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ABSTRACT Object tracking is a key aspect in many applications, such as augmented reality in medicine
(e.g., tracking a surgical instrument) or robotics. Squared planar markers have become popular tools for
tracking since their pose can be estimated from their four corners. While using a single marker and a single
camera limits the working area considerably, usingmultiple markers attached to an object requires estimating
their relative position, which is not trivial, for high-accuracy tracking. Likewise, using multiple cameras
requires estimating their extrinsic parameters, also a tedious process that must be repeatedwhenever a camera
is moved. This paper proposes a novel method to simultaneously solve the above-mentioned problems.
From a video sequence showing a rigid set of planar markers recorded from multiple cameras, the proposed
method is able to automatically obtain the three-dimensional configuration of the markers, the extrinsic
parameters of the cameras, and the relative pose between the markers and the cameras at each frame. Our
experiments show that our approach can obtain highly accurate results for estimating these parameters using
the low-resolution cameras. Once the parameters are obtained, tracking of the object can be done in real time
with a low computational cost. The proposed method is a step forward in the development of cost-effective
solutions for object tracking.

INDEX TERMS Fiducial markers, camera pose estimation, robotics, augmented reality.

I. INTRODUCTION
Square planar markers, comprised of a black external border
and an inner binary pattern have gained popularity since their
pose can be estimated by only using its four corners. As a con-
sequence, they are being employed in 6DoF tracking tasks in
different disciplines such as human-computer interaction [1],
augmented/virtual reality [2], robotics [3] or in medicine for
tracking of surgical instruments [4]–[7], a crucial process
of image-guided surgery providing the position and orienta-
tion (pose) of the instruments with respect to the patient in
preoperative registration and intraoperative navigation.

Tracking one marker with only one camera imposes strong
limitations on the effective working area. Therefore, many
authors have employed several markers attached to the device
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to improve visibility, and/or multiple cameras to increase the
tracked area. However, this involves two problems: estimat-
ing the rigid structure of the marker set and the relative pose
of the cameras.

Obtaining the structure of the marker set can be a
time-consuming process prone to errors. Thus, many authors
design their marker object using basic shapes like cubes
or hexagons and obtain their relative positions from the
equations of such shapes. In order to estimate the relative
poses of the camera set, most people employ a planar chess-
board. However, when a circular camera configuration is
employed (i.e., cameras placed in a circle pointing to its
center), the chessboard is not simultaneously seen by all
cameras. Then, it is required to acquire multiple views of
the chessboard to find the relative camera poses. It is a
time-consuming process that needs to be repeated whenever
a camera is moved.
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This work proposes a method that given a synchronized
video sequence showing an object comprised by a set of
squared planar markers moving freely in front of the cameras,
automatically estimates the 3D structure of the planarmarkers
(object), the 3D poses of the cameras, and the relative pose
between the object and the cameras. Once the relative pose
of the marker and the cameras have been obtained from the
video sequence, the estimation of the pose between the two
can be done in real-time by minimizing the global reprojec-
tion error of the observed marker corners in all the camera
images.

Our approach is a step forward in the use of planar markers
for rigid object tracking. First, it allows tracking devices of
any shape by simply attaching affordable markers, without
paying attention to the position in which they are placed.
Second, it allows to easily reconfigure the camera distribution
to adapt to the requirements of the application.

This is, up to our knowledge, the first method in the lit-
erature that solves the three problems simultaneously and is
publicly available1 for other researchers.
The remainder of this paper is structured as follows.

Section II explains the most related works. Section III
describes the proposed method while Section IV details
the experiments conducted to validate our proposal. Finally
Section V draws some conclusions.

II. RELATED WORK
A. SQUARED PLANAR MARKER TRACKING
Object tracking requires finding correspondences between
known points of the object and their camera projections.
While some methods seek natural features such as key points
or textures [8], [9], squared planar markers are an attractive
solution because they are easy to detect and allow to achieve
high speed and precision [10]–[14]. They are composed of an
external black border and an internal code (most often binary)
that uniquely identifies them. Also the corners of a single
marker can be employed for camera pose estimation [10].

For example, Nakawala et al. [5] develop a surgical train-
ing system for Thoracentesis, where markers are attached to
different instruments/materials such as syringe and catheters.
Matthies et al. [15] show how the use of squared planar
markers can be employed to alleviate the line-of-sight prob-
lems of infrared tracking systems in Computed Tomography
problems. For that purpose, they employ a cube of markers
that are tracked with a camera. Kanithi et al. [16] create an
Augmented Reality system that uses planar markers to track
the trajectory of a needle in ultrasound-guided interventions.

Continuing in the surgical area, the work of
Enayati et al. [17] presents a framework for shared-control
teleoperation of robotic arms such as the da Vinci robot. They
employ a set of planar markers to delimit the controlling area
on which the controller moves the robot by a haptic device.

Another interesting augmented reality application using
planar markers is [18], which proposes a system to aid breast

1https://www.uco.es/investiga/grupos/ava/node/60

surgical planning. The system projects 3D ‘‘holograms’’ of
images from breast MRI onto the patients using Microsoft
HoloLens. The planar markers are employed to properly align
the preoperative models with the real one.

Pflugi et al. [19] propose a cost-effective navigation sys-
tem for peri-acetabular Osteotomy Surgery using a Raspberry
Pi that tracks a planar marker that can be directly attached
to the patients’ pelvis. They prove that their system shows
no statistical difference compared to a much more expensive
Polaris tracking camera.

In the context of bone tumor resectioning, Cho et al. [6]
evaluate the accuracy of augmented reality based navigation
assistance in a pig femur model. As in previous cases, planar
markers attached to the materials are employed to track their
locations.

The work of Marcon et al. [20] shows an approach to
evaluate the posture of people by attaching several planar
markers to their back. The authors focus on analyzing the
activity of a dentist during a dental operation. As the authors
indicate, the advantage of using markers is the absence of
powered and/or heavy and cumbersome markers like wear-
able cameras or accelerometers.

Ghazi et al. [21] design bracelets made of planar markers
sequentially attached to each other for the purpose of tracking
hand and feet of infants. The bracelet was designed as a
heptagon which allows a good visibility using even a single
camera, but its dimensions could only be manually estimated.
Wu et al. [1] use markers on a regular dodecahedron to track
the movement of a pen and estimate its drawing. In these
methods, however, there are strong assumptions about the
relative poses of the markers with respect to each other.

Muñoz-Salinas et al. [22] map and track multiple markers
fixed in an environment. They have a similar method to
initialize marker poses on the map and make no assumptions
about the relative poses of the markers with respect to each
other. However, they use only one camera for mapping and
localization.

Franciosa and Gerbino [23] employ a pair of stereo cam-
eras to determine and track the 3D position of multiple planar
markers. They do not, however, estimate the 3D pose of every
marker but only the 3D location of the marker centers.

B. CAMERA CALIBRATION
Extrinsic calibration of a set of cameras is a process already
studied in the literature, and many solutions have been pro-
posed. The problem consists in estimating the pose of a
set of static cameras and the solution consists in obtaining
references that can bematched between the different cameras.
Since cameras are in different locations, they only share a lim-
ited portion of the field of view. Then, the calibration process
is normally done in clusters (normally camera pairs) and then
all the information combined afterward. Some authors have
employed 1D objects for extrinsic calibration, such as [24]
and [25] for this task. The main problem is that in general
this processes requires special equipment and/or settings such
as active lighting. The most popular solution consists in
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FIGURE 1. Typical scenario for our method. (a) Cameras in a circular
configuration tracking an object comprised by a set of markers. Blue axis
represents the reference camera and marker. (b) Different types of object
created by attaching planar markers.

using a 2D calibration pattern, such as [26]. Again, the main
problem is that visibility of pattern is limited and it must be
moved to different locations to be observed by all cameras.
Indeed, whenever one of the cameras is moved, the process
must be repeated. The work Schmidt et al. [27] shows an
interesting approach to the problem consisting in using a
robot that moves the calibration pattern along the working
area. In the recent work of Zhao et al. [28], the authors use
both 2D chessboard calibration patterns and squared fiducial
marker attached to the cameras in order to obtain the extrinsic
parameters. Weng et al. [4] propose a non-iterative method to
obtain the camera extrinsic parameter using a single fiducial
squared marker.

Corbi et al. [29] employ squared fiducial markers in order
to jointly calibrate an X-ray imaging system and several RGB
cameras. Approaches using 3D objects such as [30] and [31]
try to reduce the number of necessary images to do the
calibration.

The main problem with 3D objects is that obtaining its
configuration is a complex process. The method proposed in
this paper is very convenient since automatically obtains the
marker configuration along with the camera extrinsic param-
eters. Unlike the previous approaches, ours can estimate the
camera extrinsic parameters using a 3D object of unknown
configuration. This is, up to our knowledge, the first method
that simultaneously reconstructs the object configuration and
the camera extrinsic parameters.

III. PROPOSED METHOD
We assume that there is a set of cameras that synchronously
capture frames of a scene where a set of markers appear
in different locations of the images. Also, we assume that
cameras do not move with respect to each other and the same
is true for the markers. However, the set of markers move w.r.t
the camera set. Among the cameras, we pick one randomly
as the reference camera and from markers we pick one as
a reference marker; we use them to measure the relative 3D
pose between the collection of the cameras and the collection
of the markers (see Figure 1a).

Given an object or a scene, with the planar markers
attached to it, wewant to determine the relative poses between
the cameras and the relative pose between the markers.
We also want to find the relative pose between the set of

cameras and the set of markers at each frame where at least
one marker is detected.

We start by detecting the planar markers in the 2D images
captured by cameras throughout the video sequence. Then
we try to estimate the 3D pose of the markers knowing the
intrinsic parameters of the camera and the dimensions of the
marker. When using real-world data, due to measurement
errors, it is not always possible to confidently estimate the
pose of a planar marker w.r.t to the camera. Due to small
errors in the estimation of the corners, two possible poses
arise as valid solutions ([32]). This is the problem known
as pose ambiguity in planar pose estimation. To address this
issue, a confidence value is assigned to each solution so that
in the final phase, the best one is considered.

We collect all the hypotheses for the relative position of
the markers w.r.t to the cameras they are detected in. They
are used to find an initial 3D pose for each camera w.r.t
to the reference camera, an initial 3D pose for each marker
w.r.t. the reference marker, and for each image, an initial
relative pose between the reference camera and the refer-
ence marker. Finally, a non-linear optimization method is
employed to globally minimize the reprojection error. You
can see a flowchart of our algorithm in FIGURE 2.
TheArUcomethod [10] is employed to generate and detect

our square-shaped markers. It is assumed that the side length
of all markers is the same and it is known.

Below, we provide a detailed explanation of the proposed
method and the preliminary concepts required to understand
the solution introduced.

A. THE AMBIGUITY PROBLEM
The pose of a marker w.r.t. a camera can be estimated from
its four corners. However, in practice, due to noise in the
localization of the corners, two solutions appear, and in some
cases, it is impossible to distinguish the correct one. The
problem is depicted in Fig 3 where the marker, represented as
one side of a cube, could be in two different orientations (red
and blue color) thus obtaining almost identical projections
from two different camera locations T and Ṫ. The methods
proposed in [32]–[34] find the best solution by a careful
analysis of the projections. Most often, the reprojection error
of one of the solutions is smaller than the reprojection error
of the other one. In that case, there is no ambiguity problem
and the correct solution is the one with the smallest error.
However, when the marker is far from the camera, the errors
in the estimation of the corners become relatively large. Then,
the reprojection error of both solutions is so similar that it
is not possible to determine the correct one. In this work,
the ambiguity problem is considered so as to avoid errors in
the optimization process.

B. PROBLEM DEFINITION
Let us assume that there are n cameras, qmarkers, and denote

Q = {c ∈ {1, . . . , n}}, (1)

the sets of cameras, and

M = {m ∈ {1, . . . , q}}, (2)
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FIGURE 2. The flowchart of our algorithm.

the set of markers. In the set Q we choose a camera c∗ as the
reference camera and similarly a reference marker m∗ from
the setM.
Considering that markers are squares of side length s, let
{ulm}, l ∈ {1, . . . , 4} be the corners of a marker m defined
with respect to its own center as:

u1m = (s/2,−s/2, 0),

u2m = (s/2, s/2, 0),

u3m = (−s/2, s/2, 0),

u4m = (−s/2,−s/2, 0). (3)

We define a transformation in the 3D space as a 4×4matrix
in the form of (

R t
0 1

)
,

where R is a 3 × 3 rotation matrix and t is a 3 × 1 trans-
lation vector. To apply the transformation to a 3D point
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FIGURE 3. Pose ambiguity problem: the same observed projection can be
obtained from two different camera poses T and Ṫ .

p = (x, y, z)> we perform the following calculation:

(x ′, y′, z′, 1)> =
(
R t
0 1

)
(x, y, z, 1)>,

taking p′ = (x ′, y′, z′)> as the result.
Assuming that the cameras are fixed with respect to each

other along the video sequence, let Cc be the transform taking
points from the coordinate system of camera c to the coordi-
nate system of the reference camera c∗, and let

C = {Cc, c ∈ Q}, (4)

be the set of transforms moving points from every camera in
Q to the reference camera c∗. Indeed Cc∗ is the 4× 4 identity
matrix.

Likewise, assuming that markers remain fixed with respect
to each other, let Mm be the transform taking points from the
coordinate system of marker m to the coordinate system of
marker m∗, and let

M = {Mm,m ∈M}, (5)

be the set of transforms from all othermarkers to the reference
one. Indeed Mm∗ is the 4× 4 identity matrix.
Along the video sequence, each camera captures a total of

r images synchronously with the rest of cameras. Then, let
Gt be the transform from the marker reference system m∗ to
the camera reference system c∗ at time t , and let

G = {Gt , t ∈ {1, . . . , r}}, (6)

be the set of all transforms along the video sequence.
Our goal is to estimate C, M and G from the input video

sequences. To do so, the images are automatically analyzed
in order to find the markers corners. Then, the input of our
algorithm is the set of 2D projections of the squared markers
in the images where they were detected.

Let pt,lc,m be the image coordinates of the corner ulm at time
t in the camera c. We keep all possible combinations of such
indices (t, c and m) as tuples in the set ϒ . In other words,
(t, c,m) ∈ ϒ means that marker m is detected in camera c at
time t .

Our solution to estimate the unknowns consists in mini-
mizing the reprojection error of the observed markers in all

cameras along the video sequence, that is defined as

E(C,M,G) =
∑

(t,c,m)∈ϒ

4∑
l=1

(
9(C−1c GtMm, θc)− pt,lc,m

)2
.

(7)

Here, 9 : R3
−→ R2 is the perspective projection function

which indicates the pixel coordinates on which a 3D point
projects on a camera with intrinsic parameters θc, and ()−1

denotes the inverse transform.
Equation 7 is a non-linear function that can be minimized

using the Levenberg-Marquardt algorithm [35]. However,
it is a local optimization method requiring an initial estimate
of the unknowns. To find the initial estimation, we operate in
the following manner. First, the relative position of the cam-
erasC is estimated based on the detectedmarkers. Then, using
C, the relative marker positions M can be estimated along
with G. Once the initial estimations are obtained, Equation 7
is minimized in order to globally reduce the reprojection error
in the whole video sequence.

In the following sections, we provide a detailed description
of how the initial estimations of C,M and G are obtained.

C. INITIAL ESTIMATION OF C

The estimation of the relative transform between the cam-
eras and reference camera c∗ is done by computing first
the pair-wise relationships between cameras. Whenever two
cameras observe a marker at the same time, it is possible to
obtain a relative pair-wise transform between the cameras.
However, because of the ambiguity problem, it is sometimes
impossible to know if the transform is reliable. By aggre-
gating such transforms over the sequence, we can discard
outliers and obtain the best-observed configuration. Then,
a graph representing the pair-wise relations is explored to
find the optimal path between each camera and the reference
one. Below, we provide a detailed explanation of the proposed
method.

1) PAIR-WISE RELATIONSHIPS
Let us consider that marker m is observed in camera c at time
t . Let us denote Ttm,c the transform from the marker m to the
camera c at time t , which can be obtained using a planar pose
estimator such as [32]. However, the estimation of the pose
using four co-planar corners is subject to ambiguity; under
some circumstances, such as errors in the estimation of the
corners or low image resolution, two different poses Ttm,c and
Ṫtm,c may be valid. Nevertheless, it is possible to detect when
such circumstance happens. As already indicated, the robust
planar pose estimation method [34] provides the two poses
that explain the pose of an observed marker w.r.t to the
camera. Then, it is possible to analyze the reprojection error
ratio of the two solutions:

r tm,c =
e(Ṫtm,i)

e(Ttm,i)
∈ [1,∞), (8)
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FIGURE 4. Estimation of the pair-wise camera transform Ct
i,m,j between

cameras i and j from time t using marker m.

and use this value as a confidence measure. When it r tm,c, it is
difficult to determine which of the two solutions is the correct
one. As r tm,c increases, so does the confidence in Ttm,i to be
correct solution.

Then, we shall denote4t
m,c to the set of possible transforms

from the marker m to camera c at time t:

4t
m,c =


{Ttm,c} (t, c,m) ∈ ϒ ∧ r tm,c ≥ τe
{Ttm,c, Ṫ

t
m,c} (t, c,m) ∈ ϒ ∧ r tm,c < τe

∅ otherwise

(9)

Let us now consider that the same marker m is observed in
two cameras i and j at time t . Then, it is possible to estimate
the relative pose between the cameras as

Cti,m,j = 8(T
t
m,i,T

t
m,j) = (Ttm,i)

−1Ttm,j, (10)

as shown in Figure 4.
Since the sets4t

m,i and4
t
m,j can have more than one trans-

formation, we shall define the set of all possible combinations
of transformations as

3t
m,i,j = 4

t
m,i ×4

t
m,j. (11)

where × is the Cartesian product operator. We shall denote

Ctm,i,j = {8(C) | C ∈ 3
t
m,i,j}, (12)

to the set of possible pair-wise relationships between the
two cameras given 3t

m,i,j. Even more, since the cameras can
observe several markers at the same time along the sequence,
let

Ci,j =

q⋃
m=1

r⋃
t=1

Ctm,i,j = {Ck,i,j, k ∈ {1, . . . , si,j}}. (13)

be the set of si,j pair-wise relationships found between cam-
eras i and j in the video sequence.

2) OPTIMAL TRANSFORMS
Ideally, since the cameras do not move with respect to each
other, the transforms in Ci,j should all be identical. However,
due to noise and to the ambiguity problem (Sect III-A), this
is not true. So, we need to estimate the optimal transform
between the cameras C̃i,j among the elements of the set.

Averaging the values is not a good idea because the set Ci,j
may contain many outliers.

Our approach then is to select the transform that better
explains the observations by using an indirect method that
minimizes the distance of one transform to the rest of trans-
forms.

Let us consider three arbitrary points

(v0, v1, v2)|vi ∈ R3
∧ vi 6= (0, 0, 0)

that Ck,i,j ∈ Ci,j transform in (v0k,i,j, v
1
k,i,j, v

2
k,i,j). Then,

we define

d(Ck,i,j) =
si,j∑
s=1

3∑
l=1

(14)

as the sum of distances from the points transformed by Ck,i,j
to the points transformed by all the elements in Ci,j. Our
approach is to consider the transform that minimizes the sum
of this distance:

C̃i,j = argmin
C∈Ci,j

d(C) (15)

3) GRAPH ANALYSIS
So far, we have obtained pair-wise relationships between
the cameras. Our final goal in this Section is to obtain the
initial estimations {Cc, c ∈ Q} for the relative transform from
each camera c to the reference camera c∗. To do so, we are
creating a graph representing the camera configuration and a
minimum spanning tree is used to find the optimal path from
each camera to the reference one.

In our graph, vertices represent the cameras while edges
represent the quality of the pair-wise estimations. A pair-wise
estimation is considered reliable if the distance d(Ck,i,j) is
small, and it is computed from a large number of observations
si,j. Thus, the edge ei,j between vertices i and j is computed
as:

ei,j = d̄(C̃i,j)wi,j

d̄(C̃i,j) =
d(C̃i,j)
si,j

wi,j = max
(
1,
τn

si,j

)
(16)

The value ei,j is the average distance d̄(C̃i,j) affected by a
weighting factor wi,j = [1,∞) that accounts for the number
of elements in Ci,j, i.e., si,j = |Ci,j|. The basic idea is that a
camera transform obtained with few markers (less than τn)
is not very reliable, and thus ei,j is increased to discourage
this graph edge from being selected. When si,j is above τn,
wi,j = 1, thus not affecting the distance value.
The estimation of the marker configuration can be done

using a similar strategy than for the cameras. Whenever two
markers are seen in the same camera, it is possible to obtain
an estimation of their relative position. Thus, for each pair of
makers, we obtain the observed relative transforms along the
video sequence and then select the optimal one as previously
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FIGURE 5. Pair-wise marker transform between markers i and j from
camera c at time t .

explained. Finally, we construct the graph and proceed as in
Sect. III-C3.

To obtain the initial camera estimation, we find the mini-
mum spanning tree on the graph and use the path on the tree
from each camera c to the reference camera c∗ as:

Cc = C̃c∗,c1C̃c1,c2 . . . C̃cm−1,cm C̃cm,c. (17)

D. INITIAL ESTIMATION OF M

Let us consider two different markers i and j observed in a
camera c, whose relative transformation from the markers to
the camera are given by Tti,c and T

t
j,c. Then, the transformation

from marker i to marker j can be obtained as:

Mt
i,c,j = 8(T

t
i,c,T

t
j,c) =

(
Ttj,c

)−1
Tti,c, (18)

as shown in Figure 5.
As previously indicated, we can have more than one valid

transformation per marker in a single image due to the ambi-
guity problem. Thus, we defined 4t

i,c and 4
t
j,c as the set of

transformations frommarker i and j to camera c, respectively.
Let then

2i,j =

n⋃
c=1

r⋃
t=1

4t
i,c ×4

t
j,c, (19)

be the set of combinations of such transformations,

Mt
i,c,j = {8(M) |M ∈ 2i,j}, (20)

the set of all pair-wise relationships between the markers i
and j at time t according to camera c, and

Mi,j =

n⋃
c=1

r⋃
t=1

Mt
i,c,j, (21)

the set of all pair-wise relationships between the markers i
and j collected along the video sequence in all the cameras.

We apply the same rationale in Sect. III-C2 to find the opti-
mal transformations M̃i,j ∈Mi,j, and then the graph approach
in Sect. III-C3 to obtain the best relative transformation Mm
of marker m to the reference marker m∗.

FIGURE 6. Estimation of Gt
c,m from a marker m observed in camera c at

time t .

E. INITIAL ESTIMATION OF G

At this point, an estimation of the cameras’ structure C and
of the markers’ structureM has been obtained. Our goal now
is to estimate the set G, that relates the set of markers with
the reference camera at time t . To do so, we only consider
the relative transform from the reference marker m∗ to the
reference camera c∗, since the transform from all markers to
the reference marker is already known.

Every detection of a marker m in a camera c at time
t produces an estimation of the relative pose between the
reference marker and the reference camera given by:

Gt
c,m = CcTtm,cM

−1
m , (22)

as shown in Figure 6. Consequently, let

5t
=

⋃
(t,c,m)∈ϒ(t)

Gt
c,m (23)

be the set of transformations from the reference marker to the
reference camera given all detected markers, in all cameras,
at time t , where ϒ(t) is the set of all detected markers in all
cameras at time t .
As in the previous occasions, we must select the best trans-

formation Gt
∈ 5t . To do so, we apply the same rationale as

in Sect. III-C2. In other words, the one that minimizes the
distance to all the others.

F. GLOBAL OPTIMIZATION
Once initial estimates of C, M and G have been obtained,
it is possible to minimize Eq. 7. In order to speed up the
computation, we do not directly optimize the 4 × 4 trans-
formation matrices. Instead, we extract the rotational part
into three components using the Rodrigues’ formula [36], and
concatenate it to the translational part, thus, representing each
transformation by only six parameters.

The optimization is done using the Levenberg-Marquardt
algorithm [35], an iterative method that uses the Jacobian
matrix of the error function to reduce the error. This method
requires an initial estimation of the solution x0, that is
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FIGURE 7. An illustration of (a) our overall evaluation setup and (b) a close-up of the object being employed with the annotation of the reflective
markers used by the motion capture system to track the object, the ArUco markers that are used by our system, and the apparatus used to fixes the
object in its place and (c) and example of the position of the reflective marker on the camera. The marker is used for evaluating the estimation of
camera position.

incrementally replaced at each iteration k by a new estimate

xk+1 = xk + pk+1. (24)

Let J be the Jacobian of the error function to be minimized
f (x) (see Eq. 7). The method searches at each iteration in the
direction given by the solution of the equations

(Jk>Jk + λkI)pk+1 = −Jk>f (xk), (25)

where λk is a non-negative scalar and I is the identity
matrix. The damping factor λk is automatically adjusted at
each iteration. When the reduction of the error is large,
a smaller value is employed, making the algorithm closer to
the Gauss-Newton algorithm. If an iteration provides insuf-
ficient error reduction, λk is increased so that the method
becomes more similar to the gradient descent.

Finally, please notice that in our case, the Jacobian is
sparse, since in general, only a small subset of the markers
project on each camera. Thus, we take advantage of sparse
matrices to speed up the calculation.

G. OBJECT TRACKING
As a result of the global optimization, the configuration of the
object, the camera poses, and the object poses are obtained
along the frame sequence. However, global optimization is a
slow process that is no longer necessary for subsequent track-
ing purposes (unless one of the cameras moves). Tracking can
be done efficiently now since it is a process that only requires
to first detect the markers in the images, and then, to estimate
the object’s pose. In essence, tracking is a sub-problem of
Eq. 7, in which only the relative pose of the reference marker
m∗ w.r.t. the reference camera c∗ is estimated, i.e., Gt . Letϒ t

be the projections of the markers’ corners in the cameras at
time t , then, the pose Gt is estimated as:

E(Gt ) =
∑

(t,c,m)∈ϒ t

4∑
l=1

(
9(C−1c GtMm, θc)− pt,lc,m

)2
, (26)

Again, the LM algorithm is employed for solving the equa-
tion, which this time has only six parameters to be optimized.

At each time step, the previous solution Gt−1 is employed
as starting point for optimization. For the first frame t = 0,
we must provide an initial solution. Since many markers may
be visible at the same time from the cameras, we employ as
starting solution the one obtaining the maximum reprojection
error ratio (Eq. 8).

IV. EXPERIMENTAL RESULTS
This section explains the experiments conducted to validate
the proposed method. In the first experiment (Sect. IV-A),
we perform a quantitative evaluation of themethod by analyz-
ing its accuracy in three different aspects: the accuracy in the
estimation of the pose of the object, the precision of object
reconstruction, and the accuracy in estimation of camera
extrinsic parameters. Then, Sect. IV-B analyzes the impact of
the number of cameras on the precision of the system. After-
ward, Sect. IV-C analyzes the ability of the proposed method
in reconstructing objects of different configurations. Finally,
the test in Sect. IV-D, focuses on tracking performance of
the proposedmethod, evaluating its usefulness in applications
requiring tracking of a 3D object such as a surgical tool.

For the experiments, five synchronized global-shutter cam-
eras, with a resolution of 640× 480 pixels, able to capture at
60Hz, were employed. The five cameraswere placed forming
a circle and pointing towards its center (see Fig 7). In addition,
an Optitrack motion capture system comprised of six cameras
able to track the position of reflective markers at 100 Hz was
employed to obtain the ground truth values for the object and
camera poses.

Please notice that our method does not impose restrictions
on the camera setup. The only requisite is that the cameras
share part of the field-of-view so that the relationship between
them can be established. Using exclusively the video footage
showing the markers, the proposed method is able to estimate
all parameters automatically. In other words, our method
obtains the initial estimations of C,M and S automatically,
and later refines them.

Along the paper, the proposed method have employed the
two parameters τc and τn. The first one indicates the threshold
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for the reprojection error ratio (Eq. 9) and the second one a
threshold for the graph (Eq. 16). Our experience indicates that
the values τc = 2 and τn = 10 are a good choice.
While doing experiments, different values for different

parameters as stopping criteria of the leveberg-marquardt
optimization were used. The most important parameters
were minimum average error improvement in all dimensions
and maximum number of iterations. For these two parame-
ters generally the values 10−4 (pixels) and 10000 iterations
yielded good results respectively.

A. QUANTITATIVE EVALUATION OF THE METHOD
The first experiment analyzes the precision of the proposed
method. Using a 3D printer, we created an object ((Fig 7b)
with four flat surfaces to which both square and reflective
markers were attached. The rectangular markers attached had
a side length of four centimeters.

We are mainly interested in measuring the precision in the
estimation of the object pose, which is an indicator of how
good the system is for the tracking task. In addition, the pose
of the cameras employed, along with the configuration of the
employed object are also estimated by our method and its
precision analyzed.

Four video sequences placing the object at different posi-
tions of the area observed by all the cameras was recorded
and also registered with the motion capture system in order
to obtain the ground truth values. Reflective markers were
placed both on the object (Fig 7ab) and on the cameras
(Fig 7ac). The object was placed in a fixing apparatus to
avoid synchronization problems between the cameras and the
motion capture system.

The precision of the system is expected to be influenced by
the distance from the camera to the object, i.e., the farther the
object from the cameras, the lower the accuracy. So, in order
to analyze the impact of distance, we repeated the recordings
at four different distances: we placed the cameras forming
circles of radius 0.7, 0.9, 1.1 and 1.3 meters. These values
were estimated applying the method in [37].

The results obtained are shown in Table 1. Columns repre-
sent the result for the different camera distances. The second
and third rows indicate the error of the proposed method
in estimating the pose of the object. While the second row
indicates the average error in the estimation of the translation
component (in millimeters), the third one indicates the aver-
age rotation error (in degrees) These errors have been com-
puted first aligning the trajectories obtained by our approach
and the Optitrack system (ground-truth), taking advantage of
the Horn method [38]. Then the average rotation and transla-
tion distances between the trajectories are computed.

These two errors are the most important ones since they
indicate the accuracy of the proposed method for tracking
tasks, e.g., augmented reality applications or in surgical tool
tracking. It can be observed that, in most cases, the proposed
system achieves sub-millimeter accuracy. Please notice that
we are employing low-resolution cameras, thus limiting the
maximum distance from the object to the marker. Using

TABLE 1. Errors obtained by the proposed method when placing the
camera at different distances (see text for details).

TABLE 2. Translation errors (millimeters) in the estimation of the object
position using four cameras.

cameras of a higher resolution would allow increasing the
working distance without compromising accuracy, at least in
theory.

The fourth row shows the error in estimating the position
of the camera. As previously indicated, we placed a reflective
marker at the top of each camera. Therefore, we obtained
the relative position of the cameras and compare it with the
poses estimated by our method. The positions provided by the
Optitrack system where aligned to the 3D positions obtained
by our method (taking advantage of the Horn algorithm [38])
and the average distance between both is considered the error.
It can be observed that the errors are slightly higher. However,
since the placement of the reflective markers was manual, it is
subject to more errors and thus it is a less reliable measure.

The fifth row of Table 1 shows the error that our sys-
tem obtains in estimating object configuration. In particular,
it refers to the relative positions of the squared markers.
To evaluate the error, we took high-resolution pictures of the
3D object created and process them with the method [22],
which is able to provide the relative pose of the markers.
Assuming it is the ground truth method, we obtained errors
that, in the worst case, are around one millimeter.

Finally, let us indicate that on average, the optimization
step took around five minutes in a core i5 laptop computer
running Ubuntu 16.04.

B. INFLUENCE OF THE NUMBER OF CAMERAS
In order to test the robustness of the method to the number of
cameras, we processed the sequences excluding some of them
from the processing. Tables 2 and 3 show the translation and
rotation errors obtainedwhen the videos previously employed
are processed using four of the five available cameras. All
possible combinations have been tested and reported in the
table under the column err1 . . . err5. In the tables, the column
label erri means that the view of camera i has not been
used. As can be observed, the behavior of the system using
four cameras is very similar to as observed before. The final
column avrg represents the average error obtained.
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FIGURE 8. Errors obtained using three cameras. (a) Translation errors. (b) Rotation errors.

FIGURE 9. Three different objects employed in our tests shown in Fig 1 before and after optimization. (a) Four sided object. (b) Box with markers
attached in random locations. (c) Pentagon object.

TABLE 3. Rotational errors (degrees) in the estimation of the object
position using four cameras.

The same experiments were done using only three of the
five cameras available. In that case, the number of possi-
ble combinations is higher and thus the results are shown
in Figs 8(a,b). One can observe cases in which the errors are
very high. This cases, outliers, occurs because of the initial-
ization was not able to provide a solution good enough for the
global optimization to start from a promising location. As a
consequence, the method is trapped in a local minimum. Nev-
ertheless, in general, the proposed system is able to achieve
good solutions in most of the cases. In particular, the median
translation errors (in millimetres) are [0.70, 2.02, 1.24, 1.29]
for the camera distances analyzed, and the median rotational
errors (in degrees) are [0.91, 1.07, 0.88, 1.05].
Since we were interested in having a full 360 degree view

of the object we did not test our algorithm using less than
three cameras.

C. TESTING DIFFERENT OBJECT CONFIGURATIONS
Experiments were conducted to show that the proposed
method is able to employ different type of objects comprised
by several planar markers. In particular, we have tested our
method with the three objects shown in Figure 1(b).

As in the previous case, the five cameras were employed
to record a video sequence in which each object was freely
moved. Then, our method was applied and the object con-
figuration obtained compared with the one obtained by the
method in [22].

Figure 9 shows the 3D reconstructions obtained by our
method, before and after optimization. In the case of the four
sided object (Fig. 9a), the initial reconstruction is very good
and optimization provides little improvement. In the second
case (Fig. 9b), the initial object reconstruction is not very
exact and it can be observed that the markers are not in
the same planes. However, after the optimization the recon-
structed object is corrected. Finally, the pentagon (Fig. 9c)
is an object with much smaller markers, that occupy a small
portion of the visible images. As can be observed, the initial
reconstruction is clearly wrong, showing one of the markers
out of its place. Nevertheless, the optimization method is able
to properly correct the object.

When the objects reconstructed with our method are com-
pared to [22] as the ground truth, the errors obtained are
[0.2, 0.5, 0.4] millimetres. However, please notice that the
images employed for ground truth are high resolution images
(3200 × 2400), while the images employed by our method
have a resolution of only 640× 480.

D. CONTINUOUS TRACKING
Finally, we tested the capability of ourmethod for the tracking
task. In a realistic scenario, the full pipeline of our method is
only used once in order to obtain the parameters of cameras
and object. However, once they are known, tracking can be
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TABLE 4. Tracking speed (frames per second) for different frame
resolutions and number of threads.

done at a higher speed. Figure 10 shows the tracking results
of our method in one of the sequences recorded. Fig. 10(a)
depicts in red color the real trajectory of the object, accord-
ing to the motion capture system, while in green it is the
trajectory estimated by our method. This is challenging case
where the object was moved at high speed at some parts of
the sequence, causing blurring and synchronization problems
with the motion capture system. It can be observed that in
some parts of the trajectory the estimated position differs
more from the ground truth than in others, because of the
higher speed. In some other parts, due to occlusions, it is not
possible to do tracking. In this sequence, the tracking error is
of 5 millimeters.

Figure 10(b) shows three snapshots of the video sequence.
Images at the top are captured by the camera, while the
bottom images show the estimated three-dimensional object
poses.

TRACKING SPEED
In order have a better understanding of the computational
demands of the proposed method, it has been evaluated in
a range of situations. Table 4 reports the frame rate of the
proposed method for tracking, considering that the camera
and object configurations have been obtained. Experiments
were done for different image resolutions and number of
threads. Since the videos have been recorded using cam-
eras of 640 × 480 pixels, the images have been upsampled
and downsampled to obtain different resolutions. The results
reported are obtained over a sequence of 735 frames, using
different numbers of CPU threads and parallelization with the
OpenMP API. The test was done on an Intel Core i7 machine
with four computing cores plus hyper-threading. As you can
see, the best performances on the machine are achieved using
five or six threads.

Tracking consists in detecting markers in the images and
then estimating the camera pose. While the computing time
employed in marker detection depends on the image resolu-
tion, object pose estimation in a sequential process consumes
approximately 1.5 milliseconds per frame in our tests.

E. COMPARISON TO OTHER METHODS
1) EXTRINSIC CAMERA CALIBRATION
This section analyzes the accuracy of our method for extrin-
sic camera calibration and compares it with other available

TABLE 5. Camera translation error (in millimeters) using different
extrinsic calibration methods at different distances.

methods for the same task using the same camera setup
employed in previous experiments.

Three different calibration approaches available in the
OpenCV library were evaluated: the commonly used chess-
board pattern, the asymmetric circle grid pattern, and
a multi-camera calibration tool which uses a random
pattern [39]. The first two methods are generally employed
for single camera calibration. We adapted them for multiple
cameras by first estimating the pairwise extrinsic parameters
of adjacent cameras (using the stereoCalibrate function from
the OpenCV library [40]). Then a root camera was chosen
and the extrinsics of the other cameras were calculated with
respect to it. Finally, the optimal rigid transformation and
scaling was estimated [38] to match the camera center posi-
tions to those that were measured by the motion capture
system. For the multi-camera calibration tool, we recorded
images and run the method as indicated in the documentation.
It is important to remark that this method internally estimates
the camera intrinsics too.

The errors obtained for the different camera configu-
ration are shown in Table 5. The first column of the
table shows the results of our approach, already reported
in Table 1. They have been set out again to ease the
comparison.

As can be noticed, our method obtains the best results in
almost all cases. The exception is at distance 1.1 meters,
in which the ChessBoard method obtains better results.
The Assymetric Circle Grid method performs worse than
the Chessbord, and the Multi-Camera method [39] is the
worst.

We think there are different reasons for superiority of our
approach here. First, our object compared to a calibration
board can be viewed by more number of cameras at the
same time and optimizes all of the global extrinsics at the
same time. While in the case of chessboard or asymmetric
circle grid, calibrations are done pairwise and the global
extrinsics are inferred from those. The second reason is that
our approach optimizes the object configuration simultane-
ously with extrinsics calibrations while calibration boards
use a theoretical 3D configuration which is not optimized.
Lastly, we suspect that the attempt of the Multi-Camera
approach [39] to optimize the intrinsic parameters at the same
time as extrinsics makes the problem much more difficult
since we experienced the same problemwhile trying to imple-
ment this idea.
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FIGURE 10. (a) Object trajectories of the ground truth from the motion capture system (the red curve) and our method (the blue curve) using RGB
cameras aligned after finding the transformation between their two coordinate system and the local transformation between the reflective markers and
the reference ArUco marker. (b) different frames from the same sequence showing the original frames from one of the cameras (top) and the
corresponding results from our algorithm (bottom).

TABLE 6. Translation and Rotation errors (in millimeters and degrees
respectively) of tracking the object using different methods at different
distances.

2) OBJECT TRACKING
The method proposed in this paper is the only one in the
literature, up to our knowledge, able to track multiple planar
markers from multiple cameras.

Nevertheless, in order to compare our approach with other
methods, two state-of-the-art system has been selected. First,
Apriltag 2 [41], which is a method able to estimate the pose
of a single marker using one camera. The second method is
ArUco [10], which can track an object comprised of multi-
ple markers using one camera. Since ArUco is not able to
reconstruct the object configuration, MarkerMapper [22] was
employed to obtain it and provided to ArUco.

Because these methods use only one camera, we calculated
their output in each camera separately and then moved the
results to the global coordinates using the extrinsic cali-
brations obtained using the Chessboard calibration method.
SinceApriltag 2 only tracks singlemarkers (but our object has
several) we compute the error of the method using (at each
frame) the estimation of the detected marker that faces the
camera more directly, which in general is the one providing
the smallest error.

For the ArUco algorithmwe take the average pose reported
by each camera as the final tracking result. The results for the
four different radii in our setup is reported in Table 6. As you
can see, our method outperforms the others in all cases.

We suppose the reason our approach is better than the
combination of the Marker Mapper [22] and ArUco [10] is
that we achieve a better extrinsic calibration than using the
standard calibration methods as previously explained. Fur-
thermore, we think the reason of the inferiority of Apriltag
2 [41] is that the detector is not as good as the Aruco detector
as we have seen in our experiments. Additionally, there is no
object model used in this approach which could be another
explanation of why it performs worse than the Aruco +
Marker Mapper combination.

V. CONCLUSIONS
This paper has proposed a method that automatically esti-
mates the three-dimensional structure of a set of planar mark-
ers (object), the poses of a set of cameras, and the relative
pose between the object and the cameras. The input for the
proposed method is a synchronized video sequence of the
object moving freely in front of the cameras. The uses of the
proposed method include tracking of devices such as surgical
instruments in augmented reality applications, or robot navi-
gation. This is the first work that solves all of these problems
simultaneously, up to our knowledge.

The proposedmethod starts by obtaining initial estimations
of the camera poses by creating a connection graph analyzing
the marker detected in the video sequence. Then, another
graph representing the structure of themarkers is created from
their observations in the individual cameras. The graphs are
employed to obtain initial solutions for both the camera and
the object poses that are refined using a global non-linear
optimization. The optimized configurations can be employed
afterward for tracking purposes.

The proposed method has been evaluated in several exper-
iments and the accuracy measured with an infrared-based
motion capture system. The proposed method achieves
sub-millimeter position accuracy and sub-degree orienta-
tion accuracy in the estimation of object pose even using
low-resolution cameras. In addition, the proposed method
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is fast enough to allow real-time performance using five
cameras and a single CPU thread.
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