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ABSTRACT The Internet of Vehicles is essential for building smart cities. By analyzing the big data
collected by vehicle sensors on the road, we can estimate vehicle information and real-time road conditions.
To improve the prediction accuracy, this paper proposes a new adaptive filtering algorithm for variable
measurement noise problems that occur during the driving state estimations of two-axle electric vehicles.
Based on the nonlinear three-degree-of-freedom vehicle model, the dual-motor torque output model, and
the Dugoff tire model, fuzzy logic is used to correct the measurement noise in the cubature Kalman
filter algorithm. Moreover, the ant colony algorithm is used to optimize the input and output membership
functions. Based on the big sensor data, we can accurately predict road conditions, such as vehicle speed and
road adhesion coefficients. The simulation results based on CarSim/Simulink show that the new algorithm
improves the estimation accuracy of the whole system, regardless of whether the measurement noise is
fixed or variable. The research in this paper provides a reference for multi-data comprehensive analyses
under different vehicle states.

INDEX TERMS Big sensor data, ant colony algorithm, fuzzy control, cubature Kalman filter, state
estimation.

I. INTRODUCTION
In today’s big data and widely interconnected society, as a
result of the rapid development of urban processes, big traffic
data and the Internet of Vehicles have become a key weapon
in urban management. Acquiring and processing big traffic
data is essential to urban planning and digital city construc-
tions. Many scholars have investigated these fields. A long-
term traffic anomaly detection method and a new two-stage
method [1], [2] were proposed to obtain road traffic condi-
tions for optimal path predictions. Articles [3]–[7] propose
an adaptive and scalable energy-aware algorithm for mobile
big data offloading environments. Articles [8]–[10] propose
a spatiotemporal big data analysis method. Articles [11]–[13]
address the integration of Internet of Things (IoT) and

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiangjie Kong.

Internet of Vehicles (IoV) for the physical and social layer
information of rapid content transmission from device to
device and vehicle to vehicle (D2D-V2V).

Vehicle information collection and uploading is an impor-
tant basis for the above technology. Electric vehicles will
become the main form of future cars. However, the structural
characteristics of electric vehicles are slightly different from
those of traditional cars. In paper [14], a numerical simulation
of the regenerative braking torque distribution strategy was
developed for the electric vehicle braking energy feedback
control. Articles [15], [16] analyze the social behaviors and
mobilities of urban traffic nodes based on the expected
application of VSN and communication architecture.
Articles [17], [18] relate to electric vehicle battery storage
management systems that can be applied to smart cities and
vehicle networking applications. Article [19] proposes the
social welfare data collection framework for collecting data
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generated by smart devices and forwarding them to a data
center; the purpose of this framework is to achieve intelligent
driving and traffic planning.

In articles [20]–[22], we considered a mobile data offload-
ing system that integrates cellular networks and onboard
opportunity communications. Articles [23]–[25] propose a
novel architecture for real-time ITS big data analysis in an
IoV environment. In articles [26]–[30], due to the extended
sensing range, we can explicitly consider the behavioral cor-
relation between multiple vehicles in the Internet of Vehicles.
Then, we can infer the motion intention of each vehicle.
Article [31] proposes a binocular stereo vision (BSV) system,
which provides a basis for automotive sensing applications.

To better improve the accuracy of dealing with uploaded
data, we must make timely estimates of the vehicle infor-
mation and real-time road conditions through the sensor
information from cars. Considering the cost and practical
performance of sensors, most of the current production mod-
els mainly estimate some key parameters during the state
estimation. Articles [32]–[38] use the unscented Kalman
filter (UKF) to estimate the whole vehicle system and non-
linear tire force. The author of these studies proposes a new
method to solve the vehicle state problem in the Internet of
Vehicles. In paper [39], based on the optimal robust control
algorithm and servo-loop control algorithm, the vehicle brake
actuator is improved, and the tracking accuracy is optimized.
Article [40] proposes a method to improve the performance
of a nonlinear suspension system under primary resonance
conditions. The results show that the relative displacement
response can be effectively suppressed. In addition, the jump
of the hardened and softened primary isolators can be elimi-
nated. Articles [17], [41]–[45], [52] proposed a three-degree-
of-freedom vehicle dynamics model in which the Dugoff tire
model was applied. As a result, the position estimation of the
new model was more accurate than those using GPS. Article
[41], [46]–[49] proposes a new method for estimating the tire
force of a vehicle and the maximum adhesion of the road.

But in fact, the above methods are not always satisfactory
in practical applications. Vehicle dynamics modeling often
has unavoidable errors in the actual system, which means
that the model cannot fully reflect the real physical processes
of the vehicle or the road condition. Therefore, comparedwith
the traditional extended Kalman filter, unscented Kalman,
least squares and other vehicle state estimation methods,
the accuracy of cubature Kalman filter estimation is relatively
higher, and its real-time performance is stronger. However,
the existing cubature Kalman filter state observers use the
noise covariance as a known constant in the filtering process,
which is contrary to the actual road conditions. In this paper,
to obtain the state information of the two-axle electric vehicle
and road condition estimation, we propose an adaptive esti-
mation algorithm based on an ant colony optimization fuzzy
logic cubature Kalman filter. This algorithm has higher stabil-
ity, robustness, better real-time performance, and improved
estimation accuracy of road state variables. This provides a
reference for application of IoV in smart cities.

The rest of this paper is organized as follows. In Section II,
we elaborate the theoretical basis of the three-degree-of-
freedom vehicle model, dual motor torque output model,
and Dugoff tire model. In Section III, we illustrate the
two-axis driven electric vehicle driving state estimation and
road surface state estimation based on the cubature Kalman
filtering algorithm. In Section III, we explain and derive the
fuzzy cubature Kalman algorithm and ACO-based member-
ship function optimization. In Section IV, we conduct soft-
ware simulations and results analysis. Finally, in Section V,
we summarize the conclusions and propose future work.

II. VEHICLE DYNAMICS MODEL
A. THREE-DEGREE-OF-FREEDOM VEHICLE MODEL
In this paper, we only consider yaw, longitudinal, and
lateral movements to estimate the model more concisely
and efficiently. At the same time, we make the following
assumptions:
(1) We ignored the effect of rolling resistance when estimat-

ing vehicle state parameters;
(2) The entire suspension system does not affect the vertical

movement of the car;
(3) We do not consider the degree of freedom of the car’s

pitch and roll directions.
The established three-degree-of-freedom vehicle dynamics

model is shown in FIGURE 1.

FIGURE 1. Three-degree-of-freedom vehicle dynamics model.

The differential equations of the three-degree-of-freedom
vehicle dynamics model are as follows:

The differential equation of longitudinal motion:

v̇x = ax + γ · vy (1)

The differential equation of lateral motion:

v̇y = ay + γ · vx (2)

The differential equation of yaw motion:

γ̇ =

[
a (Fx1 + Fx2) sin δ + a

(
Fy1 + Fy2

)
cos δ

−b
(
Fy3 + Fy4

)
−
tf
2
(Fx1 − Fx2) cos δ

+
tf
2

(
Fy1 − Fy2

)
sin δ −

tr
2
(Fx3 − Fx4)

]
/IZ (3)
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where ax is the longitudinal acceleration at the barycenter
of the car and ay is the lateral acceleration of the car’s
barycenter; vx and vy are the longitudinal and lateral velocities
at the barycenter, respectively; γ is the angular velocity of
the yaw; tf and tr are the wheelbases of the front and rear
wheels, respectively; a is the distance from centroid to the
front axle, and b is the distance from centroid to the rear axle;
Fxi and Fyi are the longitudinal and lateral forces on each
wheel, respectively, where i = 1, 2, 3, 4 represent the left
front wheel, the right front wheel, the left rear wheel, and the
right rear wheel, respectively; δ is the front wheel steering
angle; and IZ is the moment of inertia of the whole vehicle
around the vertical axis.

B. DUAL MOTOR TORQUE OUTPUT MODEL
Compared with the traditional single-motor-driven electric
vehicle, the front and rear axle dual-motor drive structure
can increase the power of the vehicle. Moreover, the dual-
motor drive structure can improve the utilization efficiency
of a single motor under the same working conditions, which
improves the driving performance of the whole vehicle. The
dual-motor drive structure effectively optimizes the space
utilization of the vehicle and enhances flexibility during vehi-
cle operation. The driving equation of the dual-motor drive
structure is as follows:

Jw · ω̇i = Tdi − Fxi · Rv (4)

where Jw is the moment of inertia of the wheel;
ωi(i = 1, 2, 3, 4) is the angular velocity of each wheel; Tdi is
the driving torque acting on the wheel; and Rv is the wheel
rolling radius.

In this paper, we equate the wheel rotation equations on
the left and right sides of the car to the midpoint of the front
and rear axles, and then we convert the wheel drive torque
into front and rear motor output torque. The equations are as
follows:

ω̇rc = max (ω3, ω4)
′
=

1
2Jw

(Tmr itηt − FxrRv) (5)

ω̇fc = max (ω1, ω2)
′
=

1
2Jw

(
Tmf itηt − Fxf Rv

)
(6)

where ω1, ω2, ω3, and ω4 are the rotational speeds of the
left front wheel, the right front wheel, the left rear wheel,
and the right rear wheel, respectively; ωfc and ωrc are the
equivalent rotational angular velocities at the midpoint of the
front and rear axles, respectively; Fxf and Fxr are the ground
longitudinal reaction forces received by the front and rear
axles, respectively; Tmf is the driving torque of the front axle
motor; Tmr is the driving torque of the rear axle motor; it is
the total transmission ratio of the transmission system; and
ηt is the total transmission efficiency.

C. DUGOFF TIRE MODEL
In this paper, we use a Dugoff tire model to simplify the
estimation process. The longitudinal force and lateral force

expression formulas acting on each tire are as follows:

Fxi = µ · Fzi · Cx ·
si

1− si
· f (L) (7)

Fyi = µ · Fzi · Cy ·
tanαi
1− si

· f (L) (8)

f (L) =
{
L (2− L) , L < 1
1, L ≥ 1

(9)

L =
(1− si)

(
1− εvx

√
C2
x s

2
i + C

2
y tanα

2
i

)
2 ·
√
C2
x s

2
i + C

2
y tanα

2
i

(10)

where Fzi(i = 1, 2, 3, 4) is the vertical load of each tire;
µ is the current road adhesion coefficient; si(i = 1, 2, 3, 4)
is the longitudinal slip ratio; αi is the tire side angle; ε is the
speed influence factor; Cx ,Cy are the longitudinal stiffness
and the lateral stiffness of the tire, respectively; and L is the
introduced boundary condition.

According to the definition of the slip ratio in automobile
theory, in the case of driving, the slip ratio can be expressed
as follows:

si =
Rvωi − vx
Rvωi

= 1−
vx
Rvωi

> 0 (11)

In the case of braking, the slip ratio can be expressed as
follows:

si =
Rvωi − vx

vx
=
Rvωi
vx
− 1 < 0 (12)

III. TWO-AXIS DRIVING ELECTRIC VEHICLE
DRIVING STATE ESTIMATION
A. CUBATURE KALMAN FILTERING ALGORITHM
The cubature Kalman filtering algorithm [50] is a Bayesian
filtering algorithm based on spherical radial integral. The
cubature Kalman filtering algorithm was proposed by
Arasaratnam et al. in 2009, and its specific implementation
steps are as follows:

(1) Initialize the estimated value x̂0 and error covariance P0:

x̂0 = E [x0] (13)

P0 = E
[(
x0 − x̂0

) (
x0 − x̂0

)T ] (14)

(2) Update the time:

• Cholesky decomposition of error covariance Pkbk :

Pkbk = Skbk STkbk (15)

Xi,kbk = Skbk ξi + x̂kbk (16)

where Skbk is the square root of Pkbk ; X i,kbk is the
calculated cubature point; and ξ i =

√
n [1]i, where n

is the state dimension and [1]i is the basic cubature
point.

• Output the cubature point X∗i,k+1bk :

X∗i,k+1bk = f
(
Xi,kbk , uk

)
(17)
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• State prediction value x̂k+1|k :

x̂k+1|k =
1
2n

2n∑
i=1

X∗i,k+1bk (18)

• Covariance prediction P̂k+1bk :

P̂k+1bk =
1
2n

2n∑
i=1

X∗i,k+1bk

(
2n∑
i=1

X∗i,k+1bk

)T
−x̂k+1|k

(
x̂k+1|k

)T
+ Q (19)

(3) Update the measurements:
• Cholesky decomposition of error covariancePk+1bk :

Pk+1bk = Sk+1bk STk+1bk (20)

X i,k+1bk = Sk+1bk ξi + x̂k+1|k (21)

• Propagation cubature point Zi,k+1bk :

Zi,k+1bk = h
(
X i,k+1bk ,uk

)
(22)

• Measurement prediction ẑk+1|k :

ẑk+1|k =
1
2n

∑2n

i=1
Z∗i,k+1bk (23)

• New interest covariance P̂zz,k+1bk :

P̂zz,k+1bk =
1
2n

2n∑
i=1

Zi,k+1bk
(
Zi,k+1bk

)T
−ẑk+1|k

(
ẑk+1|k

)T
+ R (24)

• Cross-covariance variance P̂xz,k+1bk :

P̂xz,k+1bk =
1
2n

2n∑
i=1

Xi,k+1bk
(
Zi,k+1bk

)T
− x̂k+1|k

(
ẑk+1|k

)T (25)

• Gain matrix Kk+1:

Kk+1 = Pxz,k+1bk P−1zz,k+1bk (26)

• State variables x̂k+1|k+1 :

x̂k+1|k+1 = x̂k+1|k + Kk+1
(
zk+1 − ẑk+1|k

)
(27)

• Error covariance Pk+1bk+1 :

Pk+1bk+1 = Pk+1bk − Kk+1Pzz,k+1bk KT
k+1 (28)

Referring to the three-degree-of-freedom vehicle dynamics
model and the Dugoff tire model established in the previous
section, we establish state space equations after discretizing
the nonlinear vehicle system. The equations are as follows:{

xk+1 = f (xk , uk ,wk)
zk = h (xk , vk)

(29)

where wk and vk are the process noise and measurement
noise, respectively, which are uncorrelated in the filter-
ing process and follow a Gaussian distribution. We define

the covariance of process noise and measurement noise as
Q and R, respectively, and their values are as follows:

Q = diag [r11, r22, r33, r44, r55, r66]

R = diag [k11, k22, k33]

In this paper, we use the values of ax , ay, γ, andδ and the
wheel speed information ω1, ω2, ω3, andω4 obtained by the
sensor to estimate the values of vx , vy, γ, andµ according to
the system control algorithm. Therefore, the state variable
in the equation is xk =

[
vx , vy, ax , ay, γ, µ

]
, the system

control input is uk = [ωi, γ ], and the observation output
vector is zk =

[
ax , ay, γ

]
. The purpose of setting the yaw

angle to the estimated value is to make better use of the
measured information and to improve the reliability of the
estimation. The purpose of setting the adhesion coefficient to
the estimated value is to enable the entire estimation model
to obtain the road surface condition.

B. FUZZY CUBATURE KALMAN ALGORITHM
In the process of estimating the vehicle state using the conven-
tional cubature Kalman filter algorithm, the noise covariance
matrices Q and R are constant matrices. The measurement
noise covariance matrix R is an important parameter in the
filtering process. If the measurement noise covariance R is
unreasonable, the filtering effect will not achieve the desired
effect. If the value of R is too large, the algorithm may
diverge. Otherwise, the convergence may occur too early.
In the cubature Kalman filter algorithm, the process noise
Q itself has good robustness after compensation. Therefore,
the actual estimation ofQ is relatively less meaningful. In this
paper, we mainly adjust the system measurement noise R
through fuzzy logic control to achieve adaptive adjustment of
the filter. Moreover, we assume that the measurement noise
covariance matrix of the system at time k is Rk , where Rk =
n·Rk−1. We also ignore the estimation ofQk to obtain a faster
and more efficient algorithm.

The specific steps of the fuzzy cubature Kalman filter
(FCKF) designed in this paper are as follows:
(1) Define the difference ek between the innovation actual

variance and the theoretical variance at time k , and ek
will be used as the input to the fuzzy controller:

ek = δr − δt (30)

where δr = Ẑkbk −1
(
Ẑkbk −1

)T
is the innovation actual

variance and δt = HkPkbk −1HT
+ Rk is the innovation

theoretical variance.
(2) In consideration of the final output of the fuzzy controller

as the adjustment amount, the following fuzzy rules are
defined.
a) If the innovation actual variance is greater than the

theoretical variance (i.e., ek > 0), then decrease δr ;
b) If the innovation actual variance is approximately

equal to the theoretical variance (i.e., ek ≈ 0), then
do not change δr ;
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FIGURE 2. Membership function of input variable.

FIGURE 3. Membership function of output variable.

c) If the innovation actual variance is less than the theo-
retical variance (i.e., ek < 0), then increase δr .

(3) Establish the membership function which is shown in
FIGURE 2 and FIGURE 3.

C. ACO-BASED MEMBERSHIP FUNCTION OPTIMIZATION
In fuzzy control, it is often necessary to continuously test
and summarize the control rules. Therefore, the membership
function, as a variable, can be adjusted to the optimal state.
In this paper, we use the ant colony algorithm [51] to optimize
the membership function. The purpose is to increase the
adaptability of the whole vehicle state parameter estimation
system and improve the estimation accuracy of the cubature
Kalman filter.

The ant colony optimization algorithm is a heuristic global
optimization method proposed by Italian scholar Dorigo. The
algorithm is based on the path selection phenomenon of ant
foraging. At time t , the probability that ant p will transfer
from position i to position j is as follows:

Mij(t) =


τ aij (t) η

θ0
ij (t)∑

r∈A
ταir (t) η

θ0
ir (t)

0, (others)

, (j ∈ A) (31)

TABLE 1. Vehicle model parameters.

where τij(t) is the pheromone trajectory strength of ant p near
the neighborhood of position i at time t; ηij (t) is the degree
of inspiration for ant p to move from position i to position j;
α indicates the relative importance of the trajectory; θ0 is the
relative importance of visibility; r is the location that the ant
can reach; and A is the set of locations that ant p can choose
next.

After a cycle, the pheromone intensity of the ant colony on
each path is updated in real time according to the following
formula at time (t+1):{

τij (t + 1) = (1− ρ) τij (t)+1τij (t)
1τij (t) =

∑N
P 1τ

p
ij(t)

(32)

where ρ is the pheromone residual coefficient (0 ≤ ρ < 1);
1− ρ represents the volatility of the pheromone; and1τ pij(t)
is the pheromone released by ant p between position i and
position j in this cycle. The shorter the path of ant p is between
two select locations, the greater the amount of pheromone that
is released.

The selected input and output membership function must
be as accurate as possible. These two functions directly affect
the adaptive adjustment factor n. In this paper, we use ACO to
optimize the selectedmembership function. The direct goal of
optimization is to find the optimal value at the lower vertex of
the triangle membership function to obtain the best input and
output membership function. The objective function deter-
mined by the difference between the actual variance of the
innovation and the theoretical variance is as follows:

fobj = 1/ (1+ ek) (33)

The specific implementation process is shown
in FIGURE 4.

By using ACO to optimize the input and output member-
ship functions, we can derive the optimal input and output
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FIGURE 4. Optimization flow chart of membership function.

of the lower vertices of the triangle membership function.
Therefore, we can increase the precision of the adaptive
adjustment factor n and finally increase the filtering accuracy.

IV. SIMULATION VERIFICATION
A. DETERMINATION OF THE OPTIMAL
MEMBERSHIP FUNCTION
For the input and output membership functions, multiple off-
line simulation tests are needed to test the superiority of the
membership function at different noise levels. The purpose of
introducing ACO is to obtain a better membership function
and apply it to the measurement noise filtering process with
time series variation, which increases the accuracy of the
whole state estimation algorithm.

We first built a CarSim/Simulink dual-axis drive elec-
tric vehicle system state estimation joint simulation plat-
form in theMATLAB/Simulink environment. The parameters
of the vehicle model selected in the simulation are shown
in TABLE I.

A schematic diagram of the joint simulation of CarSim/
Simulink for a two-axis drive electric vehicle based on the
ACO+FCKF algorithm is shown in FIGURE 5.

In the simulation, the operating conditions of the vehicle
are typical double-shifting conditions. The designed vehicle
state observer can observe the vehicle status at different
speeds. In the simulation, the speed of the car is 80 km/h,
the road adhesion coefficient µ = 0.85, the information
residual coefficient ρ = 0.284, and the sampling interval
T = 0.02s. We have the following initial value settings:

x0 =
[
80
3.6 , 0, 0, 0, 0, 0.85

]T
;P0 = 0.2·diag[1, 1, 1, 1, 1, 1];

Q0 = 0.1 · diag [1, 1, 1, 1, 1, 1] ; and W0 = 1. The
measurement noise covariance matrix R takes values of
0.1·diag[1,1,1], 0.05·diag[1,1,1,], 0.01·diag[1,1,1], respec-
tively. Then, we perform three filtering estimation exper-
iments. We can comprehensively derive the optimal input
and output membership functions in this paper, as shown
in FIGURE 6 and FIGURE 7.

B. VIRTUAL VERIFICATION UNDER FIXED
NOISE CONDITIONS
After the optimized input and output membership functions
are obtained, it is necessary to indicate the influence of the
filtering results before and after optimization by selecting a
specific noise covariance. FIGURE 8 shows the driving path
set by the car under double-shift line conditions. FIGURE
9 shows the torque output of the front and rear dual motors
with respect to time under the simulated conditions.

FIGURES 10, 11, 12, and 13 show the effects of the mem-
bership function before and after optimization on the state
estimation variables when R = 0.05 · diag [1, 1, 1]. In each
figure, TRUE, FCKF, ACOFCKF are used to represent the
actual value of the test vehicle, the fuzzy cubature Kalman
filter estimation value, and the ant colony optimization algo-
rithm optimized fuzzy cubature Kalman filter estimation.

Under the condition of fixed noise values, as shown in
FIGURES 10, 11, and 12. The influence of the membership
function before and after optimization on the longitudinal
speed is not obvious. The longitudinal vehicle speed peak
error is 4.93%. After optimizing the lateral speed and yaw
rate, the tracking curves are closer to the true peak values,
and the errors are 6.22% and 3.41%, respectively. They all
have deviations within a certain range at different peaks.
The reason is that the linear Kalman filter and the lineariza-
tion approximation error has a certain relationship. FIGURE
13 shows that the estimated value of the adhesion coefficient
is faster after optimization, and the estimated peak error is
0.68%, which is closer to the true value.

C. VIRTUAL VERIFICATION UNDER VARIABLE
NOISE CONDITIONS
To fully verify the robustness of the optimized algorithm
and the effect of the estimation effect on the measurement
vector ay, we added Gaussian white noise that changes with
time. The specific change value of the noise is shown in
TABLE II, and the noise value is set to a cycle period of 6 s.
FIGURE 14 shows a graph of the variation in lateral acceler-
ation after adding the variable noise, which more accurately
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FIGURE 5. CarSim/Simulink cosimulation model.

FIGURE 6. Membership function of the optimized input variable.

TABLE 2. Noise variance change table.

reflects the influence of noise on the sensor when collecting
vehicle information.

After adding variable noise, the estimated results of the
car and the critical parts of the road surface are shown in
FIGURES 15-18.

FIGURE 7. Membership function of the optimized output variable.

FIGURE 8. Car’s driving path.

We validated the studied vehicle state estimation algo-
rithm by CarSim-Simulink joint simulations. We performed
a comparative virtual experiment that compares the fuzzy
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FIGURE 9. Output torque curves of the front and rear motors.

FIGURE 10. Longitudinal speed estimation at constant noise values.

FIGURE 11. Lateral speed estimation at constant noise values.

FIGURE 12. Yaw rate estimation at constant noise values.

FIGURE 13. Adhesion coefficient estimation at constant noise values.

cubature Kalman filter with the ACOFCKF algorithm.
FIGURE 15 shows the longitudinal velocity estimation
under double-shifting conditions. The fuzzy cubatureKalman

FIGURE 14. Lateral acceleration with variable noise.

FIGURE 15. Longitudinal speed estimation with variable noise.

FIGURE 16. Lateral speed estimation with variable noise.

FIGURE 17. Yaw rate estimation with variable noise.

filtering method optimized at the peak is 4.63% better than
the preoptimization filtering accuracy. From the estimation
of the lateral vehicle speed in FIGURE 16, the fuzzy cubature
Kalman filteringmethod optimized at the peak is improved by
5.38% compared with the preoptimization filtering accuracy.
From the yaw angular velocity estimation in FIGURE 17,
it can be concluded that the optimized fuzzy cubature Kalman
filter method at the peak is improved by 1.06% compared
with the preoptimization filtering accuracy. In FIGURE 18,
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FIGURE 18. Adhesion coefficient estimation with variable noise.

TABLE 3. MAE and RSME indicators of two algorithms under constant
noise.

TABLE 4. MAE and RSME indicators of two algorithms under variable
noise.

the estimation of the adhesion coefficient under double-
shifting conditions increases the relative error of the
estimated value by 0.41%. It can be seen from the above sim-
ulation results that the ant colony optimization fuzzy cubature
Kalman filter is effective in the double-shift line condition.

In this paper, to more intuitively compare the estimated
performance of FCKF and ACOFCKF, we provide the mean
absolute error (MAE) index and the mean square error

root error (RMSE) index. Obviously, from TABLE 3 and
TABLE 4, the MAE index value and the RMSE index value
of ACOFCKF are significantly lower than FCKF under both
fixed noise conditions and variable noise conditions. More-
over, the estimation accuracy of ACOFCKF is better than that
of FCKF.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we first established a three-degree-of-freedom
nonlinear vehicle model. Based on the Dugoff tire model and
fuzzy logic adaptive cubature Kalman filter theory, a real-
time estimation algorithm for the driving state of two-axle
electric vehicles was designed. We then used the ant colony
algorithm to optimize the fuzzy logic controller, and then we
simulated and verified the estimation results before and after
optimization under variable noise conditions. According to
the optimized algorithm, we can estimate both the vehicle
driving state and road surface state information more accu-
rately based on the vehicle sensor information.

First, we proposed an adaptive algorithm for biaxially
driven electric vehicle parameter information and state infor-
mation estimation. The algorithm combines the ant colony
algorithm with the FCKF algorithm effectively. The input
and output membership functions of the FCKF algorithm are
optimized by the optimization function of theACOalgorithm.
Compared with the FCKF before optimization, the optimized
FCKF further improves the estimation accuracy of the state
variables.

Second, we selected the typical double-shift line condi-
tion for virtual test comparisons. The results showed that
ACOFCKF is still better adaptively adjusted after adding
noise, and it can more accurately estimate the state quantity,
such as the adhesion coefficient and yaw rate. The algo-
rithm has high stability, strong robustness and better real-time
performance.

Future research should mainly build a dSPACE semiphys-
ical simulation system for dual-motor electric vehicles and
further verify the actual operation effects of the estima-
tion algorithm through hardware-in-the-loop and real-vehicle
tests. After completing the algorithm testing and optimization
on the physical hardware system, wewill try more parameters
of the car and road state estimation, and try to apply the
algorithm to the big data environment of the Internet of Vehi-
cles. Then, we can use the new algorithm to process the big
data information obtained by a large number of urban vehicle
sensors to obtain real-time traffic information for more effi-
cient urban traffic management. Furthermore, we can use this
algorithm to better implement IoV-based applications, such as
autonomous driving and traffic path planning.
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