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ABSTRACT In order to solve the problem of non-ideal training sets (i.e., the less-complete or over-
complete sets) and implement one-iteration learning, a novel efficient quantum perceptron algorithm based
on unitary weights is proposed, where the singular value decomposition of the total weight matrix from the
training set is calculated to make the weight matrix to be unitary. The example validation of quantum gates
{H, S, T, CNOT, Toffoli, Fredkin} shows that our algorithm can accurately implement arbitrary quantum
gates within one iteration. The performance comparison between our algorithm and other quantum per-
ceptron algorithms demonstrates the advantages of our algorithm in terms of applicability, accuracy, and
availability. For further validating the applicability of our algorithm, a quantum composite gate which
consists of several basic quantum gates is also illustrated.

INDEX TERMS Quantum perceptron, unitary weight, one-iteration learning, non-ideal training set, singular
value decomposition, universal quantum gates.

I. INTRODUCTION
With the size of electronic devices becoming smaller and
smaller, quantum effects are beginning to interfere in the
function of them. The theoretical possibility of quan-
tum computation was firstly explored by Benioff [1] and
Feynman [2], and the formalization of the quantum com-
putation model was proposed by Deutsch [3]. The main
advantage of quantum computation is that the use of super-
position and entanglement, which allied with the linearity
of the operators, allows for a powerful form of parallelism
to devise algorithms more efficient over the known clas-
sical ones. There are two well-known representative algo-
rithms, i.e. Shor’s factoring algorithm [4] and Grover’s
searching algorithm [5]. The first one is an algorithm
for integer factorization formulated, which is NP-hard for
classical computation; while Grover searching algorithm
achieves a quadratic speedup on the unstructured search
spaces over the classical counterparts. After that, the com-
bination of quantum mechanics with other fields (such as
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information processing, encrypted transmission, machine
learning, etc.) has also achieved some important results, such
as quantum key agreement (QKA) [6], [7], quantum secure
direct communication (QSDC) [8], [9], quantum telepor-
tation and remote state preparation (QT&RSP) [10]–[12],
quantum steganography (QS) [13]–[15], delegating quan-
tum computation (DQC) [16], [17], and quantum machine
learning [18], [19].

Artificial neural network (ANN) [20], also called neural
networks (NN), is a computational model used widely in
computer science and other research fields. It is based on a
large collection of simple neural units (artificial neurons),
which is loosely analogous to the observed behavior of a
brain’s axons. The perceptron [21] is the simplest type of
neural network classifiers, which only consists of a single
artificial neuron.

The debate on quantum approaches to NN (also called
quantum neural network, QNN) emerged in the wake of
a booming research field of quantum computation two
decades ago. Kak [22] puts forward some preliminary ideas
to find a junction between neural networks and quantum
mechanics. Since then, a number of proposals have been
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proposed [23]–[26]. However, in addition to the quantum
neural (also called quron), the nonlinear dissipative dynamics
of neural computation is fundamentally different from the lin-
ear single dynamics of quantum computation [27]. Therefore,
how to combine the fields of quantum computation and neural
networks is a meaningful task for QNN.

The QNN models can be implemented into four different
approaches [28]: 1) interpreting the step-function as measure-
ment in order to combine the non-linearity of neural networks
and linearity of quantum computation [22]; 2) using quantum
circuits for modeling neural networks [29]; 3) describing the
basic component of ANNs, the perceptron, with a quantum
formalism [30]; 4) modeling ANNs with interacting quantum
dots consisting of four atoms sharing two electrons [31].
In this paper, we focus on the third approach of creating a
quantum equivalent of classical perceptron. Thus, it can be
seen as a simple unit of QNN that harvests the advantages of
quantum information processing.

Altaisky [30] firstly proposed a quantum perceptron model
to overcome the limitations of the classical perceptron.
Although he used the quantum form to represent the classic
perceptron model, this proposal is difficult to be extended
to a full neural network model. Zhou and Ding [32] pro-
posed a quantum M-P neural network that could compute
the XOR-function with one neuron, but it does not follow
a unitary evolution and the neuron can be efficiently simu-
lated by a classical single layer neural network. After that,
an autonomous quantum perceptron algorithm was proposed
by Sagheer and Zidan [33], and this algorithm has an iter-
ative rule that can learn to solve a problem in a smaller
number of iterations than Altaisky’s algorithm. However, its
learning weights are non-unitary. Different from the previous
models, Siomau [34] introduced an autonomous quantum
perceptron based on a set of positive operator-valued mea-
sures (POVMs). However, the perceptron could not imple-
ment basic quantum gates, such asNOT andHadamard gates,
which are essential for quantum computation.

In order to solve the non-unitary problem, Seow et al. [35]
proposed a new efficient quantum perceptron algorithm
in 2015. It expels the iterative learning rule by analytically
calculating parameters while maintaining unitary require-
ments. But the perceptron cannot realize arbitrary quantum
computation, and the training set is ideal (i.e, the com-
plete training set). Different from the aforementioned
quantum perceptron models [30], [32]–[35], a novel uni-
tary weights based quantum perceptron algorithm is pro-
posed in this study, which not only considers the case of
non-ideal training sets, but also implements quantum gates
{H , S,T ,CNOT ,Toffoli,Fredkin} (i.e., any quantum compu-
tation) correctly within one iteration. For further validating
the proposed algorithm, a quantum composite gate which
consists of several basic quantum gates is also illustrated.

The remainder of this paper is divided into 5 sections.
In Sect. II, some preliminaries including quantum computa-
tion, classical perceptron model and singular value decompo-
sition, are briefly introduced. In Sect. III, a unitary weights

based quantum perceptron algorithm for non-ideal train-
ing sets is proposed, and it can realize general quantum
computation within one iteration. In Sect. IV, the example
validations of some quantum gates {H , S,T ,CNOT } and
{Toffoli,Fredkin} are given in detail, and the performance
evaluation of our algorithm is conducted in Sect. V. Finally,
some remarks and future work are concluded in Sect. VI.

II. PRELIMINARIES
A. QUANTUM COMPUTATION
Aswe know, the classic bit is the smallest unit in classic infor-
mation, and its value is either 0 or 1. In quantum computation,
qubit (quantum bit) is quantum analog of the classic bit, but
has two possible values |0〉 and |1〉 with a certain probability,

|ϕ〉 = α |0〉 + β |1〉 , (1)

where
∣∣α2∣∣+|β|2=1, α, β are complex numbers. Since the

vectors |0〉 and |1〉 can be represented as follows,

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
. (2)

The qubit |ϕ〉 can be expressed in a vector form |ϕ〉 =
( α
β

)
.

Quantum operators over a qubit are all represented by 2×2
unitary matrices. An n × n matrix U is unitary if UU†

=

U†U = I , where U† is the conjugate transpose of U . For
instance, H (Hadamard), S (phase), and T (π/8) operators
are important quantum operators over one qubit, and they can
be described as 2× 2 unitary matrices as below,

H =
1
√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 eiπ/4

)
.

(3)

The CNOT gate operates on a quantum register consisting
of 2 qubits, known as the control qubit and the target qubit.
If the control qubit is set to 0, then the target qubit is left alone.
If the control qubit is set to 1, then the target qubit is flipped,
and CNOT operator is described in Eq. 4,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4)

Quantum parallelism [36] is a fundamental physical prop-
erty used in many quantum algorithms. In theory, quantum
parallelism, which allows quantum computers to evaluate a
function f (x) for many different values of x simultaneously,
makes the computational power of quantum computers grow
exponentially with the increase in the number of quantum
bits. It works as follows, suppose f (x) : {0, 1} → {0, 1} is a
function with one-bit domain and one-bit range, we define the
transformation Uf : |x, y〉 → |x, y⊕ f (x)〉 (shown in Fig. 1),
where ⊕ indicates addition modulo 2, the first register is
called the ‘data’ register, and the second register is the ‘target’
register. In some sense, the quantum parallelism enables the
evaluation of all the function f (x) at the same time, even
though we only evaluate f (x) once.
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FIGURE 1. Quantum circuit for evaluating f (0) and f (1) simultaneously.

FIGURE 2. The classical perceptron model.

B. CLASSICAL PERCEPTRON
The perceptron [21] is the simplest type of neural network
classifiers, which is an algorithm for learning a binary clas-
sifier. It consists of N input nodes called neurons with values
xj = {1,−1}, j = 1, . . . ,N , that feed signals into a single
output neuron y (shown in Fig. 2). Each input neuron is con-
nected to the output neuron with a certain strength denoted by
a weight parameter wj ∈ [−1, 1]. The input-output relation is
governed by the activation function:

ŷ = f

 N∑
j=1

wjxj − θ

 , (5)

where the bias θ ∈ [−1, 1], and f (·) is the activation func-
tion. The perceptron learning algorithm works is shown in
Algorithm 1.

Algorithm 1 The Classical Perceptron Learning Algorithm
Require: Given a training set in the form
{(x1, y1), (x2, y2), · · · , (xN , yN )}, where xj is an input
and yj is the desired output.

1: The weights wj and bias θ are initialized to small random
numbers.

2: The output ŷ generated according to Eq. 5.
3: Theweights are updated according to the rulewk (t+1) =
wk (t)+ η(y− ŷ)x, where the η is learning rate.

4: If ŷ = y, the perceptron does not change. Otherwise go
to Step 3 to continue training and learning.

C. SINGULAR VALUE DECOMPOSITION
In linear algebra, the singular value decomposition(SVD)
is a factorization of a real or complex matrix. It is the

generalization of the eigendecomposition of a positive
semidefinite normal matrix to any matrix via an extension of
the polar decomposition. Any rectangular m× n real or com-
plex matrix M can be decomposed into three matrices and
they satisfy:

M = U6V ∗, (6)

where U is an m × m real or complex unitary matrix, 6 is
an m× n rectangular diagonal matrix with non-negative real
numbers on the diagonal, and V is an n × n real or complex
unitary matrix. The diagonal entries σi of6 are known as the
singular values ofM . The columns ofU and the columns of V
are called the left-singular vectors and right-singular vectors
ofM , respectively. Applications that employ the SVD include
computing the pseudoinverse, least squares fitting of data,
multivariable control, matrix approximation, and determining
the rank, range and null space of a matrix.

Before we introduce our quantum perceptron algorithm in
next section, the key notations and descriptions is firstly listed
in Table 1.

TABLE 1. Key notations and descriptions involved in the article.

III. THE ONE-ITERATION QUANTUM PERCEPTRON
ALGORITHM BASED ON UNITARY WEIGHTS
In order to solve the problem of non-ideal training sets
(i.e., the less-complete or over-complete sets) and implement
one-iteration learning, we propose a quantum perceptron
algorithm based on unitary weights. The algorithm mainly
includes: 1) find the conjugate transpose of input, 2) get the
total weight, 3) use SVD to decompose weight matrix, 4) get
the form of the quantum perceptron. Algorithm 2 shows the
detailed procedure of our quantum perceptron algorithm.

A. FIND THE CONJUGATE TRANSPOSE OF INPUT
At the beginning of the algorithm, given a training set in the
form {(|x1〉 , |y1〉) , . . . , (|xN 〉 , |yN 〉)}, where

∣∣xj〉 is an input
and

∣∣yj〉 is the desired output. We can then find the conjugate
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Algorithm 2 Quantum Perceptron Learning
Algorithm Based on Unitary Weights
Require: Given a training set in the form
{(|x1〉 , |y1〉) , (|x2〉 , |y2〉) , . . . , (|xN 〉 , |yN 〉)}, where∣∣xj〉 is an input and ∣∣yj〉 is the desired output.

1: Find the conjugate transpose of input
∣∣xj〉† = 〈xj∣∣.

2: Calculate ŵj =
∣∣yj〉⊗ 〈xj∣∣.

3: Get the total weight ŵ =
N∑
j=1

ŵj.

4: Decompose ŵ into F̂ 6ŵnew.
5: Pull out the diagonal matrix of singular values and

replace it with a unitary matrix 6new with ones in the
diagonals and zeroes elsewhere.

6: Get the result of quantum perceptron algorithm∣∣youtput 〉 = F̂ 6new ŵnew
∣∣xj〉.

transpose of input
∣∣xj〉, ∣∣xj〉† = 〈xj∣∣ . (7)

B. GET THE TOTAL WEIGHT
After finding the conjugate transpose of input, the main work
of this phase is to get the total weight. We take the tensor
product of

〈
xj
∣∣ and ∣∣yj〉 to create its corresponding weight ŵj,

ŵj =
∣∣yj〉⊗ 〈xj∣∣ , (8)

where ⊗ is the tensor product. After calculating the weights,
we sum up all of the individual weights, and get the total
weight:

ŵ =
N∑
j=1

ŵj. (9)

C. USE SVD TO DECOMPOSE WEIGHT MATRIX
In order to preserve the quantum properties of being unitary,
we decompose non-unitary matrix ŵ into three unitary matri-
ces using SVD. Then we can get two unitary matrices (F̂ and
ŵnew) and a diagonal matrix 6 of singular values as below,

ŵ = F̂ 6ŵnew. (10)

D. GET THE FORM OF QUANTUM PERCEPTRON
Without loss of generality, we remove the diagonalmatrix and
replace it with a unitary matrix 6new of ones in the diagonals
and zeros everywhere else, then get the form of quantum
perceptron as follows:∣∣youtput 〉 = F̂ 6new ŵnew

∣∣xj〉 . (11)

IV. EXAMPLE VALIDATION OF QUANTUM
PERCEPTRON ALGORITHM
As we know, a quantum computer is built from a quantum
circuit containing wires and elementary quantum gates to
carry around and manipulate the quantum information [27].

Therefore, quantum computation is closely related to the
implementation of quantum gates. In order to validate that our
proposed algorithm can implement general quantum gates
(i.e., quantum computation), the universal quantum gate set
{H , S,T ,CNOT }, and some complex quantum gates like
Toffoli and Fredkin gates are illustrated as follows.

A. UNIVERSAL QUANTUM GATE SET
The standard set of universal gates consists of theHadamard,
phase, π/8 and CNOT gates [27], and our perceptron algo-
rithm can realize the function of these universal quantum
gates within one iteration, the following is the algorithm
validation of the universal gates.

1) HADAMARD GATE
Example 1 (Over-Complete): Suppose

|x1〉 = |0〉 , |y1〉 =
|0〉 + |1〉
√
2

|x2〉 = |1〉 , |y2〉 =
|0〉 − |1〉
√
2

|x3〉 =
a |0〉 + b |1〉
√
a2 + b2

,

|y3〉 =
(a+ b) |0〉 + (a− b) |1〉√

2(a2 + b2)
(a = 1, b = 2).

Perceptron training:According to Algorithm 2, the conjugate
transpose of inputs are firstly calculated respectively by Eq. 7,
and the weights are solved by Eq. 8,

〈x1| = (1, 0) , ŵ1 = |y1〉 ⊗ 〈x1| =
1
√
2

(
1 0
1 0

)
〈x2| = (0, 1) , ŵ2 = |y2〉 ⊗ 〈x2| =

1
√
2

(
0 1
0 −1

)
〈x3| =

1
√
5
(1, 1) , ŵ3 = |y3〉 ⊗ 〈x3| =

1
√
2

(
0.6 1.2
−0.2 −0.4

)
In Step 3, the total weight ŵ can be calculated as follows,

ŵ =
3∑
j=1

ŵj =
1
√
2

(
1 0
1 0

)
+

1
√
2

(
0 1
0 −1

)

+
1
√
2

(
0.6 1.2
−0.2 −0.4

)
=

1
√
2

(
1.6 2.2
0.8 −1.4

)
.

In Step 4, SVD is performed on the weight matrix ŵ:

F̂ =
1
√
5

−3/√2 1
/√

2

1
/√

2 3
/√

2

 , 6 =

(
2 0
0 1

)
,

ŵnew =
1
√
5

(
−1 −2
2 −1

)

VOLUME 7, 2019 36857



W. Liu et al.: Unitary Weights-Based One-Iteration Quantum Perceptron Algorithm

After the process of amending, we can obtain:

F̂ =
1
√
5

−3/√2 1
/√

2

1
/√

2 3
/√

2

 , 6new =

(
1 0
0 1

)
,

ŵnew =
1
√
5

(
−1 −2
2 −1

)
Validation of correctness: The obtained quantum perceptron
is used to validate the various inputs. When the perceptron
predicting correctly, the output meets

∣∣youtput 〉 = ∣∣yj〉.∣∣youtput 〉 = F̂6newŵnew |x1〉

=
1
√
5

−3/√2 1
/√

2

1
/√

2 3
/√

2

( 1 0
0 1

)

×
1
√
5

(
−1 −2
2 −1

)(
1
0

)
=
|0〉 + |1〉
√
2

= |y1〉∣∣youtput 〉 = F̂6newŵnew |x2〉

=
1
√
5

−3/√2 1
/√

2

1
/√

2 3
/√

2

( 1 0
0 1

)

×
1
√
5

(
−1 −2
2 −1

)(
0
1

)
=
|0〉 − |1〉
√
2

= |y2〉∣∣youtput 〉 = F̂6newŵnew |x3〉

=
1
√
5

−3/√2 1
/√

2

1
/√

2 3
/√

2

( 1 0
0 1

)

×
1
√
5

(
−1 −2
2 −1

)(
1
2

)
=

3 |0〉 − |1〉
√
2× 5

= |y3〉

Example 2 (Less-Complete): Suppose

|x1〉 =
a |0〉 + b |1〉
√
a2 + b2

,

|y1〉 =
(a+ b) |0〉 + (a− b) |1〉√

2(a2 + b2)
(a = −11, b = 7).

Perceptron training: The same way through Algorithm 2 for
training and finally get the quantum perceptron,∣∣youtput 〉 = F̂ 6new ŵnew

∣∣xj〉
=

1
√
170

(
−2
√
2 −9

√
2

−9
√
2 2

√
2

)(
1 0
0 1

)
×

1
√
170

(
−11 7
−7 −11

) ∣∣xj〉 .

Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉

=
1
√
170

(
−2
√
2 −9

√
2

−9
√
2 2

√
2

)(
1 0
0 1

)
×

1
√
170

(
−11 7
−7 −11

)
1
√
170

(
−11
7

)
=
−4 |0〉 − 18 |1〉
√
2× 170

= |y1〉 .

2) PHASE GATE
Example 3 (Over-Complete): Suppose

|x1〉 = |0〉 , |y1〉 = |0〉

|x2〉 = |1〉 , |y2〉 = i |1〉

|x3〉 =
a |0〉 + b |1〉
√
a2 + b2

, |y3〉 =
a |0〉 + bi |1〉
√
a2 + b2

(a = 2, b = 2)

Perceptron training: The quantum perceptron is∣∣youtput 〉 = F̂ 6new ŵnew
∣∣xj〉

=
1
√
2

(
−1 1
−i −i

)(
1 0
0 1

)
×

1
√
2

(
−1 −1
1 −1

) ∣∣xj〉 .
Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉

=
1
√
2

(
−1 1
−i −i

)(
1 0
0 1

)
×

1
√
2

(
−1 −1
1 −1

)(
1
0

)
= |0〉

= |y1〉∣∣youtput 〉 = F̂ 6new ŵnew |x2〉

=
1
√
2

(
−1 1
−i −i

)(
1 0
0 1

)
×

1
√
2

(
−1 −1
1 −1

)(
0
1

)
= i |1〉

= |y2〉∣∣youtput 〉 = F̂ 6new ŵnew |x3〉

=
1
√
2

(
−1 1
−i −i

)(
1 0
0 1

)
×

1
√
2

(
−1 −1
1 −1

)(
1
1

)
=
|0〉 − i |1〉
√
2

= |y3〉
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Example 4 (Less-Complete): Suppose

|x1〉 =
a |0〉 + b |1〉
√
a2 + b2

,

|y1〉 =
a |0〉 + bi |1〉
√
a2 + b2

(a = 1, b = 3).

Perceptron training: The quantum perceptron is∣∣youtput 〉 = F̂ 6new ŵnew
∣∣xj〉

=
1
√
10

(
−1 3i
−3i 1

)(
1 0
0 1

)
×

1
√
10

(
−1 −3
−3 1

) ∣∣xj〉
Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉

=
1
√
10

(
−1 3i
−3i 1

)(
1 0
0 1

)
×

1
√
10

(
−1 −3
−3 1

)
1
√
10

(
1
3

)
=
|0〉 + 3i |1〉
√
10

= |y1〉

3) π/8 GATE
Example 5 (Over-Complete): Suppose

|x1〉 = |0〉 , |y1〉 = |0〉

|x2〉 = |1〉 , |y2〉 = eiπ/4 |1〉

|x3〉 =
a |0〉 + b |1〉
√
a2 + b2

,

|y3〉 =
a |0〉 + beiπ/4 |1〉
√
a2 + b2

(a = −8, b = −9).

Perceptron training: The quantum perceptron is∣∣youtput 〉 = F̂ 6new ŵnew
∣∣xj〉

=
1
√
145

(
−8 9
−9eiπ/4 −8eiπ/4

)(
1 0
0 1

)
×

1
√
145

(
−8 −9
9 −8

) ∣∣xj〉
Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉 = |0〉 = |y1〉∣∣youtput 〉 = F̂ 6new ŵnew |x2〉 = eiπ/4 |1〉 = |y2〉∣∣youtput 〉 = F̂ 6new ŵnew |x3〉 =

−8 |0〉 − 9eiπ/4 |1〉
√
145

= |y3〉

Example 6 (Less-Complete): Suppose

|x1〉 =
a |0〉 + b |1〉
√
a2 + b2

,

|y1〉 =
a |0〉 + beiπ/4 |1〉
√
a2 + b2

(a = 13, b = −10).

Perceptron training: The quantum perceptron is∣∣youtput 〉 = F̂ 6new ŵnew
∣∣xj〉

=
1
√
269

(
−13 10eiπ/4

10eiπ/4 13i

)(
1 0
0 1

)
×

1
√
269

(
−13 10
−10 −13

) ∣∣xj〉
Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉

=
13 |0〉 − 10eiπ/4 |1〉

√
269

= |y1〉

4) CNOT GATE
Example 7 (Over-Complete): Suppose that the example is:

|x1〉 = |00〉 , |y1〉 = |00〉

|x2〉 = |01〉 , |y2〉 = |01〉

|x3〉 = |10〉 , |y3〉 = |11〉

|x4〉 = |11〉 , |y4〉 = |10〉

|x5〉 =
a |00〉+b |11〉
√
a2 + b2

, |y5〉 =
a |00〉 + b |10〉
√
a2 + b2

(a=3, b=4)

Perceptron training: The same way through Algorithm 2 for
training and learning and finally get the quantum perceptron:∣∣youtput 〉= F̂ 6new ŵnew

∣∣xj〉
=


−0.6 0.8 0 0
0 0 0 −1
−0.8 −0.6 0 0
0 0 1 0



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



×


−0.6 0 0 −0.8
0.8 0 0 −0.6
0 0 1 0
0 −1 0 0

∣∣xj〉

Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉 = |00〉 = |y1〉∣∣youtput 〉 = F̂ 6new ŵnew |x2〉 = |01〉 = |y2〉∣∣youtput 〉 = F̂ 6new ŵnew |x3〉 = |11〉 = |y3〉∣∣youtput 〉 = F̂ 6new ŵnew |x4〉 = |10〉 = |y4〉∣∣youtput 〉 = F̂ 6new ŵnew |x5〉 =
3 |00〉 + 4 |10〉

5
= |y5〉

Example 8 (Less-Complete): Suppose

|x1〉 = |00〉 , |y1〉 = |00〉

|x2〉 =
a |01〉 + b |11〉
√
a2 + b2

,

|y2〉 =
a |01〉 + b |10〉
√
a2 + b2

(a = 5, b = −6)
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Perceptron training: The quantum perceptron is∣∣youtput 〉 = F̂ 6new ŵnew
∣∣xj〉 n∑

i=1

Xi

=
1
√
61


0
√
61 0 0

−5 0 0 6
6 0 0 5
0 0

√
61 0



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



×
1
√
61


0 −5 6 0
√
61 0 0 0
0 0 0

√
61

0 6 5 0

∣∣xj〉
Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉 = |00〉 = |y1〉∣∣youtput 〉 = F̂ 6new ŵnew |x2〉 =

5 |01〉 − 6 |10〉
√
61

= |y2〉

B. COMPLEX QUANTUM GATES
In addition to the basic quantum gates illustrated before, there
are also some complex gates which are frequently used, such
as the Toffoli and Fredkin gates. Here, we take these two gates
as an example to validate the applicability of our proposed
algorithm.

1) TOFFOLI GATE
The Toffoli gate has three input bits and three output bits. Two
of the bits are control bits that are unaffected by the action of
the Toffoli gate. The third bit is a target bit that is flipped if
both control bits are set to 1, and otherwise is left alone. The
Fig. 3 illustrates the circuit of Toffoli gate, and Eq. 12 gives
the matrix form of Toffoli operator.

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(12)

FIGURE 3. Quantum circuit of the Toffoli Gate.

Example 9 (Over-Complete): Suppose

|x1〉 = |000〉 , |y1〉 = |000〉 . |x2〉 = |001〉 , |y2〉 = |001〉

|x3〉 = |010〉 , |y3〉 = |010〉 . |x4〉 = |011〉 , |y4〉 = |011〉

|x5〉 = |100〉 , |y5〉 = |100〉 . |x6〉 = |101〉 , |y6〉 = |101〉

|x7〉 = |110〉 , |y7〉 = |111〉 . |x8〉 = |111〉 , |y8〉 = |110〉

|x9〉 =
a |001〉 + b |110〉
√
a2 + b2

,

|y9〉 =
a |001〉 + b |111〉
√
a2 + b2

(a = 3, b = 4)

Perceptron training: The quantum perceptron is∣∣youtput 〉
= F̂ 6new ŵnew

∣∣xj〉

=
1
5



0 0 0 0 0 0 0 5
−3 4 0 0 0 0 0 0
0 0 0 0 0 0 −5 0
0 0 0 0 −5 0 0 0
0 0 5 0 0 0 0 0
0 0 0 5 0 0 0 0
0 0 0 0 0 −5 0 0
−4 −3 0 0 0 0 0 0



×



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



×
1
5



0 −3 0 0 0 0 −4 0
0 4 0 0 0 0 −3 0
0 0 0 0 5 0 0 0
0 0 0 0 0 5 0 0
0 0 0 −5 0 0 0 0
0 0 0 0 0 0 0 −5
0 0 −5 0 0 0 0 0
5 0 0 0 0 0 0 0


∣∣xj〉

Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉 = |000〉 = |y1〉∣∣youtput 〉 = F̂ 6new ŵnew |x2〉 = |001〉 = |y2〉∣∣youtput 〉 = F̂ 6new ŵnew |x3〉 = |010〉 = |y3〉∣∣youtput 〉 = F̂ 6new ŵnew |x4〉 = |011〉 = |y4〉∣∣youtput 〉 = F̂ 6new ŵnew |x5〉 = |100〉 = |y5〉∣∣youtput 〉 = F̂ 6new ŵnew |x6〉 = |101〉 = |y6〉∣∣youtput 〉 = F̂ 6new ŵnew |x7〉 = |111〉 = |y7〉∣∣youtput 〉 = F̂ 6new ŵnew |x8〉 = |110〉 = |y8〉∣∣youtput 〉 = F̂ 6new ŵnew |x9〉 =
3 |001〉 + 3 |111〉
√
32 + 42

= |y9〉
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Example 10 (Less-Complete): Suppose

|x1〉 = |000〉 , |y1〉 = |000〉

|x2〉 = |110〉 , |y2〉 = |111〉

|x3〉 =
a |101〉 + b |111〉
√
a2 + b2

,

|y3〉 =
a |101〉 + b |110〉
√
a2 + b2

(a = 1, b = 2)

Perceptron training: The quantum perceptron is

∣∣youtput 〉 = F̂ 6new ŵnew
∣∣xj〉

=
1
√
5



0
√
5 0 0 0 0 0 0

0 0 0 0 0 0 0
√
5

0 0 0 0 0
√
5 0 0

0 0 0 0 0 0
√
5 0

0 0 0 0
√
5 0 0 0

−1 0 0 −2 0 0 0 0
−2 0 0 1 0 0 0 0
0 0

√
5 0 0 0 0 0



×



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



×
1
√
5



0 0 0 0 0 −1 0 −2
√
5 0 0 0 0 0 0 0
0 0 0 0 0 0

√
5 0

0 0 0 0 0 −2 0 1
0 0 0 0

√
5 0 0 0

0 0
√
5 0 0 0 0 0

0 0 0
√
5 0 0 0 0

0
√
5 0 0 0 0 0 0


∣∣xj〉

Validation of correctness:

∣∣youtput 〉 = F̂ 6new ŵnew |x1〉 = |000〉 = |y1〉∣∣youtput 〉 = F̂ 6new ŵnew |x2〉 = |111〉 = |y2〉∣∣youtput 〉 = F̂ 6new ŵnew |x3〉 =
|101〉 + 2 |110〉

√
5

= |y3〉

2) FREDKIN GATE
TheFredkin gate (also calledCSWAP gate) is a computational
circuit suitable for reversible computation. The Fredkin gate
is a circuit or device with three inputs and three outputs,
the first bit is control bit and the remaining two bits are target
bits. The Fig. 4 shows that the Fredkin gate can transmit the
first bit unchanged and swap the last two bits if the first bit
is 1, and the Eq. 13 gives the matrix form of Fredkin operator.

FIGURE 4. Quantum circuit of the Fredkin gate.

Fredkin =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


(13)

Example 11 (Over-Complete): Suppose

|x1〉 = |000〉 , |y1〉 = |000〉 . |x2〉 = |001〉 , |y2〉 = |001〉

|x3〉 = |010〉 , |y3〉 = |010〉 . |x4〉 = |011〉 , |y4〉 = |011〉

|x5〉 = |100〉 , |y5〉 = |100〉 . |x6〉 = |101〉 , |y6〉 = |110〉

|x7〉 = |110〉 , |y7〉 = |101〉 . |x8〉 = |111〉 , |y8〉 = |111〉

|x9〉 =
a |010〉 + b |101〉
√
a2 + b2

,

|y9〉 =
a |010〉 + b |110〉
√
a2 + b2

(a = 2, b = −7)

Perceptron training: The quantum perceptron is

∣∣youtput 〉
= F̂ 6new ŵnew

∣∣xj〉

=
1
√
53



0 0 0 0 0 0 0
√
53

0 0 0 0 0 0
√
53 0

−2 7 0 0 0 0 0 0
0 0 0

√
53 0 0 0 0

0 0
√
53 0 0 0 0 0

0 0 0 0
√
53 0 0 0

7 2 0 0 0 0 0 0
0 0 0 0 0

√
53 0 0



×



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
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×
1
√
53



0 0 −2 0 0 7 0 0
0 0 7 0 0 2 0 0
0 0 0 0

√
53 0 0 0

0 0 0
√
53 0 0 0 0

0 0 0 0 0 0
√
53 0

0 0 0 0 0 0 0
√
53

0
√
53 0 0 0 0 0 0

√
53 0 0 0 0 0 0 0


∣∣xj〉

Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉 = |000〉 = |y1〉∣∣youtput 〉 = F̂ 6new ŵnew |x2〉 = |001〉 = |y2〉∣∣youtput 〉 = F̂ 6new ŵnew |x3〉 = |010〉 = |y3〉∣∣youtput 〉 = F̂ 6new ŵnew |x4〉 = |011〉 = |y4〉∣∣youtput 〉 = F̂ 6new ŵnew |x5〉 = |100〉 = |y5〉∣∣youtput 〉 = F̂ 6new ŵnew |x6〉 = |110〉 = |y6〉∣∣youtput 〉 = F̂ 6new ŵnew |x7〉 = |101〉 = |y7〉∣∣youtput 〉 = F̂ 6new ŵnew |x8〉 = |111〉 = |y8〉∣∣youtput 〉 = F̂ 6new ŵnew |x9〉 =
2 |010〉 − 7 |110〉
√
22 + 72

= |y9〉

Example 12 (Less-Complete): Suppose

|x1〉 = |010〉 , |y1〉 = |010〉

|x2〉 = |101〉 , |y2〉 = |110〉

|x3〉 =
a |000〉 + b |110〉
√
a2 + b2

,

|y3〉 =
a |000〉 + b |101〉
√
a2 + b2

(a = 3, b = 2)

Perceptron training: The quantum perceptron is∣∣youtput 〉
= F̂ 6new ŵnew

∣∣xj〉

=
1
√
13



0 −3 0 2 0 0 0 0
0 0 0 0 0

√
13 0 0

√
13 0 0 0 0 0 0 0
0 0 0 0 0 0

√
13 0

0 0 0 0 0 0 0
√
13

0 −2 0 −3 0 0 0 0
0 0 −

√
13 0 0 0 0 0

0 0 0 0
√
13 0 0 0



×



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



×
1
√
13



0 0
√
13 0 0 0 0 0

−3 0 0 0 0 0 −2 0
0 0 0 0 0 −

√
13 0 0

0
√
13 0 0 0 0 0 0

0 0 0 0 0 0 0
√
13

−2 0 0 0 0 0 3 0
0 0 0

√
13 0 0 0 0

0 0 0 0
√
13 0 0 0


∣∣xj〉

Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉 = |010〉 = |y1〉∣∣youtput 〉 = F̂ 6new ŵnew |x2〉 = |110〉 = |y2〉∣∣youtput 〉 = F̂ 6new ŵnew |x3〉 =
3 |000〉 + 2 |101〉

√
13

= |y3〉

V. PERFORMANCE EVALUATION
Now it is worth discussing the performance of the proposed
algorithm. We select Altaisky’s algorithm [30], Seow et al.’s
algorithm [35] as references, and evaluate our algorithm in
the aspects of the training set, output result, and iteration
times.

It is well known that training set used for a perceptron algo-
rithm are not necessarily ideal, so the cases of the non-ideal
training set, i.e., the less-complete and over-complete train-
ing sets, should be taken into account in practical sce-
narios. In [30] and [35], they only consider the ideal case
(i.e., complete training set), and it cannot be applied to
those cases of less-complete and over-complete training sets.
Table 2 detailedly compares the availabilities of Altaisky’s,
Seow et al.’s and our algorithms. As shown in Table 2, our
algorithm has higher availability than other two algorithms,
i.e., it is not only suitable for a complete training set, but also
for the less-complete and over-complete training sets.

TABLE 2. Availability comparison among Altaisky’s, Seow et al.’s and our
algorithms under the complete, less-complete and over-complete
training sets.

Assume that the training set is complete, we select six
quantum gates {H , S,T ,CNOT ,Toffoli,Fredkin} to compare
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TABLE 3. Comparison of iteration times and output results among
Altaisky’s, Seow et al.’s and our algorithms.

the accuracy (i.e., the difference between desirable results
and output results) and applicability (i.e., applicable quantum
gates) among three algorithms. Since Altaisky’s algorithm
converges to an approximate value after 30 iterations, so we
take 30 as the iteration times, and the approximate value as
the final output result. Different from Altaisky’s algorithm,
Seow et al.’s algorithm can get the accurate output results of
five gates {H , S,T ,CNOT ,Fredkin} after only one iteration.
In our algorithm, we also implement the Toffoli gate within
one iteration. As shown in Table 3, Seow et al.’s and our pro-
posed algorithm have advantages over Altaisky’s algorithm
in terms of accuracy and iteration times, and our algorithm is
more widely applicable than Seow’s algorithm.

In summary, considering the aspects of availability, accu-
racy, and applicability, our algorithm has advantages over
Altaisky’s and Seow et al.’s algorithms.

VI. DISCUSSION AND CONCLUSION
In this paper, we present an efficient one-iteration perceptron
algorithm based on unitary weights. Different from the previ-
ous quantum perceptron algorithms, our proposed algorithm
has good availability, high accuracy, and wide applicability.
To be specific, our perception algorithm is not only suitable
for the less-complete and over-complete training set, but also
can accurately implement universal quantum gates within
one iteration. In order to further validate its applicability,
Appendix A gives an example to show that our algorithm can

FIGURE 5. Quantum circuit of the composite gate.

be applied to an arbitrary quantum composite gate (which can
be viewed as arbitrary quantum computation).

The proposed algorithm discussed in our paper is a learning
algorithm for the single-layer perceptron. For multi-layer
perceptrons, where a hidden layer exists, more sophisticated
algorithms such as backpropagation must be used. So, one of
our next research efforts is how to use quantum technology to
solve some problem of multi-layer perceptron. On the other
hand, we know that when multiple perceptrons are combined
in an artificial neural network, each output neuron runs inde-
pendently of all other neurons; therefore, each output can be
considered in isolation. Therefore, another work we would
like to carry out is to select some neural network models and
validate whether our quantum perceptron can be effectively
used to construct a large-scale quantum neural network.
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APPENDIX A
TRAINING ARBITRARY QUANTUM COMPOSITE
GATE WITH OUR ALGORITHM
In order to validate that the proposed quantum perceptron
algorithm is suitable for the multiple gates composite calcu-
lation, the Hadamard gate (H ), phase gate (S), π/8 gate (T ),
CNOT gate are combined to construct the composite gate
(shown in Fig. 5). Through the training of composite gate to
further validate the applicability of our algorithm.
Example 13 (Over-Complete): Suppose

|x1〉 = |00〉 , |y1〉 =
|00〉 + ieiπ/4 |11〉

√
2

|x2〉 = |01〉 , |y2〉 =
|01〉 + ieiπ/4 |10〉

√
2

|x3〉 = |10〉 , |y3〉 =
|00〉 − ieiπ/4 |11〉

√
2

|x4〉 = |11〉 , |y4〉 =
|01〉 − ieiπ/4 |10〉

√
2

|x5〉 =
a |00〉 + b |10〉
√
a2 + b2

,

|y5〉 =
(a+ b) |00〉 + (a− b)ieiπ/4 |11〉√

2(a2 + b2)
(a = 6, b = 8).
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Perceptron training: The quantum perceptron is∣∣youtput 〉
= F̂ 6new ŵnew

∣∣xj〉
=

1

10
√
2


−14 2 0 0
0 0 10 10
0 0 −10ieiπ/4 10ieiπ/4

2ieiπ/4 14ieiπ/4 0 0



×


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



−0.6 0 −0.8 0
0.8 0 −0.6 0
0 0 0 1
0 1 0 0

∣∣xj〉
Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉 =

|00〉 + ieiπ/4 |11〉
√
2

= |y1〉∣∣youtput 〉 = F̂ 6new ŵnew |x2〉 =
|01〉 + ieiπ/4 |10〉

√
2

= |y2〉∣∣youtput 〉 = F̂ 6new ŵnew |x3〉 =
|00〉 − ieiπ/4 |11〉

√
2

= |y3〉∣∣youtput 〉 = F̂ 6new ŵnew |x4〉 =
|01〉 − ieiπ/4 |10〉

√
2

= |y4〉∣∣youtput 〉 = F̂ 6new ŵnew |x5〉 =
14 |00〉 − 2ieiπ/4 |11〉

√
2× 100

= |y5〉

Example 14 (Less-Complete): Suppose

|x1〉 = |00〉 , |y1〉 =
|00〉 + ieiπ/4 |11〉

√
2

|x2〉 =
a |01〉 + b |11〉
√
a2 + b2

,

|y2〉 =
(a+ b) |01〉 + (a− b)ieiπ/4 |10〉√

2(a2 + b2)
(a = 2, b = 1)

Perceptron training: The quantum perceptron is∣∣youtput 〉
= F̂ 6new ŵnew

∣∣xj〉
=

1
√
10


−
√
5 0 0

√
5eiπ/4

0 −3 eiπ/4 0
0 −ieiπ/4 3 0
−
√
5ieiπ/4 0 0

√
5



×


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

√5

−
√
5 0 0 0

0 −2 0 −1
0 −1 0 2
0 0

√
5 0

∣∣xj〉
Validation of correctness:∣∣youtput 〉 = F̂ 6new ŵnew |x1〉 =

|00〉 + ieiπ/4 |11〉
√
2

= |y1〉∣∣youtput 〉 = F̂ 6new ŵnew |x2〉 =
3 |01〉+ieiπ/4 |10〉
√
2× 5

= |y2〉
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