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ABSTRACT Multi-robot exploration is a search of uncertainty in restricted space seeking to build a finite
map by a group of robots. It has the main task to distribute the search assignments among robots in real time.
In this paper, we proposed a stochastic optimization for multi-robot exploration that mimics the coordinated
predatory behavior of grey wolves via simulation. Here, the robot movement is computed by the combined
deterministic and metaheuristic techniques. It uses the Coordinated Multi-Robot Exploration and Grey Wolf
Optimizer algorithms as a new method called the hybrid stochastic exploration. Initially, the deterministic
cost and utility determine the precedence of adjacent cells around a robot. Then, the stochastic optimization
improves the overall solution. It implies that the robots evaluate the environment by the deterministic
approach and move on using the metaheuristic algorithm. The proposed hybrid method was implemented
on simple and complex maps and compared with the Coordinated Multi-Robot Exploration algorithm. The
simulation results show that the stochastic optimization enhances the deterministic approach to completely
explore and map out the areas.

INDEX TERMS Multi-robot systems, robot sensing system, hybrid intelligent systems, optimization.

I. INTRODUCTION
The studies in the mobile robotics field involve a wide range
of topics. Some of the well-known applications are path plan-
ning, navigation, localization, communication, and sensing,
that work on preconditioned maps of environments. Explo-
ration of an unknown area begins with having no knowledge
regarding the arrangement of obstacles, nor the layout of ter-
rain. The primary goal of exploration is to create a finite map.

In the present day and without less interest in the past,
exploration is applied in search and rescue, reconnaissance,
surveillance, data gathering, and simple indoor moving appli-
cations. It pursues to explore full space without supervised
navigation using the autonomous multi-robot system. Com-
pared to a single agent, a group of exploration robots can
enhance the space coverage and decrease search time. How-
ever, the motion policy in the process requires efficient
techniques to keep them safely for providing free driving.

Several well-known map forms are available to represent
configuration space that fundamentally determines the selec-
tion of the algorithm. In the exploration task, maps are usu-
ally represented by occupancy grids, which can change the

unknown to known modes of cells through every robot posi-
tion upgrade. The relevant problem through the process is the
scheduling of detection of the uncertainty of grid occupancy
map using onboard sensors on robots.

Looking at the exploration methodologies, the frontier-
based [1] and coordinated multi-robot explorations [2] are
introduced solutions for one robot and a group of robots,
respectively. The methods seek to reach the border of the
known and unknown line with the least traversable cost. The
utility allows consideration of the coordinated motion when
a team of robots is applied. It targets to decrease the interest
of other robots to move in the same direction.

In this paper, we aim to develop the hybrid method of the
coordinated multi-robot exploration (CME) with the stochas-
tic approach. As the deterministic method, CME may get
into a circumstance when the task of full coverage is not
achieved in a particular place. In this case, the solution will
not be reached except as to change the objects of physical
place or initial robot parameters, which is not possible in
some hazardous conditions. Applying the metaheuristics, the
probabilistic variations induce CME to search the values,
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for which the task to explore the place completely will be
fulfilled.

By stochastic ones or so-called metaheuristics, the meth-
ods are classified into single and population solution-based.
In comparison to the former, the population-basedmethod has
a number of solutions, which are updated iteratively until the
termination condition is completed. One of the categories is
Grey Wolf Optimizer (GWO) algorithm that was introduced
by Mirjalili et al. [3]. It imitates the social behavior of grey
wolves that is denoted as operators such as hunting, search-
ing, encircling, and attacking for a prey. Abstracting from the
nature wolf model, the prime principle of this optimizer relies
on searching the best solutions and changing the current state
according to them.

FIGURE 1. The representation of cell distribution around a robot into
alpha, beta, and delta as optimized solutions. The rest of the cells is
represented by omegas or other available solutions.

In the proposed hybrid stochastic exploration, the costs
and utilities of cells around a robot provide knowledge over
each robot step. The social hierarchy operator of GWO selects
alpha, beta, and delta among the cells (Fig.1). Then, the hunt-
ing operator obliges the robot to move according to the value
of the best cell that is formulated from the occupancy proba-
bility and the random parameters.

The remainder of this paper is organized as follows:
section II discusses the previous studies of GWO, CME and
some efforts of applying nature-inspired algorithms in mobile
robotics. Section III and IV review the mathematical models
of these two methods. Section V describes the proposed
hybrid stochastic exploration, and section VI presents the
simulation results and analysis. Finally, section VII sums up
the study with the conclusion.

II. RELATED WORKS
This section discusses the previous researches applyingGWO
and CME in two separate subsections, and some studies of
bio-inspired optimization techniques in cooperative explo-
ration field using the multi-robot system at the end of the
section.

A. GREY WOLF OPTIMIZER AND ITS APPLICATIONS
In the recent decade, researchers had imitated the numer-
ous numbers of optimization models of various animals
in metaheuristics. They gained knowledge of the distinc-
tive behaviors of animals, that is peculiar to some species,
in which a swarm uses the knowledge and experience
obtained through evolutions, physical rules, searches of food,
or emitted sounds. Some of the well-known methods are the

genetic algorithm (GA), particle swarm optimization (PSO),
ant colony optimization (ACO), gravitational search algo-
rithm (GSA) and differential evolution (DE).

Assessing the nature of wolves, researchers were able to
formulate mathematical expressions revealing their social
behavior in terms of hierarchy distribution of roles in a pack,
hunting, search for prey, and attacking strategies. It was
observed that prey hunting is optimal at the expense of the
wolves’ collaboration among each other.

Liu et al. [4] first proposed the mathematical model that
is called wolf colony algorithm (WCA). This algorithm
describes the searching behavior and the besiege of quarry
and updates the wolf colony according to the assignment rules
of the colony. WCA was applied in the path planning motion
for a mobile robot that computed the optimal length of a path
in the shortest time compared to PSO and GA.

Another approach [5] is called wolf pack algorithm (WPA),
which is an enhancement of WCA. It improved the forego-
ing drawbacks such as the efficiency and local optima fall
and described two additional intelligent rules: winner-take-all
generation of a lead wolf and stronger-survive renewing of a
wolf pack. The former rule obliges the pack to follow the lead
wolf. It can be replaced through iterations, but the tendency
of obeying continues. The stronger-survive renewing rule is
the distribution onto weak and strong wolves according to the
objective function.

GWO differs from the WCA andWPA techniques in terms
of the mathematical expressions. It demonstrates superior
optimization capability over other metaheuristic algorithms.
The benchmark function tests proved the advantage of GWO
on the exploitation, exploration, and local optima avoidance
analyses. This makes it possible to apply GWO for appli-
cations in the various domains, such as the clustering anal-
ysis [6], the distributed compressed sensing [7], the human
recognition [8], the air quality classification [9], the gen-
erating schedules [10], the image thresholding [11], the PI
controller for steam condenser [12], and the optimal power
flow [13].

The modification of algorithms is a regular practice in
metaheuristics. In a previous study [14], the random parame-
ters of GWO were modified to achieve the balance in finding
the global minimum with fast convergence speed. The next
alternative modification [15] is a novel algorithm for multi-
criterion optimization that was presented as Multi-Objective
Grey Wolf Optimizer (MOGWO). The two functions were
integrated into the original GWO that are retrieving the best
non-dominated solution and a leader selection mechanism.
MOGWO passed ten multi-objective benchmark tests and
was compared with other two multi-objective metaheuris-
tics where it demonstrated the highest convergence behavior.
Another approach called modified discrete grey wolf opti-
mizer (MDGWO) [11] updates the location of search agents
by the introduction of weighting parameters that improves the
optimal solution.

The hybrid variants of metaheuristics combine two or
more existing methods to create new one. The hybrid
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nature-inspired algorithm that is called HPSOFWO [16]
enhances the exploitation of PSO and the exploration
of GWO. The low-level coevolutionary mixed hybrid updates
three agents in the search space by the proposed inertia
constant and velocity.

The hunting strategies by Muro et al. [17] asserted that
knowing every agent position is enough for the formation
of the wolf-pack hunting behavior. The study concluded
that the communication and hierarchal division in a group
is not necessary to achieve the hunting task. However,
Rodríguez et al. [18] formed a contradicting conclusion about
the hierarchical pyramid and introduced a new fuzzy hier-
archical operator in GWO. They presented three variants to
implement the hierarchical pyramid that affects the new posi-
tion depending on the alpha, beta, and delta wolves: weighted
average, weighted-based on the fitness, and fuzzy weights.
The benchmark tests showed that the fuzzy weights improved
the performance of the algorithm.

B. FRONTIER-BASED COORDINATED EXPLORATION
The proposed method considers the search uncertainty by a
group of sensors. During the process, the multi-robot system
tries to maximize knowledge over a given area. It moves
to targets in each step, which are edges of sensor range
between known and unknown space. The edge is the frontier,
and the algorithm is called the frontier-based approach for
autonomous exploration [1]. It was applied in many studies
of the exploration field [19], [20].

Coordinated Multi-robot Exploration (CME) [2], [21] is a
method which was hybridized in our study. It is an enhanced
variant of Yamauchi’s algorithm. The multiple robots collab-
orate in the exploration work as a group. It considers the cost
of reaching frontiers and utility for robot divergence, which
are described in section IV in details.

Benkrid and Achour [22] proposed a novel approach for
the coordinated exploration that seeks to minimize the search
time in terms of the limited energy consumption of the robots.
In the original CME approach, robots share information
about positions throughout the process, but in this novel
approach, the remaining energy of the batteries is transferred
as well. This allows all the individual robots to reach the
assigned frontier points. Rappaport and Bettstetter [23] also
worked on the coordinated recharging of multi-robots for
exploration.

Senarathne and Wang [24] aimed for a balanced dis-
tribution of robots to explore unstructured environments.
They applied two approaches for the exploration. The first
one is the original CME and the other one is the pro-
posed approach for the repositioning of robots over the
environment. Kim et al. [25] proposed a similar hybrid
variant to combine the sensor-based random tree method with
the frontier-based coordinated exploration. The simulation
demonstrated the efficient backtracking driving by decreas-
ing the number of routes.

Puig et al. [26] had a similar purpose as our study, but they
only applied the deterministic global optimization for CME.

The exploration was improved by K-Mean clustering that
gives each robot different assignments to travel separate
places (K regions) simultaneously at the same speed. The
approach resulted in the lowest variance of regional waiting
time and the lowest variance of average waiting time of all
regions consumed by the motion of multi-agents during the
exploration process.

C. NATURE INSPIRED OPTIMIZATION APPROACHES
FOR MULTI-ROBOT EXPLORATION
Bio-inspired heuristic methods relate to a stochastic global
optimization class that does a random search of an optimal
solution using swarm intelligence. Even though the swarm
intelligence is widely known in theory, there is a specific
research field called swarm robotics where a fixed number
of mobile robots are controlled physically in real world in a
certain coordinated way. The swarm robotics is used mainly
in the formation control [27], [28].

By taking into consideration the terms of the bio-inspired
optimization and the multi-robot exploration, some related
works can be mentioned here as summarized in Table 1.

Fang et al. [29] applied the behavior-based method called
social potential fields to obtain the course direction and move
the robots toward unexplored areas. Then, they optimized the
system by fine-tuning the angle and speed of each robot.
The simulation showed that the most optimal coverage of
unknown space by the multi-robot system with robot speed
from 0.7 to 1.0 m/s and angle in the range −0.2 to 0.2 rad.
This type of deterministic optimization has minimal effect
compared to the present trends and does not take into account
the other requirements of the robot system.

Wang, Y. et al. [30] applied the frontier-based method,
A star and PSO in two stages. In the exploration stage,
the method discovers available frontier points around each
robot in its own subarea and selects the shortest distance
using A star algorithm. In the walking stage, each robot is
navigated through subareas according to the latest exploration
information and the robot positions using PSO algorithm.
It means that PSO is applied for the task assignment in the
clustered area, like in the previously mentioned study [26].

PSO algorithm is widely used in mobile control systems
because of its concept of upgrading the position and velocity
of a swarm. Wang et al. [31] proposed and explored modified
PSO algorithms such as Darwinian PSO (DPSO), robotic
DPSO (RDPSO), fractional order RDPSO (FORDPSO),
and fuzzy adaptive FORDPSO. The last two were pro-
posed to adjust control coefficients, especially in multi-robot
exploration problem.

The combined Clustering Based Distribution Fac-
tor (CBDF) and nature-inspired algorithm (NIA) method [32]
is a hybrid approach to probe unknown areas. It is divided into
the direction- and exploration-based movements. Each robot
is assigned a direction by the CBDF to a specific subarea. For
the exploration, three NIAs such as PSO, bacteria foraging
optimization (BFO), and bat algorithm (BA), are compared
to determine their efficiency.
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TABLE 1. The efforts of optimization by nature-inspired approaches in the multi-robot exploration process.

To sum up, individual or hybrid stochastic optimization
algorithms, such as PSO, BFO, and BA, have been used for
explorations to create maps but without the GWO, which
is superior among existing methods based on benchmark
testing. Likewise, deterministic optimization techniques such
as terrain clustering, multitasking of robot position, increas-
ing population, and swarm formation control have also been
applied in the exploration processes. However, the significant
drawback of the deterministic algorithms is their property to
fall at a local optimum rather than search for a global optimum
or the best solution. To unravel this issue, the GWO was
combined with CME algorithm.

III. GREY WOLF OPTIMIZER
The main feature of GWO that makes its effective com-
pared to other popular swarm intelligence algorithms is its
hierarchical structure. The dominance hierarchy is formed
according to a certain goal that is called the objective func-
tion. In turn, the objective function is classified into the cost
function, evaluated lost, and the fitness function, which are
used to summarize how accurate the final result is compared
to the given design solution [33]. Whether the best solution
is defined to be optimal among all available candidates,
it should satisfy the fitness function and the cost function that
are regarded as interchangeable functions of maximization
and minimization.

The wolf pack is divided into four dominant ranks: alpha,
beta, and delta wolves, which are the leading groups, main-
taining the priority in the same sequence. The fourth group
comprises omega wolves, which do not have any rights to
make decisions in a swarm, although, their presence deter-
mines the swarm intelligence, i.e. high local optima avoid-
ance. In terms of optimization, the swarm of solutions is
filtering agreement with the objective functions that bring the
fittest one as alpha (α), the second as beta (β), and the third
as delta (δ). The strong point of the social hierarchy is that
only leading wolves know the position of prey, and they guide
omegas to perform the search.

The organization of collective behaviors in wolf pack can
be described by operators such as social hierarchy, encircling
prey, hunting, attacking prey (exploitation), and search for
prey (exploration). GWO algorithm is mostly about hunting
behavior, the technique of how wolves search collectively.
It means that alpha, beta, and delta wolves occupy the best
positions Xα , Xβ , Xδ (1). They oblige omegawolves to accept
the average distance between them (3).

EDα =
∣∣∣ EC1 · EXα − EX

∣∣∣ ,
EDβ =

∣∣∣ EC2 · EXβ − EX
∣∣∣ , (1)

EDδ =
∣∣∣ EC3 · EXδ − EX

∣∣∣
EX1 = EXα − EA1 ·

(
EDα
)
,

EX2 = EXβ − EA2 ·
(
EDβ
)
, (2)

EX3 = EXδ − EA3 ·
(
EDδ
)

EX (t + 1) =
EX1 + EX2 + EX3

3
(3)

The presence of vectors A and C makes GWO a stochastic
algorithm. The vectors fluctuate randomly in defined ranges
that helps avoid the local minima.

EA = 2Ea · Er1 − Ea (4)
EC = 2 · Er2 (5)

The A parameter defines the exploitation and exploration
operators (4). If |A| < 1, wolves are obliged to attack the prey,
otherwise, for |A| > 1, they turn to the exploration operator.
The component of a is decreased linearly from 2 to 0 in each
iteration and r1, r2 are random vectors in [0,1].
The C parameter gives the prey the weight that makes the

exploration of the optimal solutionmore naturally obstructing
the search (5). It varies randomly as well in range [0,2], where
C > 1 simplifies and C < 1 complicates the process.
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In this note, the hunting operator contains exploration and
exploitation rules that can be adjusted by the A and C values.
The α, β, and δ wolves lead the pack through the hunt, and
the arbitrary parameters assist the search effectively.

GWO’s performance was compared with other population-
based algorithms using the benchmark functions on Table 1,
Table 2, Table 3 in the original paper [3]. The aim of the opti-
mization is killing the prey, which relates to its life reduction
fmin by wolves attacking. Table 1 shows the scenario when
thirty wolves attack the prey individually one after the other.
When the last wolf kills the prey, then fmin gets a zero value.
In Table 2 and Table 3, wolves attack collectively, and the
injury dealt by the wolves on the prey varies. A value that is
greater than zero means that the prey is still alive after the
attacks. The negative values suggest that the wolves wasted
needless powers for killing the prey. In Table 3, the fixed
values for the dimension limits the number of wolves that can
attack the prey.

Algorithm 1 Grey Wolf Optimizer algorithm
1: Initialization population, iteration, search boundary
2: Set random position
3: while iteration is not over do
4: Calculate costs of wolf positions
5: Find α, β, δ wolves
6: for all population
7: Find Dα , Dβ , Dδ , X1, X2, X3
8: Change positions X = (X1 + X2 + X3)/3
9: Change costs
10: end
11: Change parameters a, A, C
12: end while

In our study, we tested GWO (Algorithm 1) with unimodal
sphere function f1 from Table 2 [3]. The results showed fast
convergence for the first few iterations of the simulation run
(Fig. 2 (a), (b), and (c)). In the two-dimension space with 5×5
bounds, the population of 10 reached optimal zero solution
after 20 iterations. The optimization trend led by the alpha
wolf is depicted in Fig. 2 (d).

The aim of killing a prey for wolves in nature demonstrates
the high-efficient optimization that can be applied in various
fields. In our study, we used GWO in the map coverage
problem for the mobile robot system.

Aside from the basic merits of GWO which include
ease of implementation due to its structure, lesser mem-
ory requirement compared to other techniques, and faster
convergence rate because of the continuous reduction of
search space and lesser judgment variables α, β, δ, the main
advantage of this algorithm is that it evades the local
optima when applied to composite functions and only two
parameters need to be adjusted (A & C). The only disad-
vantage of this optimization technique is that, in case of
unimodal problems, initially it hastens towards the opti-
mal solution but starts slowing down soon due to diversity
problems.

FIGURE 2. GWO performance that calculates the cost using sphere
function in iteration 1 (a), in iteration 3 (b), and in iteration 20 (c). The
alpha wolf trajectory in the search of the optimal solution (d).
Population = 10. The alpha cost in iteration 1 is 2.0352, iteration 2
is 1.1173, and iteration 20 is 0.00028223. The runtime of 20 iterations
is 665.467 s.

FIGURE 3. Representation of sensor observation in the occupancy grid
map: a) the sensor touches eight neighbor cells, b) the neighbor cells
have the name V1, V2, V3, V4, V5, V6, V7, V8, V9 and cost, c) the costs
V6, V7, V8 do not have the intersecting sensor observations.

IV. COORDINATED MULTI-ROBOT EXPLORATION
Multi-robot exploration is the search process with the mobile
robot team that begins from entire uncertainties to a finite
map. Based on the obtained data, different algorithms are
available for exploration. Two methods can be considered
for the map building based on the communication between
robots. The centralized exploration is when all robots have
one common map. They sense the environment simultane-
ously that allows them to know about the progress of each
other. The decentralized exploration is the individual map
building [34]. The coordination of sharing data is needed
only if robot locations intersect. In our study, the centralized
strategy is applied, which computes the cost of travelling
distance locally for each one in real time and the utility values,
which all robots upgrade through iterations.

In the beginning, the robot is surrounded with complete
unknown space of the indoor environment in the boundaries.
The initial position and sensor vision with 360 degrees of
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view are given. The sensor range is limited for making a
complete map at once and for planning the optimal motion of
the robot team in advance. The cost-minimizing exploration
computes the distance needed to reach the frontier point for
each robot. The sensor view in terms of occupancy grid map
covers several cells around a robot (Fig. 3). For these cells,
the cost is computed using occupancy probability, Euclidean
distance, and the sensor observation (6). If the cell has been
explored before, then the cost of this cell in the previous step
is appended to the cost of the new position. Otherwise, if the
ray beams open the cell primarily, then the cell is denoted
as a frontier cell without the backward costs of the previous
steps (7). The occupancy probability value P(occx,y) of the
unknown cell is 0.500, whereas the cell occupied by an obsta-
cle has a value close to 1, and a value close to 0 represents
the certainty that the cell is not occupied and obstacle-free.
Depending on the probability that the sensor covers the cells
at certain distance, the occupancy values decline whenever
the sensors touch the cell, as shown by equation (2) in the
original paper [2].

Vx,y = min{Vx+1x,y+1y+
√
1x2+1y2 · P

(
occx+1x,y+1y

)
}

(6)

Vx,y = min {
√
1x2 +1y2 · P

(
occx+1x,y+1y

)
} (7)

where1x,1y ∈ {−1, 0, 1}∧P(occx+1x,y+1y) ∈ [0, occmax]
The aim of the cost-minimization is to find the mini-

mal value among the cell neighbors, which is the optimal
next position of a robot. For a single mobile robot sys-
tem, the search of minimal cost can be enough to deter-
mine the position. However, the multi-robot system requires
the collective-organization interaction during the exploration.
The CME approach introduced the utility for the arrangement
of the tasks between robots.

The essence of the maximizing the utility is that initially
each cell of the whole map had identical values. While the
robots search, the utilities of their frontier cells decreases (8).
The robots have less interest to visit the cells with low utili-
ties. This is the reason why the robots try to search for new
areas, which they have not yet explored to maximize utility
values.

U c
i = U c

i−1 − P(
∥∥∥occcx,y − occrx,y∥∥∥) (8)

The cell utility U c
i equals the state of the previous modifi-

cations U c
i−1, which can be changed by itself or other robots

before, and the probability occupancy of the selected cell
subtracting the current robot position. The utility U c

i is opted
as the maximum value by (9) in the iteration i.

(i, c) = max
{
U c
i − Vx,y

}
(9)

Towards cooperative operation, the robots should start to
run so that their sensor scans reach each other at the first iter-
ation (Fig. 4). It allows achieving the divergence of directions
in the search by the decreasing utilities of selected targets.
In the figure, the area is 20 m × 20 m in size, and the sensor

FIGURE 4. Coordinated exploration of three robots by CME approach at
iterations 1, 15, and 100. The grey color defines the uncertainty, the black
obstacles, and the white explored space.

ray length is 1.5 m. The CME with three robots completes
the search after 100 iterations. The approach demonstrates
the efficient exploration for a multi-robot system. Neverthe-
less, we found some points for improvement. First, the cost
parameter seeks for the minimal waste; in the case when there
are more than two identical minimal values, the last one is
selected. Second, when the cost and utility consist of the same
values, the robot can get stuck in one position on an explored
space, even when other areas are still unexplored. Therefore,
it is necessary to find the solution to enable the robot to keep
searching for unexplored area.

In regardswith CME, the robots have one best next position
in each iteration, which is the maximum value of utility. This
paper applied the hierarchical GWO optimization technique
with CME, in which there are three best maximum posi-
tions. Depending on the stochastic parameters, the next robot
position will be defined.

V. PROPOSED METHOD
In this study, the problem is formulated as the exploration
of an unknown space by robot motion with sensor cov-
erage because some studies focus only on research con-
cerning static sensor coverage errors and robot motion in
unknown environments [35], [36]. In the case where the sen-
sors are mobile, the two terms coincide in meaning and scope.
In other words, both studies have the common task to build a
finite map.

Here, we optimize the process of constructing a map by
a group of mobile robots. As the optimization technique,
the GWO metaheuristic algorithm was used with modifi-
cation on the task of sensor coverage. It generates ran-
dom parameters for the maximum positions that change the
order. Thus, the hierarchical optimizer reforms the robot
position selection, which is the deterministic exploration
approach. In cases where the optimization is not possible in
real-time processes, a stochastic technique in the absence of
a priori information about the environment is performed as
one of the profound solutions of area coverage for the mobile
sensor system.

Algorithm 2 describes the proposed hybrid exploration.
Initially, space is unknown with the utility equal to 1. The
eight cells Vc, where Vc is V1x,y, V2x,y, . . . , V8x,y, around a
robot are the candidates for the next position. The determin-
istic technique computes the cost and subtracts the utilities
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Algorithm 2 Coordinated Multi-Robot Exploration With
Grey Wolf Optimizer
1: Initialization the number of robots nRbt and iterations t ,
sensor range, initial position

2: Set utility of unknown space 1
3: while t is not over do
4: for all nRbt
5: Set coordinates of Vc
6: Calculate cost of Vc
7: Subtract U i

c and Vc
8: Find α, β, δ wolves among values of step 7
9: Find Dα , Dβ , Dδ , X1, X2, X3
10: Find X(t + 1) as max (X1, X2, X3)
11: Change robot position X(t+1)
12: Reduce U i

c on X(t+1)
13: end for
14: Calculate a, A, C parameters
15: end while

from the cost for the eight cells (9). Then, the metaheuris-
tic optimizer defines three maximum utility values that are
assigned as alpha, beta, and delta candidates with priorities
in the listed order (line 8). The hunting operator changes
the priorities between them due to the random A (4) and
C (5) parameters and the occupancy probability values of
the dominated grid cells. The hunting operator for the area
coverage problem is defined in (10) and (11). The robot’s next
position is either alpha, beta, or delta cell with the maximum
value of X1,i, X2,i, X3,i, where i is the number of robots.

Dα,i =
∣∣C1 · Pα,i

(
occx+1x,y+1y

)
− Pi

(
occx+1x,y+1y

)∣∣
Dβ,i =

∣∣C2 · Pβ,i
(
occx+1x,y+1y

)
− Pi

(
occx+1x,y+1y

)∣∣
(10)

Dδ,i =
∣∣C3 · Pδ,i

(
occx+1x,y+1y

)
− Pi

(
occx+1x,y+1y

)∣∣
X1,i = Pα,i

(
occx+1x,y+1y

)
− A1 · Dα,i

X2,i = Pβ,i
(
occx+1x,y+1y

)
− A2 · Dβ,i (11)

X3,i = Pδ,i
(
occx+1x,y+1y

)
− A3 · Dδ,i

In the original GWO, the solution is the mean value of
X1 X2, and X3 (3). It is related to the natural behavior of a wolf
pack that uses the intelligence of dominant agents. However,
it is not required in the target selection problem to find the
average robot positions among the alpha, beta, and delta grid
cells. By taking this into consideration, the next robot position
X(t+1) is the maximum value among X1,i, X2,i, and X3,i.
When the robot gets the next selected position (line 11),

the utility values of the neighbor cells are reduced by (8).
At the end of this, new values for the random parameters a, A,
and C are generated for the next iteration.
The hybrid stochastic exploration seeks to search uncer-

tainties through the exploration process in the same manner
that CME does. This works because the unexplored cells have
greater utility values than those of the explored cells. When
the costs with minimal values are subtracted from the utilities

of the unexplored cells, the maximal values become attractive
targets for the next robot positions. This principle is valid
for both methods. However, the proposed hybrid stochastic
method has three best options that can change the hierarchical
order according to the stochastic parameters. It means that
the maximal value may have a beta or delta position, not only
alpha, as it is in the CME.

The next section demonstrates the conditions when the two
algorithms outperform one another.

VI. SIMULATION RESULTS AND ANALYSIS
This section presents the simulation of the hybrid coordinated
exploration based on GWO in two maps: ordinary and com-
plex. The proposed hybrid method was compared with the
original CME, which we seek to outperform.

Considering that the robots can move in an arbitrary man-
ner, the map coverage is the primary issue and the principal
criterion for this type of system. With the aim of analyzing
the simulation results for the two approaches, the following
equation (12) computes the percentage of total explored grid
cells (Mc):

Mc =
Uunexp − Uexp

Uunexp
× 100% (12)

where Uunexp is the total unexplored utility values that are
free from obstacles and Uexp is the total explored utility val-
ues. The comparison between the proposed hybrid stochastic
exploration and CME can be done based on theMc value after
the simulation is completed.

The same map parameters were set for both methods in the
ordinary and complex maps. The parameters are the number
of iterations, obstacles, number of robots, map size, sensor
range, and initial robot positions. By taking into considera-
tion that we are comparing the deterministic and stochastic
approaches, the former needs to run only once, i.e., the tra-
jectory of the robot’s motion stays invariant when the map
remains the same, whereas the proposed stochastic method
requires finding the best result among the simulation runs.

A. ORDINARY MAP
An ordinary map is an environment with the minimum num-
ber of obstacles. It allows robots to have more freeways for
motion that makes it easier for them to diverge from each
other.

Fig. 5 illustrates the results of the explorations by two
methods where three robots have different path colors. The
CME achieved slightly better exploration (97.31%) than the
proposed hybrid stochastic method on the ordinary map.
With 100 iterations and 20 simulation runs, the stochastic
approach gave different results each time due to the random
A and C values. In Fig. 5, maps 2.a, 2.b, and 2.c show the
map coverage of the proposed approach at 69.72% (worst),
85.98%, and 95.83% (best), respectively.

In the CME, the robots always move toward the maxi-
mum utility values (α). On the other hand, in the proposed
hybrid stochastic exploration the robots can seek any of the
three maximum utility values (α, β, and δ) depending on
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FIGURE 5. The map coverage for the CME (1) at 97.31% and the hybrid
stochastic exploration based on GWO and CME at 69.72% (2.a),
85.98% (2.b), and 95.83% (2.c). The number of iterations is 100.

FIGURE 6. The histogram of the hybrid stochastic exploration based on
GWO and CME using 20 simulation runs. The subcategories belong to the
alpha, beta, and delta cell decisions.

the A and C parameters, which was observed through the
20 simulations mentioned above. Themap coverage was clas-
sified into three categories: ‘‘0 to 79%’’, ‘‘80 to 89%’’, and
‘‘90% and higher’’. Fig. 6 shows that out of the 20 simulation
runs, only one of them has the worst map coverage wherein
the robots chose the β positions mostly. Likewise, the other
16 simulation runs in the ‘‘90% and higher’’ category showed
that the robots favored mostly β positions instead of the
α positions, which is typical of CME. In the second category,
the δ positions dominated the runs.

The performance of the hybrid stochastic exploration
may be improved when the number of iterations is
increased to 130 (Fig. 7b). As seen, the hybrid stochastic
method showed greater map coverage than the deterministic
exploration in some runs.

FIGURE 7. The map coverage comparison of CME and the hybrid
stochastic exploration based on GWO and CME for the ordinary map with
t = 100 (a) and t = 130 (b) iterations through 20 simulation runs. For
100 iterations, the maximum percentage belongs to the CME at 97.31%,
while for 130 iterations, the hybrid stochastic exploration gives the
maximum value at 98.68%.

B. COMPLEX MAP
Here we consider the algorithm performance in cluttered
environments using four maps as shown in Fig. 8 and 9. Both
the CME (Fig. 8) and hybrid stochastic algorithms (Fig. 9)
were tested for the percentage of map coverage for complex
areas.

The CME (Fig. 8) showed a high map coverage only in
map 4. Its performance in the other maps was less effi-
cient, and it did not allow improvement in the next iterations
because of the invariant nature of the deterministic method.
In contrast, the proposed hybrid stochastic exploration based
on GWO and CME allowed the search for solutions even
after relaunching the simulation runs. The four map results
(Fig. 9) demonstrated the strong capability of the proposed
hybrid method for the coverage of varying complex maps.

C. THE FEATURE OF THE HYBRID
STOCHASTIC ALGORITHM
In using the hybrid approach, the random parameters as addi-
tional weights for utilities oblige the robots to estimate the
next position, which can lead to obstacle collision problems
in some situations. This problem occurs when a robot is
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FIGURE 8. The exploration results of the CME simulations with
100 iterations. Map 1 was interrupted on the 57th iteration because one
robot was baffled by another robot on the upper right corner. On map 2,
two of the robots could not get out from the left partition (bottleneck
space), which limited the search of the unexplored space. Map 3 was
explored with 70.71% coverage. The coverage is almost complete on
map 4.

FIGURE 9. The results of the hybrid stochastic exploration with
100 iterations. All maps have efficient exploration results, although the
robot tried to go through the horizontal obstacle on the upper portion of
map 4 to find a free path. It is noted that a narrow corridor may be a
point of improvement for the method.

surrounded with the same utility values equal to zero and/or
obstacles of neighbor cells. In Fig. 8, map 1 showed that a
similar circumstance also happens for CME. The difference

between the two approaches, however, lies on the capability
of the hybrid stochastic approach to search for a new solution
with random values for the A and C parameters, which is not
possible for CME or other deterministic approaches.

TABLE 2. The number of aborted simulation runs of the hybrid stochastic
exploration on four complex maps.

The number of the simulation runs for the four maps
in Fig. 9 is presented in Table 2. In order to obtain ten suc-
cessful runs of map coverage passing 100 iterations, the total
number of failed simulation runs are 21, 4, and 14 for maps
1, 3, and 4 respectively. The hybrid approach gave its best
performance in map 2, where all 10 runs were successful
(0 failed runs) and the map coverage is the highest at 99.52%.

VII. CONCLUSION
This paper proposed a hybrid approach for multi-robot explo-
ration for unexplored space based on the CME, which is a
deterministic approach, and GWO, which is a stochastic opti-
mization approach. The hybrid approach allows searching for
the impactful performance of the hybrid coordinated explo-
ration by tuning random parameters. The technique performs
comparatively well with CME on simple or ordinarymaps but
outperforms CMEon complexmapswith consideration of the
number of iterations and simulations. For CME, it is worth
emphasizing that if the method is not efficient under certain
map conditions, there are no ways to find the optimal solution
other than to change the map conditions, which is not always
possible. In search and rescue operations where a human
cannot change the obstacle locations, space size, or initial
robot positions, the proposed hybrid stochastic approach can
overcome the limitations and drawbacks of conventional or
traditional exploration.
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