curve membership function
of fuzzy set M j that satisfies the following properties:

2∑
i=1

µi
(∣∣αf ∣∣) = 1; 0 ≤ µi

(∣∣αf ∣∣) ≤ 1; i = 1, 2 (12)

The expressions of the membership functions used are:

µi
(∣∣αf ∣∣) = ςi

(∣∣αf ∣∣)
2∑
i=1
ςi
(∣∣αf ∣∣) ; i = 1, 2 (13)

And

ςi
(∣∣αf ∣∣) = 1(

1+
∣∣((∣∣αf ∣∣− ci) /ai)∣∣)2bi (14)

where ai, bi, ci, Cfi, and Cri (i = 1, 2) are identified using
the Levenberg–Marquardt algorithm [25]. More details are
given in Table 2.

TABLE 2. Model parameters of membership functions for T-S lateral tire
model.

The nonlinear lateral tire force by T-S rules, and the
nonlinear full-car model can be described by the using T-S
fuzzy model. Based on the mentioned above, the nonlinear
tire lateral force can be calculated and compared with the
MF tire model. Results show that, under large slip angle,
the T-S vehicle model has a better computation accuracy as
shown in Fig. 2. Refer to [8] and [25] for more details about
T-S tire modeling.

Secondly, the dynamic properties of an MR damper are
further tested with an MTS machine (Test Rig Model: 850;
MTS Systems Corporation). The different corresponding cur-
rents are chosen to energize the magnetic field with the
same sinusoidal movement routine (with 20 mm amplitude
and max 0.2m/s velocity). Fig. 3 shows the force-velocity
relationships of the MR damper varying the input voltage.

Based on the above test data and suspension dynam-
ics, the force-velocity phenomenological of the MR damper
through the Bouc-Wen model, and the corresponding nonlin-
ear functions can be obtained as follows.

f1i = cob(żbi − żwi)+ abzri;

f2i = − |zri|
[
γ |żbi − żwi| − β(żbi − żwi)sign(zri)

]
; (15)

Since the state variables zbi, zw1, and zri are limited in
practice, the nonlinear functions f1i and f2i are also bounded.
To deal with f1i and f2i, the use of T-S fuzzy modeling
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FIGURE 3. Force-velocity map of the MR damper.

approach [26] is convenient to describe the nonlinear system.
More details are given in the following.

f1i = M1i f1imax +M2i f1imin;

f2i = N1i f2imax + N2i f2imin; (16)

whereM1i,M2i, N1i and N2i are fuzzy membership functions,

and
2∑
j=1

4∑
i=1

Mji = 1
2∑
j=1

4∑
i=1

Nji = 1. fmax and fmin represent

the upper bound and lower bound of the nonlinear force f ,
the four membership functions are defined as.

M1i =
cob(żbi − żwi)+ abzri − f1imin

f1imax − f1imin
;

M2i = 1−M1i;

N1i =
− |zri|

[
γ |żbi−żwi|−β(zbi − zwi)sign(zri)

]
− f2imix

f2imax − f2imin
;

N2i = 1− N1i; (17)

Then, the original damper force can be described by
the four linear equations, and each damper force can be
described using the IF. . .THEN. . . logic conditional state-
ment. Then, the T-S fuzzy approach of the damper force could
be described with the following equations:

If f1 is M1 and f2 is N1, Then fi = f11 + f21;

If f1 is M1 and f2 is N2, Then fi = f11 + f22;

If f1 is M2 and f2 is N1, Then fi = f12 + f21;

If f1 is M2 and f2 is N2, Then fi = f12 + f22; (18)

Based on this analysis, the T-S models for tire modeling
and MR damper modeling are used to form the full-car T-S
dynamics model. For further details see [12], [14], and [27].

III. STATE ESTIMATION FOR T-S FULL-CAR MODEL
This section aims to obtain the coupled roll angle and roll rate
under steering input and various road excitation conditions.
The structure of the model-based observer is shown in Fig. 4.

FIGURE 4. Flow chart of T-S model-based observer.

For the T-S observer design for lateral and vertical dynam-
ics, δ and xr are the system input; then, a T-S model-based
observer for the estimation of the roll angle and roll rate is
developed as follows.

˙̂x(t) =
4∑
i=1

µi
(∣∣α̂f ∣∣) (Aix̂(t)+ Biu(t)+ Li(y(t)− ŷ(t))

)
ŷ(t) = Cx̂(t) (19)

where

x̂ = [vy, ω, φ, żb, θ̇ , φ̇, zbi − zwi, żwi, zwi − zri]T ;

u = [δ, f1, f2, f3, f4]T ;

ŷ = [z̈b, ω, θ̇ , φ̇, z̈wi]T ; i = 1, 2, 3, 4

where x is the state estimation vector of the model, and y
represents the output matrix. By using measurable signals,
the roll state can be estimated. Appendix A gives the details
of Ai and Bi matrixes
Using measurable signals, e.g., the steering wheel angle

and sprung mass acceleration, the roll angle and roll rate
can be estimated with Eq. (19). The aim of the design is to
determine gain matrices Li, which guarantee the asymptotic
convergence of x̂(t) to x(t). The state estimation error is
defined as follows.

e(t) = x(t)− x̂(t) (20)

The dynamics of state estimation error is obtained as fol-
lows.

ė(t) =
2∑
i=1

2∑
j=1

µi
(∣∣α̂f ∣∣)µj (∣∣αf ∣∣) ((Ai − LiC)e(t)

+1Aijx(t)+1Bijδ(t))+ Bwφr (t) (21)
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And

1Aij = Aj − Ai; 1Bij = Bj − Bi (22)

Defining:

xe(t) =
[
e(t)
x(t)

]
, w =

[
δ(t)
φr (t)

]
(23)

The augmented system calculated from (17) and state
estimation error (18) can be calculated as follows

ẋe(t) =
2∑
i=1

2∑
j=1

µi
(∣∣α̂f ∣∣)µj (∣∣αf ∣∣) (Ãije(t)+ B̃ijw(t)) (24)

where

Ãij =

[
Ai − LiC 1Aij

0 Aj

]
; B̃ij =

[
1Bij Bw
Bj Bw

]
(25)

Remark: Because disturbances w(t) is composed of the
steering angle input and the various road profiles, it can be
logically considered to have finite energy [22].

The gains Li has been calculated by considering the effect
of the road profile on the state estimation errors. One possible
approach is to minimize the L2 gain from disturbances to the
estimation errors. The relationship of L2 gain between w(t)
and e(t) can be defined as follows [12], [25]

γ = sup
‖e(t)‖
‖w(t)‖

(26)

By setting the supremum and the L2 gain, Eq. (26) can be
expressed as follows∫

∞

0
e(t)T e(t)dt ≤ γ 2

∫
∞

0
w(t)Tw(t)dt (27)

Theorem 1: If there exist positive and symmetric matrices
P1 and P2, matrices Mi and positive scalar γ satisfying the
following linear matrix inequalities (LMI) for i, j = 1, 2.

2i P11Aij P11Bij P1Bw
1AT

ijP1 9 j P2Bj P2Bw
1BTijP1 BTJ P2 −γ 2I 0
BTwP1 BTwP2 0 −γ 2I

 < 0; (28)

where

2i = AT
i P1 + P1Ai −MiC− CTMT

i + I;

9 j = AT
j P2 + P2Aj (29)

Then, the vector e(t) converges asymptotically to desire
value. The gains of the observer are given by Li = P−11 Mi.
The corresponding proof for observer stability and LMI
condition in Theorem 1 are presented in Appendix B and
Appendix C. Further details can be found in [12], [28],
and [29]

FIGURE 5. Flow chart of the observer-based control algorithm.

IV. OBSERVER-BASED CONTROL FOR T-S
FULL-CAR MODEL
In this section, an observer-based optimal control is proposed
for vertical and lateral dynamics to constraint the roll motion;
the structure of the controller is shown in Fig. 5. For applying
PPC algorithm, the prescribed performance function (PPF)
is first produced, that is, an error transformation function is
adapted to integrate the performance constraints of vehicle
suspension system into the following controller design. Then,
based on the PPF, the sliding mode surface is used to form the
PPC approach. The process of tuning the PPC under various
road excitations and steering wheel input is further elaborated
in the following sections

A. ERROR TRANSFORMATION WITH PPF
Due to considering safety and hardware limitations of semi-
active suspension, the following performance and structure
requirements are considered (30) and (31)

1) The input saturation of semi-active suspension control
force, defined as:

sat (ui) =

umax i, if ui > umax i
ui, if − umax i ≤ ui ≤ umax i
−umax i, if ui < −umax i

(30)

where sat (ui) represents saturation function.
2) The vertical displacement and roll angle can be attenu-

ated using the damping force.
3) The movement of mechanical structure can be con-

strained as follows.

|1xb1| =

∣∣∣∣xb + lt
2
· sin (φ)− a · sin (θ)− xw1

∣∣∣∣
≤ 1xb1max ;

|1xb2| =

∣∣∣∣xb − lt
2
· sin (φ)− a · sin (θ)− xw2

∣∣∣∣
≤ 1xb2max ; (31)
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In this paper, to illustrate a prescribed control bound of roll
angle or roll rate, the following positive decreasing function
is given (32) and (33) More details can be found in [30]
and [31].

ϕi (t) = (ϕ0i − ϕ∞i) e−αit + ϕ∞i, i = 1, 2 (32)

where ϕi∞ is an allowable error in the steady state; ϕi > ϕi∞
are design parameters, and lim

t→∞
ϕ (t) = ϕi∞ > 0. Note that

i = 1, 2 denotes the roll angle and roll rate, respectively.
Then, the objective constraints inequation of the prescribed

performance can be obtained.

−δϕi (t) < xi (t) < δ̄ϕi (t) ; ∀t > 0 (33)

where δ and δ̄ are positive constants used as the constraints.
Eq. (33) determines both the transient and steady perfor-
mance of the controlled state xi.
Based on the above analysis, to guarantee the performance

constraints are always satisfied, the following transformation
is proposed.

xi = ϕi (t) S (zi) (34)

where S (z1) is a smooth and strictly function.

S (zi) =
δ̄ie(zi+vi) − δ1e−(zi+vi)

e(zi+vi) + e−(zi+vi)
(35)

where vi = 1
2 ln

δi
δ̄i
, and the smooth function S(z1) has the

following properties:

1) − δ < S (zi) < δ̄; ∀z1 ∈ L∞
2) lim

zi→+∞
S (zi) = δ̄; lim

zi→−∞
S (zi) = −δ̄.

3) S (0) = 0. (36)

Lemma 1 (34): If the transformed error zi is bounded, and
the initial value of the controlled state xi(0) is within the
performance bounds, i.e., −δϕi (0) < xi (0) < δ̄ϕi (0), then
xi will be maintained within the prescribed performance (36)
for all t ≥ 0 [32].
Because ϕ(t) 6= 0, the transformed error zi can be obtained.

zi = S−1
[
xi
ϕi

]
= S−1 (λi) =

1
2
ln
[(
λi + δi

δ̄i − λi

)
δ̄i

δi

]
(37)

where λi = xi/ϕ is transformed error. The derivative of zi can
be obtained as.

żi =
∂S−1

∂λi
λ̇1 = $i

(
ẋi
ϕi
−
xiϕ̇i
ϕi

)
(38)

And

$i =
1
2

[
1

λi + δi
−

1

λi − δ̄i

]
(39)

The second-order time derivative of zi can be calculated as:

z̈i = $̇i

(
ẋi
ϕi
−
xiϕ̇i
ϕi

)
+$i

[
ẍi −

(
xiϕ̇i + xiϕ̈i

ϕi
−
xiϕ̇2

ϕ2i

)]
(40)

B. ADAPTIVE PPC FEEDBACK CONTROL DESIGN
In this section, according to Lemma 1, the PPF bound should
be achieved. To achieve this control purpose and consider
transient and steady performance improvement, the sliding
mode surface is defined as.

si = [3i, 1] [zi, żi] (41)

where 3i > 0 is a positive constant such that zi is bounded
as long as si is bounded [29].
Then, to further illustrate the PPC approach, z1 (roll angle)

is used as an objective. More details are given as follows.
According to (41), the time derivative of s1 is given as.

ṡ1 = 31φ̇ + φ̈ = 31φ̇ + a1(zb1 − zw1)+ a2(zb2 − zw2)

+ a3żb + a4żw1 + a5żw2 + a6φ + a7φ̇ + Uφ (42)

And

a1 =
B · ks1

2
(
Ix + ms · h2roll

) ; a2 =
−B · ks1

2
(
Ix + ms · h2roll

) ;
a3 = 0; a4 =

−c1
2
(
Ix + ms · h2roll

) ;
a5 =

c1
2
(
Ix + ms · h2roll

) ; a6 =
ms · hroll · g

Ix + ms · h2roll
;

a7 =
−B2 · c1

2
(
Ix + ms · h2roll

) ;
whereUϕ represents the input force of the suspension system.

Based on particle swarm optimization algorithm, Eq. (42)
can be expressed as.

ṡ1 = 31φ̇ + φ̈ = 3x7 +W T
1 81 + ε01 (43)

And,

W1=

[
ωT1 , 1

]T
(‖W1‖≤W1N ) ; 81=

[
φT1 (z1) ,Uφ

]T
;

ωT1 φ1 = a1(zb1 − zw1)+ a2(zb2 − zw2)+ a3żb + a4żw1
+ a5żw2 + a6φ + a7φ̇;

where ε01 is residual error function, i.e. |ε01| ≤ ε01N = 0,
wT1 is augmented weight, ϕ1 is the regressor.
Based on the adaptive control method, Uϕ can be calcu-

lated as follows:

Uφ = −ω̂T1 φ1 (z1)− k1s1 −31φ̇1 (44)

where k1 > 0 is feedback gain;ω̂1 is estimation parameter
of ω1, and the adaptive control law updates in real time.

Also, by substituting (44) into (42).

ṡ1 = −k1s1 + W̃ T
1 81 + ε01 (45)

where the W̃1 is adaptive control law. The method of reducing
order is used to solve W̃1, and more details are given as
follows.

The method of reducing order is calculated using tracking
error, and Eq. (46) can be given,

˙̃W1 = 01s181 − 01σH1 (46)
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Being,

H1 = P1W̃1 − Q1; Ṗ1 = −lP1 +818
T
1
;

Q̇1 = −lQ1 +81(s1/k)

where 01 > 0 is adaptive gain; σ > 0 is a constant; k > 0
and l > 0 are positive constants; P1(0) and Q(0) are equal to
zero.

Based on the above adaptive control law W̃1 and suspen-
sion force Uϕ , the control error of roll angle asymptotically
converges to the presetting range under no residual error
condition.

Proof: Design the following Lyapunov candidate as:

V1 =
1
2
s21 +

1
2
W̃ T

1 0
−1
1 W̃1 (47)

Take the derivative of V1:

V̇1 = −k1s21 + s1ε01 − σ W̃
T
1 P1W̃1 + σ W̃ T

1 11

≤ −

(
k1 −

1
2η1

)
s21 − σ

(
σ1 −

1
2η1

)∥∥∥W̃1

∥∥∥2
+
η1

2

(
ε2
1N
+ σε2

1Nf

)
≤ −µ̃1V1 + γ1 (48)

where µ̃1 = min{2(k1 − 1/2η1), 2σ01(σ1 − 1/2η1)/λmax}
and γ1 = η1(ε21N + σε

2
1Nf)/2 are all positive constants, and

k1 > 1/2η1, η1 > 1/2σ1. The detailed verification can be
found in [29]. Then, using Barbalat Lemma [19], s1 and W̃1
converge to the sets defined.

Without considering theMR time delay and the interrupted
effect of road profile, the modified anti-windup technique is
used to tackle the control saturation when the MR suffers
from input constraints [33]. The core of anti-windup modifi-
cation is to design an augmented controller, and the obtained
new controller should have the corresponding characters as
follow [29], [33]. This method can be easily expressed by
low order structures [34], and it can be written as follows.

ϑ̇1 = −χ0ϑ1 + ζ0ρ1 + ξ01F (49)

where χ0, ξ0, ζ0, ρ1 are positive constants; F = Uϕ-sat(Uϕ)
with sat(.) as the saturation function [34].

Then, Eq. (44) can be rewritten as:

Uφ = −ω̂T1 φ1 (z1)− k1s1 −31φ̇1 + χ0ϑ1 (50)

Note that χ0 is used to compensate the error s1 when
F 6= 0.When the input is very small, then, χ0 is also zero, and
the stability of the studied system is saved. When saturation
occurs, θ1 can reshape Uϕ to make the controller back into
the linear region of the saturation.

Proof: Design the Lyapunov candidate as:

V ′
1
=

1
2
s21 +

1
2
W̃ T

1 0
−1
1 W̃1 +

1
2
ϑ2
1 (51)

Then, the time derivative of V ′1 can be computed as:

V̇ ′
1
= −k ′1s

2
1 + s1ε01 + k0η1s1 − σ W̃

T
1 P1W̃1 + σ W̃ T

1 11

+ η1(− k0η1 + θ01F)

≤−

(
k ′1 −

1
2ηsc1

−
k0

2ηsc1

)
s21−σ

(
σ1 −

k0
2ηsc1

)∥∥∥W̃1

∥∥∥2
−

(
k0 −

k0ηsc1
2
−

1
2ηsc1

)
η2
1

+
k0ηsc1
2

(ε2
1N
+ σε21Nf + (θ01F)

2 )

≤ −µ̃′1V
′

1
+ γ ′1 (52)

where µ̃′
1
= min{2(k ′1 − 1/2η1 − k0/2ηsc1), 2σ (σ1 − 1/2η1),

2(k0−k0ηsc1/2−1/2η1)}, γ1 = ηsc1 (ε21N+σε
2
1Nf(θ0F)

2)/2 are
all positive constants, k ′1 > 1/2η1 + k0/2ηsc1, ηsc1 > 1/2σ1,
and k0 > 1/(2ηsc1 − η2sc1). The continuity of the saturation
function validated that the set of �1(s1, µ̃1

′, η1) can be
defined to be larger than�2, i.e.,�2 ∈ �1. Then, the control
error s1 is still bounded [30].

V. MPC STRATEGIES
As an optimal control approach, MPC is used to calculate
the optimization problem of the studied system. The general
system model is given as follows [35], [36]{

x∗(k + 1) = A∗(k)x(k)+B∗(k)u∗(k)+ n∗(k)
y∗(k) = C∗(k)x(k)+D∗(k)u∗(k)+ v∗(k)

(53)

where x∗(k) represents states, u∗(k) is control inputs, y∗(k)
represents the outputs, n∗(k) represents the state noise and
v∗(k) represents the measurement noise.

An objective function is proposed to illustrate both
the reference tracking error and the control effort. The
corresponding function can be defined to obtain the optimal
objective as follows.

min J
u0,u1,...,uN−1

= min
u0,u1,...,uN−1

M−1∑
i=1

×

[
wyi+1

∥∥y(k + i+ 1 |k )-yref (k + i+ 1 |k )
∥∥2

+wui ‖u(k + i+ 1 |k )‖2

]
(54)

s.t. ymin ≤ y(k) ≤ ymax , k = 0, 1, . . .M − 1

umin ≤ u(k) ≤ umax , k = 0, 1, . . .M − 1 (55)

where M represents the prediction length; wu and wy repre-
sent the weights for the control input u and the output y.

VI. SIMULATION AND VALIDATION
The proposed T-S estimation and PPC algorithm were
validated using industrial standard simulation software.
A standard SUV vehicle model established in CarSim R©

(Version 8.0.2) software was utilized together with Matlab R©

(2016) to form simulator as shown in Fig. 5 [37], [38].

A. SIMULATION AND VALIDATION
The PPC Simulation was run under steering wheel (SW)
input varying the road excitation conditions, and the results
were compared with those of the MPC algorithm [35], [36].
Table I gives the vehicle simulation parameters while
Table 3 and Fig. 6 provide the simulation situation and con-
troller settings.
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TABLE 3. Simulation setting of vehicle roll behavior control.

FIGURE 6. Simulation of vehicle roll under various driving situations.
(a) J-turn (b) Fishhook.

Due to the physical limitation of the suspension actuators,
the input constraints limits for the external suspension force
were set to 2000N. The following observer gains in (30) were
chosen: ϕ01 = ϕ02 = 0.6, ϕ∞1 = 0.018, ϕ∞2 = 0.01,
α1 = 1.1, and α2 = 1 in the J-turn simulation, and ϕ01 =
ϕ02 = 0.6, ϕ∞1 = 0.01, ϕ∞2 = 0.01, α1 = 1.1 and
α2 = 1.1 in the Fishhook simulation. A certain tolerance
on the lateral offset is desired to prevent the lateral slip or
rollover. So, for the roll angle and roll rate, are set to δ1 =
δ̄1 = 0.1 and δ2 = δ̄2 = 0.15 under the various conditions.
For the adaptive control algorithm, k1 = 68, 01 = 0.02.
To alleviate the chattering effect, the saturation function with
a boundary layer 0.01 is used to reliance the sign function
in the simulation for proposed control [4], [20]. Note that
the road ISO level A/C excitation can be generated using the
Power Spectral Density (PSD) method. See [40]–[44] for
further details.

B. SIMULATION RESULTS
The observer-based PPC control strategy proposed in
Section 4 was used to improve the roll behavior performance
of the vehicle system under various driving conditions. Due
to tire hop, the errors of state estimation and control perfor-
mance would grow under the varying road levels [45]–[47].
To further explain how the PPF and MPC algorithms affect
the effective control of the vehicle system, the performance
of control algorithms were validated.

FIGURE 7. Control results of ISO-A road and SW 45◦ (J-turn simulation).
(a) simulation results from 0 to 16 seconds, (b) simulation results from 0
to 3 seconds.

Case 1 (J-Turn Simulation): In this section, using the
vehicle dynamics model and the observer-based control algo-
rithm, the vehicle roll performance was calculated under road
ISO level A/C excitation as shown in Figs. 7 and 8
Figs. 7 and 8 show the results of PPC and MPC algorithms

controlled under SW 45◦ input and ISO-A road excitation
conditions, respectively. Furthermore, the time segment cor-
responding to the 16 (3) simulation second in Fig. 7a (b) (i.e.
from t = 0 second to t = 16 (3) second) is plotted for the
J -turn simulation under road ISO Level-A excitation.

According to Fig. 7, no matter which control algorithm is
used, a relatively good control effect is obtained. For theMPC
algorithm, the transient response time of improving control
is no longer than two seconds, and the steady performance
of the vehicle system is also achieved two seconds later.
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FIGURE 8. PPC control of roll state under ISO-A road and SW 45◦

conditions (J-turn simulation). (a) Roll angle (b) Roll rate.

Also, the steady value of MPC approach does not fluctuate
very much. For the PPC algorithm, the corresponding out-
put response of improving transient performance of vehicle
roll behavior is better than that of MPC approach, then the
restricted effect on roll stability can be adaptively weakened.
However, the steady response of PPC algorithm is less than
MPC algorithm two seconds later under ISO-A and SW
input condition. That is because the primary control objective
of PPC algorithm is constrained in prescribed performance
bounds, and the secondary goal is to ensure the roll perfor-
mance. Then, the PPC approach is the optimal constrained
range, and is not the optimum value optimization in real time.

To further illustrate the control performance of the PPC
approach, the corresponding transient and steady response
were simulated under the ISO-C road excitation as shown
in Figs. 9 and 10. In Fig. 9a (b), the time segment correspond-
ing to the 16 (3) simulation second (i.e. from t = second
to t = 16 (3) second) is plotted for the J -turn simulation
under road ISO Level-C excitation. Fig. 9 shows the steady
and transient response values of fluctuating characteristic of
vehicle roll behavior are higher than those of ISO-A road exci-
tation. However, for the PPC andMPC algorithms, the control

FIGURE 9. Control results for ISO-C road profile and SW 45◦ (J-turn
simulation). (a) simulation results from 0 to 16 seconds, (b) simulation
results from 0 to 3 seconds.

effect is noticeable, i.e., they both can obtain satisfactory
steady performance for vehicle roll behavior under ISO-C
and SW input condition. Also, in Fig. 7 and Fig. 9, different
road excitation impacts significantly on roll behavior, and the
influence of road excitation cannot be ignored [48]–[50].

Overall, when the PPC and MPC algorithms work under
the various driving conditions, the roll stability performance
of the vehicle system can be significantly improved in the
J -turn simulation.
Case 2 (Fishhook Simulation): Based on the Fishhook

simulation, as shown in Figs. 11-14, the roll response of
using PPC algorithm in Fishhook condition was computed
under ISO level A/C road excitation. In Fig. 11a (b), the time
segment corresponding to the 16 (10) simulation second (i.e.,
from t = 0 second to t = 16 (10) second) is plotted for
the Fishhook simulation under road ISO Level-A excitation.
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FIGURE 10. PPC control of roll state under ISO-C road and SW 45◦

conditions (J-turn simulation). (a) Roll angle (b) Roll rate.

In Fig. 13a (b), the time segment corresponding to the 16 (10)
simulation second (i.e., from t = 0 second to t = 16 (10)
second) is plotted for the Fishhook simulation under road ISO
Level-C excitation.

As previously explained, when the vehicle is changing the
lane with high speed, the input and output signals change
dramatically in a very short period. To guarantee the roll
stability, it is reasonable and necessary to tolerate a larger
steady-state error.

From Fig. 12, the controlled roll state are all well restricted
in the prescribed performance bounds, with small overshoots
and steady-state errors. Some errors still exist in the con-
trolled states during the lane-change maneuver [34]. There-
fore, the proposed control can effectively reduce the over-
shoots in these states, and restrict them in safe boundaries. In
the steady state, their values are similar with different control
strategies, and the performance is visible, i.e., they can obtain
a good steady performance for vehicle roll behavior under
ISO-A and SW input condition. The response of transient and
steady were also simulated under the ISO-C road excitation
as shown in Fig. 13 and Fig. 14.

FIGURE 11. Control results for ISO-A road profile and SW 45◦ (Fishhook
simulation). (a) simulation results from 0 to 16 seconds, (b) simulation
results from 0 to 10 seconds.

TABLE 4. Calculation STD error of T-S fuzzy observer various on road
level-A/C profile at 40km/h.

Similar results can be obtained for ISO-C road excitation.
Meanwhile, the steady and transient response value of fluctu-
ating characteristic of vehicle roll behavior under road ISO-C
excitation is also higher than that of ISO-A road excitation.
Also, the oscillations on control inputs in the initial phase are
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TABLE 5. Calculation RMS values of PPC control various on road level-A/C profiles at 40 km/h.

FIGURE 12. PPC control of roll state under ISO-A road excitation and SW
45◦ conditions (Fishhook simulation). (a) Roll angle (b) Roll rate.

caused by the strict prescribed performance control require-
ments, which therefore is reasonable.

Based on the T-S model-based fuzzy observer analysis,
the error values of the estimation standard deviation (STD)
were calculated under ISO Level-A/C road excitation, and the
results of the comparison are given in Table 4.

Table 4 shows that the performance (RMS-error) change
stays within 16% in all the relevant signals. The values of

FIGURE 13. Control results of ISO-C road and SW 45◦ (Fishhook
simulation). (a) simulation results from 0 to 16 seconds, (b) simulation
results from 0 to 10 seconds.

the control and uncontrolled root mean square (RMS) are
also calculated, and the simulation results of the uncontrolled
situation,MPC algorithm and PPC algorithm are summarized
in Table 5.
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FIGURE 14. PPC control of roll state under ISO-C road excitation and SW
45◦ conditions (Fishhook simulation). (a) Roll angle (b) Roll rate.

VII. CONCLUSIONS
In this paper, the optimal control of vehicle roll under SW
input and various road excitation was studied using 9-DOFs
full-car model. Then, with the proposed observer-based con-
trol algorithm, the influence of the full-car model on vehicle
roll behavior was studied.

The following main conclusions can be drawn:
(1) A full-car T-S model and model-based T-S fuzzy

observer were developed under various SW input and road
excitation conditions and the LMI theory was then used to

illustrate the stability of T-S fuzzy observer.
(2) Compared to the MPC algorithm and uncontrolled

situations, the proposed PPC algorithm could better improve
the transient and steady performance of vehicle roll behavior
under various external excitations in real time.

Finally, simulation results showed that the proposed
observer-based PPC algorithm could improve the perfor-
mance of roll behavior for a vehicle system, andwas validated
in CarSim-Matlab R© under various driving situations and dif-
ferent road excitation levels.

In the future, the proposed control algorithm will be used
with a practical full-car. Also, further research will extend to
pattern recognition optimization control for a 9-DOFs vehicle

system and focus on the application of corresponding data for
developing intelligent vehicles.

APPENDIX A
Based on the T-S full-car model, the responses of system
matrixes Ai and Bi stated in (19) are as follows.

Ai =

A11 A12 A13
A21 A22 A23
A31 A32 A33

;

A11 =


A′11 A′12 0 0 0 0
A′21 A′22 0 0 0 0
0 0 0 0 0 1
0 0 0 A′44 A′45 0
0 0 0 A′54 A′55 0
A′61 A′62 A′63 0 0 A′66

;

A12 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
A′47 A′48 A′49 A′410 A′411 A′412
A′57 A′58 A′59 A′510 A′511 A′512
A′67 A′68 A′69 A′610 A′611 A′612

;

A13 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A′413 A′413 0 0 0 0
A′513 A′514 0 0 0 0
A′613 A′614 0 0 0 0

;

B2 =



0 0 0 0 0 0

0 0 0 0
1
mw1

0

0 0 0 0 0
1
mw2

0 0 0 0 0 0
0 0 0 0 0 0


;

B3 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1
mw3

0 0 0 0 0

0
1
mw4

0 0 0 0


;

A21 =



0 0 0 1 −a
lt
2

0 0 0 1 −a −
lt
2

0 0 0 1 b
lt
2

0 0 0 1 b −
lt
2

0 0 0
f1
mw1

−
f1 · a
mw1

f1 · lt
2 · mw1

0 0 0
f2
mw2

−
f2 · a
mw2

−
f2 · lt
2 · mw2



;
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A22 =



0 0 0 0 −1 0
0 0 0 0 −1 0
0 0 0 0 −1 0
0 0 0 0 −1 0
ks
mw1

0 0 0 0 0

0 0 0 0 0 −
f2
mw2


;

A23 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 −
kt
mw1

0 0 0

0 0 0 −
kt
mw2

0 0


;

A31 =



0 0 0
f3
mw3

f3 · b
mw3

f3 · lt
2 · mw3

0 0 0
f4
mw4

f4 · b
mw4

−
f4 · lt
2 · mw4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


;

A32 =



0 0 0
ks
mw3

0 0

0 0 0 0
ks
mw4

0

0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 1 1


;

A33 =



−
f3
mw3

0 0 0 −
kt
mw3

0

0 −
f4
mw4

0 0 0 −
kt
mw4

1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0


;

A′11 =
σ ′i · I

′

xeq

M · Ix · vx
; A′12 =

ρ′i · I
′

xeq

M1 · Ix · vx
− vx; A′21 =

ρ′i

Iz
;

A′22 =
−τ ′i

Izvx
; A′44 = −

4 · f
ms
; A′45 =

2 · a · f − 2 · b · f
ms

;

A′47 = −
ks
ms
; A′48 = −

ks
ms
; A′49 = −

ks
ms
; A′410 = −

ks
ms
;

A′411 =
f
ms
; A′412 =

f
ms
; A′413 =

f
ms
; A′414 =

f
ms
;

A′54 =
2 · a · f − 2 · b · f

Iy
; A′55 = −

2 · a2 · f + 2 · b2 · f
Iy

;

A′57 =
a·ks
Iy
; A′58 =

a·ks
Iy
; A′59 = −

b·ks
Iy
; A′510=−

b·ks
Iy
;

A′511 = −
a · f
Iy
; A′512 = −

a · f
Iy
; A′513 =

b · f
Iy
;

A′514 =
b·f
Iy
; A′61 =

−ms ·hroll ·σ ′i
M1Ix

; A′62=
ms ·hroll ·ρ′i
M1Ixv

;

A′63 =
ms ·g·hroll − hroll ·Kφ

Ix
; A′66 =

−hroll · Cφ−l2t ·f
Ix

;

A′67 = −
lt · ks
2Ix
; A′68 =

lt · ks
2Ix
; A′69 = −

lt · ks
2Ix
;

A′610 =
lt · ks
2Ix
; A′611 =

lt · f
2Ix
; A′612 = −

lt · f
2Ix
;

A′613 =
lt · f
2Ix
; A′614 = −

lt · f
2Ix
;

and

σ ′i = 2(Cfi + Cri); ρ′i = 2(bCri − aCficos(δf ));

τ ′i = 2(a2Cfi cos(δf )+ b2Cri); I ′xeq = msh2roll + I
2
x ;

Bi =
[
B1 B2 B3

]
;

B1=



2·Cfi·Cri
M

2·Cf i·a
Iz

0 0 2·ms·hroll ·Cfi
M ·(Ix+ms·h2roll )

0

0 0 0 −1
ms

a
Iy

−lt
2·(Ix+ms·h2roll )

0 0 0 −1
ms

a
Iy

lt
2·(Ix+ms·h2roll )

0 0 0 −1
ms

−b
Iy

−lt
2·(Ix+ms·h2roll )

0 0 0 −1
ms

−b
Iy

lt
2·(Ix+ms·h2roll )


.

APPENDIX B
The corresponding proof for observer stability and LMI
condition in Theorem 1 are as follows.

Proof: When we assume the following Lyapunov
function condition:

V (xe) = xe(t)TPxe(t) (B1)

With P = PT > 0. The state estimation error e(t) can be
defined as follows:

e(t) = Cexe(t) (B2)

And,

Ce = [I 0] (B3)

System (22) is stable and the H∞ gain of the transfer from
w(t) to e(t) is bounded by γ > 0 if the following inequation
satisfies:

J∞ = V̇(xe)+ e(t)Te(t)− γ 2w(t)Tw(t) < 0 (B4)

Substituting Eq. (22) into Eq. (B4) yields:

2∑
i=1

2∑
j=1

µi(
∣∣α̂f ∣∣)µi(∣∣αf ∣∣)(xe(t)TÃT

ij
Pxe(t)+ xe(t)TPÃijxe(t))

+w(t)T B̃
T
ijPxe(t)+ xe(t)TPB̃ijw(t)+ xe(t)T xe(t)

− γ 2w(t)Tw(t) < 0 (B5)
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Eq. (B5) can be rewritten as follows:

2∑
i=1

2∑
j=1

µi(
∣∣α̂f ∣∣)µi(∣∣αf ∣∣) [ xew

]T [
Yij PB̃ij
B̃
T
ijP −γ 2I

][
xe
w

]
<0

(B6)

where

Yij = Ã
T
ijP+ PÃij + CT

e Ce (B7)

According to the convex sum property of the activation
functions, Eq. (B6) can be satisfied if the following inequa-
tion is satisfied:[

Yij PB̃ij
B̃
T
ijP −γ 2I

]
< 0, ∀i, j = 1, 2. (B8)

These constrains are nonlinear. To obtain LMI conditions,
the following particular form of matrix P is considered:

P =
[
P1 0
0 P2

]
(B9)

Substituting Eq. (25) and Eq. (B9) into Eq. (B8) yields the
following (B10):

2i P11Aij P11Bij P1Bw
1AT

ijP1 9 j P2Bj P2Bw
1BTijP1 BTJ P2 −γ 2I 0
BTwP1 BTwP2 0 −γ 2I

 < 0; (B10)

where

2i = (Ai − LiC)TP1 + P1(Ai − LiC)+ I;

9 j = AT
j P2 + P2Aj (B11)

Using variable changeMi = P1Li, Eq. (B10) is linear in vari-
ables P1, P2, andMi, which leads to the equivalent condition
calculated by Eq. (28). This suffices to satisfy Eq. (28) and
guarantee V(t) / dt < 0 with the γ -attenuation (27).

APPENDIX C
To achieve less-conservative LMI equation of Theorem 1, the
new LMI condition was used to illustrate the stability of the
estimation error e (t) [51].
Using [52, Th. 2], i.e., if there are matrices P1 > 0 and

P2 > 0, matricesQij,Mj, and scalar γ such that the following
LMIs hold:

0ii +Qii < 0, i = 1, 2

0ij + 0ji +Qij +Qji < 0, i < j,[
Q11 Q12
QT

11 Q22

]
> 0, (C1)

With
2i P11Aij P11Bij P1Bw

1AT
ijP1 9 j P2Bj P2Bw

1BTijP1 BTJ P2 −γ 2I 0
BTwP1 BTwP2 0 −γ 2I

 < 0; (C2)

Then, the estimation error e(t) is stable and satisfies the L2
gain, i.e., Li = P−11 Mi
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