
Received January 7, 2019, accepted January 19, 2019, date of publication February 1, 2019, date of current version February 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2894593

Detecting Interprocedural Infeasible Paths Based
on Unsatisfiable Path Constraint Patterns
HONGLEI ZHU 1, DAHAI JIN1, YUNZHAN GONG1, YING XING2, AND MINGNAN ZHOU1
1State Key Laboratory of Network and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Automation School, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Dahai Jin (jindh@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant U1736110, Grant 61702044, and
Grant 61502029, and in part by the Fundamental Research Funds for the Central Universities under Grant 2017RC27.

ABSTRACT The static analysis plays an important role in many software engineering activities. However,
the existence of infeasible paths, which causes lower program test coverage and several false positives in
the results of the static analysis, has become one of the biggest challenges for the static analysis. In this
paper, based on unsatisfiable path constraint patterns, we present a new approach to detect interprocedural
infeasible paths. In our approach, we first discover nine unsatisfiable path constraint patterns by mining the
common path constraint features of a large number of infeasible paths. Then, we detect the interprocedural
infeasible paths; a detected path is deemed to be an interprocedural infeasible path if its simplified constraint
conditions match one of the nine unsatisfiable path constraint patterns. To illustrate and verify the approach,
an experimental study is performed on five open source C projects. The results show that compared with the
existing approach, our approach requires less time on average and detects more interprocedural infeasible
paths among the given paths.

INDEX TERMS Static analysis, infeasible path, constraint pattern, interprocedural analysis.

I. INTRODUCTION
Software testing is an expensive, tedious, and labor-intensive
task and accounts for up to 50% of the total cost of soft-
ware development [1]. To improve the efficiency of soft-
ware testing and find more defects, it is desirable to have
matured static analysis tools that can automatically detect the
defects in a program [2]–[4]. However, since static analysis
is conservative and every path is considered to be executable,
a large number of false positives come out as the results of
static analysis. Therfore, one of the biggest challenges for
static analysis is how to deal with the infeasible paths which
are never executable for any inputs. Additionally, infeasible
paths also have an effect on test case generation and the high
test coverage of a program, i.e., the generation of more test
cases to enhance the coverage is hindered, and the resources
spent on improving the test coverage may be wasted [5]–[7].
Therefore, the detection of infeasible paths plays an impor-
tant role in the static analysis of a program. If most of the
infeasible paths can be detected and excluded automatically,
the accuracy of static analysis and coverage analysis can be
greatly improved.

The example in Fig.1 is used to illustrate the effect
of infeasible path on the accuracy of static analysis.

Fig.1(a) and Fig.1(b) show a C language code segment
and the corresponding control flow graphs of functions
foo() and f1() in the code segment, respectively. An invalid
arithmetic operation (IAO) fault (at statement 7) is detected
by the defect testing system (DTS)[4] which is a code static
analysis tool for detecting the defects in program, but it is
manually confirmed as a false positive. The path constraints1

can be extracted after the symbolic execution, the constraint
X > 1 ∧ Y > 0 is considered as the path constraint of
subpath 1-2-3-4-5-6.2 Moreover, since function f1() is called
by function foo() at the statement 7, and the corresponding
actual parameter of formal parameter a is x, the path con-
straint of the subpath 12-13-14-15 is X < 0. Accordingly,
the constraint X > 1 ∧ Y > 0 ∧ X < 0 is considered
as the path constraint of path 1-2-3-4-5-6-7-12-13-14-15.
It is obvious that this path cannot be executed by any input
values because of the conflict between constraint conditions
X > 1 and X < 0. Therefore, the path 1-2-3-4-5-6-7-
12-13-14-15 is an interprocedural infeasible path. That is,

1The constraint referred to in this paper is the explicit constraint.
2In this paper, the statement number is used to denote the corresponding

node number of a statement in control flow graph.
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FIGURE 1. An example for illustrating the effect of an infeasible path.
(a) A code segment. (b) The control flow graphs of foo() and f1().

the value of variable P is not equal to zero at statement 15
when function f1() is called by function foo() because of the
effect of interprocedural infeasible path, and the IAO fault at
statement 7 is a false positive.

Up to now, there exist a variety of approaches for detect-
ing infeasible paths, among which the ones based on the
satisfiability of the path constraint are most commonly
used [8]–[15]. Although these approaches offer high preci-
sion, they depend on the ability of the constraint solver [16]
and require expensive computations to determine the infea-
sibility of a path, especially for the large-scale systems.
The approaches that based on branch correlation or code
pattern have also proposed for detecting the infeasible
paths [17]–[26]. However, these approaches mainly focus on
the pairwise correlation analysis, the infeasible paths caused
by the conflicts among more than two conditional branches
can not be detected. In addition, dynamic test data generation
algorithms [26]–[29] are also used to detect infeasible paths
by monitoring the execution of a program, but the test data
generation requires expensive computations.

In this paper, based on unsatisfiable path constraint pat-
terns, a new approach for detecting interprocedural infeasible
paths automatically is proposed. We evaluate the approach
using five open source C projects, and the experimental
results show that, on average, our approach is able to suc-
cessfully detect 89.6% of the interprocedural infeasible paths
among the given paths.

The contributions of this paper are as follows:

• We present a new approach to detect interprocedural
infeasible paths that is based on unsatisfiable path con-
straint patterns.

• We discover nine unsatisfiable path constraint patterns
bymining the common path constraint features of a large
number of infeasible paths.

• We evaluate the effectiveness and efficiency of the
approach on five open source C programs.

• We note that the interprocedural infeasible paths have
an effect on not only the test case generation and high
test coverage, but also the accuracy of program static
analysis.

The rest of this paper is organized as follows: Section 2
surveys related work. Section 3 introduces some basic terms
that will be used in this paper. Section 4 introduces our pro-
posed approach for detecting interprocedural infeasible paths.
Section 5 describes our experimental design and presents the
experimental results. Section 6 concludes this paper.

II. RELATED WORK
In recent years, a large number of studies have been con-
ducted to detect the infeasible paths in programs, and some
techniques have been proposed. Generally, these techniques
can be classified into two categories: static and dynamic.
Static techniques are mainly based on the satisfiability of
the path constraint and the characteristics of program code
such as branch correlation, code pattern, etc. On the other
hand, dynamic techniques are based on real execution of
program and the execution flow is monitored. The existing
static and dynamic techniques are briefly reviewed in next
subsections, and the comparison between our approach and
these approaches is also introduced.

A. STATIC TECHNIQUE
Coward [8] and Goldberg et al. [9] use equations to represent
a path and determine the feasibility of a path by solving the
equations. Similar to their approaches, Ruiz and Cassé [10]
propose a method to detect infeasible paths based on static
analysis of machine code and the feasibility test of con-
ditions using Satisfiability Modulo Theory (SMT) solvers.
Zhang and Wang [11] use the constraint-based tools to deter-
mine the feasibility of paths, the tool PAT extracts path condi-
tions while BoNuS is used to solve them. The tools are highly
automatic, and they allow the user to specify constraints and
paths in a very natural way. Blackham et al. [12] apply SMT
solvers to find classes of infeasible paths, and integrate the
compute all minimal unsatisfiable subsets (CAMUS) algo-
rithm for identifying unsatisfiable subsets within a system
of constraints. Ansari [13] uses Unified Modeling Language
(UML) for detecting the infeasible paths, the control flow
graph is built from sequence diagram and then the indepen-
dent paths are generated from it. Each path is converted into
a set of a linear equation and solved. If there is an incon-
sistent solution, then the corresponding path is infeasible.
Aissat et al. [14], [15] propose an approach that uses a
transformed CFG to prune the infeasible paths. Furthermore,
the symbolic execution technique and constraint solving
technique are used to detect the infeasible paths.Although
the method can prune lots of infeasible paths to facilitate
Path-biased random testing, the construction of the trans-
formed graph takes more time.It is obvious that, these
approaches mainly depend on the ability of the constraint
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solver and require expensive computations. Compared with
these approaches, our approach is based on the unsatisfiable
path constraint patterns to detect the infeasible paths and
is independent of the constraint solvers. Furthermore, our
approach has better scalability than these approaches, which
can be applied to the detection of infeasible paths in large-
scale programs.

Bodík et al. [17] use the infeasible path to improve the
precision of traditional def-use pair analysis. Their approach
detects the branch correlations by resolving predicate
expressions backwards in the CFG during compile time. The
infeasible paths are detected with a forward propagation algo-
rithm. However, the branch correlations involving complex
predicate expressions may not be detected by their work.
Zhang and Chen [18] present an approach to detect infeasi-
ble paths by mining association rules of branch predicates.
Program paths which break these rules are considered
as suspicious infeasible paths. However, this approach
heavily relies on execution data, it suffers an unsatisfi-
able precision when there are not adequate test cases.
Barhoush and Alsmadi [19] develop a tool to automatically
detect the infeasible paths caused by the logically inconsistent
predicates related to dead codes and the correlated condi-
tional statements with respect to a certain variable. However,
only four examples are performed to evaluate the tool which
can not handle the loop structures. Suhendra et al. [20]
present an approach to detect infeasible paths by determining
whether there exists a conflict between the assignment state-
ment and branch statement, as well as among different branch
statements. This approach tries to guarantee avoidance of the
enumeration of a large number of execution paths. However,
this approach detects only the pairwise conflicts and fails
in the case of arbitrary infeasible paths and that it does not
account for infeasibility in procedure calls. Compared with
these approaches, our approach can convert the complex
path constraint conditions into the simple path constraint
condition, that is to say, our approach has the capacity of
handling some complex predicate expressions. Furthermore,
the unsatisfiable path constraint patterns proposed in our
approach not only can represent the conflicts between two
branches, but also can represent the conflicts among more
than two branches, so the infeasible paths caused by the
conflicts among more than two branches also can be detected
by our approach. In addition, because of our approach adopts
the interprocedural analysis, it can detect both intraprocedural
and interprocedural infeasible paths without the execution
data.

Ding et al. [21] present a code pattern based method
for detecting infeasible branches and accordingly achieve
infeasible paths detection. Although their method has high
effectiveness and efficiency, they use a function summary
to address the procedure call, which may lead to imprecise
interprocedural analysis. Ngo and Tan [22] present an empir-
ical approach to the problem of infeasible path detection.
Their approach is based on the fact that many infeasible
paths exhibit some common properties, which are caused

by four code patterns. This approach can accurately detect
82.3% of all infeasible paths in the set of basis paths of seven
systems by realizing these properties from the source code.
However, there are also some cases that do not follow any of
the four proposed code patterns, and the prototype tool only
implements a simple constant substitution for predicates with
arithmetic and bitwise operations. Kundu et al. [23] construct
a graphmodel (called SIG), fromwhichMMpaths, execution
sequences ofmodel elements from the start to end of amethod
scope, are generated. Subsequently, they determine infeasi-
bility of theMM paths by theMutually Exclusive (MUX) and
Null Reference Check (NLC) patterns. Delahaye et al. [24]
present a method that takes opportunity of the detection of
a single infeasible path to generalize to a family of infea-
sible paths, which will not have to be considered in further
path conditions solving. Their method exploits non-intrusive
constraint-based explanations to explain unsatisfiability and
can save considerable time over an approach that does not
make use of the generalization algorithm. However, only
eight tiny C programs are performed to evaluate their method.
Compared with these approaches, Although our approach
is based on only nine unsatisfiable path constraint patterns,
it is able to precisely detect 89.6% of the interprocedu-
ral infeasible paths among the given paths. Furthermore,
we perform the experiments on the five open C programs
to evaluate our approach, and the experimental results show
that our approach requires less time on average and detects
more interprocedural infeasible paths than the approach of
Ngo and Tan [22].

B. DYNAMIC TECHNIQUE
Shujuan et al. [25] propose an approach based on data flow
analysis and association analysis to detect infeasible paths.
They built data sets that reflect the static dependencies and
the dynamic execution information of conditional statements
by combining static analysis and dynamic analysis and then
determined the branch correlations based on the two types of
branch correlations defined previously. Finally, the infeasible
paths were detected. Although this approach can be used to
detect infeasible paths effectively and accurately, it is difficult
to build a data set that reflects the static dependencies and
the dynamic execution information of conditional statements
for a large-scale program. Gong and Yao [26] propose an
approach that determines branch correlations based on the
probabilities of the conditional distribution corresponding
to the outcomes of different branches. Maximum likelihood
estimation is employed to obtain the values of these proba-
bilities. Then, infeasible paths are detected according to the
branch correlations. However, this approach cannot detect the
correlations between more than four conditional statements.
Bueno and Jino [27] use the genetic algorithm to detect
infeasible paths during test case generation; they also propose
a fitness function that combines both data flow and control
flow information to guide the search. However, this approach
requires a higher computational cost to identify infeasible
paths, and only a small-scale experiment was conducted
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to validate the correctness of the approach. A heuristics
approach is proposed by Ngo and Tan [28] to detect infeasible
paths. This approach is based on the observation that many
infeasible program paths exhibit some common properties.
Through realizing these properties in execution traces col-
lected during the test data generation process, the infeasible
paths can be detected early with high accuracy. However,
the proposed approach occasionally makes the wrong conclu-
sion regarding path infeasibility. Delahaye et al. [29] propose
a method that takes opportunity of the detection of a single
infeasible path to generalize to a possibly infinite family of
infeasible paths. The method first extracts an explanation of
path condition, that is, the reason of the path infeasibility.
Then, it determines conditions, using data dependency infor-
mation, that paths must respect to exhibit the same infeasibil-
ity. Finally, it constructs an automaton matching the general-
ized infeasible paths. Although infeasible path generalization
allows test generation to know of numerous infeasible paths
ahead of time, and consequently to save the time needed to
show their infeasibility, since most static analysis engines do
not work incrementally, it is difficult to use this method in
practice.

Compared with these approaches, since our approach
belongs to the static technique and detects infeasible paths
based on the unsatisfiable path constraint patterns, therefore,
it does not need actual execute the program and build the data
set. Accordingly, our approach requires a lower computa-
tional cost than the approaches mentioned above. In addition,
the conflicts among more than two path constraint conditions
can be represented by the proposed unsatisfiable path con-
straint patterns, so the infeasible paths caused by the conflicts
among more than two branch statements can also be detected
by our approach.

III. PRELIMINARIES
To help the reader to better understand this paper, in this
section, we review some basic terms that will be used
throughout the paper.

A control flow graph (CFG) of program P can be denoted
as a four tuple< N ,E, s, e >, where N is a set of nodes, E is
a set of edges, s is the unique entry node and e is the unique
exit node. A node n∈N represents a statement of P, and an
edge (ni, nj) ∈ E represents the control flow from statement
ni to statement nj.
A program is represented by a directed graph G∗ =

(N∗,E∗) called a supergraph. G∗ consists of a collection of
control flow graphs CFG1, CFG2, . . . (one for each proce-
dure), one of which, CFGmain, represents the main procedure
of the program. Each control flow graph CFGi has a unique
start node si and a unique exit node ei. The other nodes of
the control graph represent the statements and predicates of
the procedure in the usual way, except that a procedure call is
represented by two nodes: a call node and a return-site node.

A node in the CFG from which two edges may originate
is called a predicate node, and the predicate nodes can
be divided into two types: predicate nodes of the iteration

construct (while statement) and predicate nodes of the selec-
tion construct (if statements). Each out-coming edge of a
predicate node is called a branch, and each branch in the CFG
is labeled using a predicate, referred to as a branch predicate,
that describes the conditions under which the branch will be
traversed.

A path constraint refers to the constraint of a path that
is expressed as a conjunction of predicates, in which all the
derived variables are substituted with their transitive defini-
tions. If two predicates share the common variables, we say
that they are mutually dependent, and a set of predicates in a
path is called a set of dependent predicates if each predicate
is dependent on another predicate in the same set. Let S be
a set of dependent predicates of a path; an expression E is a
basic expression if all the dependent predicates in S contain E.
If there is a conflict among the dependent predicates of a path,
then the dependent predicates are known as an unsatisfiable
path constraint of the path.

For the nodes ni and nj in CFG, if all paths from the entry
node s to node nj go through node ni, we call node ni controls
node nj, and denote it as ni

pre
−→ nj. Let m is a branch state-

ment, S is a statement set, and si ∈ S, si
pre
−→ m. If S makesm

always take a true branch or a false branch, we call m
and S have branch correlation. According to the type of
statement in S, the branch correlation can be divided into
A-B correlation (the correlation between assignment state-
ment and branch statement) and B-B correlation (the correla-
tion between branch statement and branch statement).

IV. AN APPROACH TO DETECTING INTERPROCEDURAL
INFEASIBLE PATHS
A. OVERVIEW
In this section, an approach for detecting interprocedural
infeasible paths based on the unsatisfiable path constraint pat-
terns is presented. Fig. 2 shows the basic process of suspected
faults confirmation; the dotted rectangle represents the basic
process of detecting interprocedural infeasible paths based
on unsatisfiable path constraint patterns. First, the constraint
extraction for the selected path is executed. Then, the path
constraints are clustered and simplified. Finally, a detected
path is deemed to be an interprocedural infeasible path if
its simplified constraint conditions match one of the nine
unsatisfiable path constraint patterns, which are discovered
by mining a large number of infeasible paths.

To better understand our basic idea, the code segment
in Fig.1 is used to illustrate the basic process of path infeasi-
bility analysis. We assume that the selected path is 2-3-4-5-
6-7-12-13-14-15 with a backward path selection strategy and
that the path constraint is X > 1 ∧ Y > 0 ∧ X < 0. Then,
by executing constraint clustering, the constraint conditions
X > 1 and X < 0, which are related to the variable X , are
put into a dependent predicates set; the constraint condition
Y > 0 is considered as another dependent predicates set
related to the variable Y . Because each of the constraint
conditions is already in its simplest form, the constraint
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FIGURE 2. Basic process of suspected faults confirmation.

simplification step can be ignored. Finally, we compare each
dependent predicates set of this path with the unsatisfiable
path constraint patterns and find that the dependent predicates
set {X > 1,X < 0} is consistent with one of the unsatisfiable
path constraint patterns. Therefore, the path 2-3-4-5-6-7-12-
13-14-15 is determined as an interprocedural infeasible path
without using a constraint solver to solve the path constraint.

B. UNSATISFIABLE PATH CONSTRAINT PATTERNS
In recent years, some researchers have used the pattern check-
ing technology [30], [31] to solve the problems encountered
in the study. In this paper, we use the unsatisfied constraint
patterns to detect infeasible paths. An unsatisfiable path con-
straint pattern is the abstract description of the unsatisfiable
constraint of a path. For the sake of obtaining the unsatisfiable
constraint patterns, we manually confirm 12695 interproce-
dural infeasible paths distributed in 6 C language projects,
which were written by programmers of various backgrounds,
from undergraduate students to industrial software engineers,
and these interprocedural infeasible paths are considered as
the sample paths. Then we extract the corresponding path
constraint of each infeasible path, and find out the unsat-
isfiable constraint (the path constraint conditions among
which are conflict) of each path. After that, we mine the
unsatisfiable path constraint features of these infeasible path.
Finally, 9 unsatisfiable path constraint patterns are discov-
ered, as shown in table 1. The first three columns represent
the number of patterns, the abstract descriptions of the unsat-
isfiable constraint patterns and the constraint conditions of
the corresponding pattern, respectively, while the last column
contains the conflict types of dependent predicates.

In general, the infeasible paths are caused by the con-
flicts between assignment statements and branch statements
or among two or more branch statements. Accordingly,
we divide the unsatisfiable path constraint patterns into two
categories, i.e., A-B conflict and B-B conflict, which repre-
sent the conflict between assignment statements and branch
statements and that among the branch statements, respec-
tively. As shown in table 1, patterns 1-3 are regarded as
A-B conflict type because there is a branch predicate in the
path constraint that always takes a false value. Moreover,

TABLE 1. Unsatisfiable constraint patterns.

patterns 4-9 are regarded as B-B conflict type because there
are conflicts among the dependent predicates, i.e., there is no
solution for the path constraint. To better understand these
9 unsatisfiable path constraint patterns described in table 1,
in the following two subsections, we will illustrate each of
them in detail.

1) ILLUSTRATIONS OF PATTERNS 1-3
As shown in Fig. 3, the C language code segments (a),
(b), and (c), which are taken from the open source program
linux-3.4.113-master, are given to introduce unsatisfiable
constraint patterns 1-3, respectively. We use the symbol
‘. . .’ to represent statements that are not important for the
example. In code segment (a), the return value of function
hib_wait_on_bio_chain is zero if a path takes the true branch
of predicate node ‘if (bio_chain==NULL)’ at statement 10.
Accordingly, the value of variable ret is zero at statement 3,
and predicate ret of predicate node ‘if (ret)’ is zero at state-
ment 4. Therefore, the path 1-2-3-8-9-10-11-4-5 is consid-
ered as an interprocedural infeasible path, as it cannot take
the true branch of predicate node ‘if (ret)’ at statement 4.
That is, the path is determined as an infeasible path while a
constraint condition (branch predicate) of the path constraint
is unsatisfiable. Therefore, the path constraint conditions
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FIGURE 3. Examples illustrating unsatisfiable path constraint
patterns 1-3.

(dependent predicates) of path P follow unsatisfiable path
constraint pattern 1 (shown in line 2 of table 1) if and only
if the following two conditions are satisfied.
• One of the constraint conditions E of the path P contains
only one variable V.

• The variable V, which was defined in the previous
assignment statement, that can lead to the constraint
condition E is unsatisfiable.

The example in Fig. 3(b) is used to illustrate unsatisfiable
path constraint pattern 2. In the code segment, since the
value of variable ret is related to the return value of function
set_blocksize, the variable ret will take a value of zero if
predicate node ‘if (size < bdev_logical_block_size (bdev))’
takes the false branch. Therefore, the predicate of predicate
node ‘if (res < 0)’ is ‘0 < 0’ at statement 4. Obviously,
predicate node ‘if (res < 0)’ cannot take the true branch,
as the constraint condition ‘0< 0’ is unsatisfiable and the path
that must pass through sub-path 3-8-9-10-12-13-14-4-5 is an

interprocedural infeasible path. Thus, if the path constraint of
path P satisfies the following conditions, then we say that it is
consistent with unsatisfiable path constraint pattern 2 (shown
in line 3 of table 1).
• A constraint condition of path P has only a relational
expression.

• One side of the relational expression is the constant α,
α ∈ R (R represents a real number), while the other side
is a variable V, which has been defined in the previous
statement. Moreover, the value of V is equal to that of
the constant α.

• The symbol 2 denotes the relational operator of the
relational expression, with 2 ∈ {>,<, ! =}.

The code segment in Fig.3(c) is similar to the code segment
in Fig.3(b). The value of variable pm_qos_class depends on
the return value of functionfind_pm_qos_object_by_minor,
and it takes a constant ‘-1’ if the predicate node
‘if(minor==pm_qos_array[pm_qos_class] →pm_qos_
power_miscdev.minor)’ takes the false branch. Moreover,
the constraint condition of the true branch of predicate
node ‘if (pm_qos_class >= 0)’ is ‘−1 >= 0’, which is
an unsatisfiable constraint condition. As a result, the path
that has to pass through the path segment 3-9-10-11-13-14-
4-5 is an interprocedural infeasible path. We then say that
the path constraint of path P is consistent with unsatisfiable
constraint pattern 3 (shown in line 4 of table 1) if it satisfies
the following conditions.
• A constraint condition of path P contains only a rela-
tional expression.

• The two sides of the relational expression are repre-
sented by α and β (α, β ∈R, R represents a real number,
and α < β); one of them is a variable V, which has been
defined in the previous statement, and its value is a real
number.

• 2 denotes the relational operator between α and β, with
2 ∈ {>,>=,=}.

From the illustrations above, we can see that an assignment
statement may have an effect on a predicate in a program,
which can lead to the predicate always taking a false (true)
value. Accordingly, this will result in any path that passes
through the true (false) branch of this predicate being an
infeasible path. Therefore, unsatisfiable path constraint pat-
terns 1-3 can be considered as A-B conflict type.

2) ILLUSTRATIONS OF PATTERNS 4-9
The six code segments shown in Fig. 4 and Fig. 5 are
used to illustrate unsatisfiable path constraint patterns 4-9.
The code segment in Fig. 4(a) is taken from the open
source program linux-3.4.113-master. If predicate node ‘if
(handle→cur &&handle→cur_swap)’ takes the true branch,
then the constraint condition of this compound predicate is
the conjunction of ‘handle→ cur ! = null’ and ‘handle→
cur_swap ! = null’. Accordingly, the value of formal
parameter offset is not null in function write_page, and
there are no redefinition statements of parameter offset
from the function entry to predicate node ’if (!offset)’.
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FIGURE 4. Examples illustrating unsatisfiable path constraint
patterns 4-6.

Thus, the predicate node ‘if (!offset)’ will always take
the false branch, and the paths traversing sub-path
1-2-3-7-8-9-11 are considered as interprocedural infeasible
paths. Since the infeasible paths in Fig. 4(a) are caused by
the unsatisfiable branch predicates, we say that the path
constraint of path P is consistent with unsatisfiable path
constraint pattern 4 (shown in line 5 of table 1) if and only if
it satisfies the following conditions.
• The path constraint of path P contains at least two branch
predicates p and q.

• p and q are defined as the relational expressions E2α
and E9α, respectively. The symbol E represents an
expression, and α denotes a real number. E in p and E
in q are identical, and α in p and α in q are identical.

• The relational operators 2 and 9 satisfy one of the
following three cases: (1) 2 ∈ {>,>=,=} and
9 ∈ {<}. (2) 2 ∈ {>} and 9 ∈ {=, <,<=}.
(3) 2 ∈ {=} and 9 ∈ {! =}.

The code segment in Fig. 4(b) is also taken from
linux-3.4.113-master, from which we can see that if a
path takes the true branch of predicate node ‘if (res < 0)’

FIGURE 5. Examples illustrating unsatisfiable path constraint
patterns 7-9.

at statement 12, the return value of function swsusp_swap_
check is the variable res, and if the path also traverses
the false branch of predicate node ‘if (ret)’ in function
get_swap_writer, it is regarded as an interprocedural infea-
sible path. The constraint conditions R < 0 and R = null,
which are extracted from branch nodes ‘if (res < 0)’ and ‘if
(ret)’, respectively, cannot be satisfied simultaneously in one
path (R represents the symbolic variable of variable res). It is
obvious that the infeasible paths in Fig. 4(b) are caused by
the conflict among the constraint conditions; thus, if the path
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constraint of path P satisfies the following conditions, we say
that it is consistent with unsatisfiable constraint pattern 5
(shown in line 6 of table 1).
• The path constraint of path P contains at least two branch
predicates p and q.

• p and q are defined as the relational expressions E2α
and E9β, respectively. The symbol E represents an
expression, and the symbols α and β denote real num-
bers, with α > β.

• The symbols 2 and 9 denote the relational opera-
tors and satisfy the conditions 2 ∈ {>,>=,=} and
9 ∈ {<,=, <=}, respectively.

To introduce unsatisfiable path constraint pattern 6,
the code segment shown in Fig. 4(c), which is taken from
an open source program called sphinxbase-0.3, is used. The
function buf_copy has three predicate nodes which locate
at statement 3, statement 6 and statement 9 of the code
segment,respectively. If a path traverses the true branch of the
first two predicate nodes and the false branch of the last predi-
cate node, then this path is regarded as an infeasible path. The
branch predicates S>256 and N>0 conflict with the branch
predicate S+N < 256 (S andN denote the symbolic variables
of variables sf and nf during the symbolic execution, respec-
tively, and the value of constant CONT_AD_ADFRMSIZE
is 256). Therefore, we say that the path constraint of path P is
consistent with unsatisfiable path constraint pattern 6 (shown
in line 7 of table 1) if and only if the following conditions are
satisfied.
• The path constraint of path P contains branch predicates
p1, p2, p3, . . . , pn, with n > 2.

• The branch predicates p1, p2, p3, . . . , pn are defined
as the relational expressions E121 C1, E222 C2, . . . ,

En2nCn, respectively. The symbol Ei (0 < i < n + 1)
represents an expression, the symbol Ci denotes a real
number, and En =

∑n−1
i=1 Ei.

• The symbols 2m and 9 denote the relational operator
(0 < m < n) and should satisfy one of the following
two cases: (1) 2m ∈ {>,>=,=} and 9 ∈ {<,=, <=}
if the constant Cn <

∑n−1
m=1 Cm; (2) 2m ∈ {<,=, <=}

and 9 ∈ {>,>=,=} if the constant Cn >
∑n−1

m=1 Cm.
The code segment in Fig. 5(a), which is taken from a

student’s project, is used to illustrate unsatisfiable constraint
pattern 7 (shown in line 8 of table 1). If a path starts
from the entry node of function f_cpx and executes the true
branches of predicate nodes ‘if (lpx == LTREE_P)’ and ‘if
(lpy == RTREE_P)’, then the function f_dpx will be called
in statement 10, and if the true branch of predicate node ‘if
(op_add<dpx_s)’ is executed in function f_dpx, then the path
is considered as an infeasible path, as there is a conflict among
the constraint conditions that are extracted from the three
predicate nodes above. Thus, we say that the path constraint
is consistent with unsatisfiable path constraint pattern 7 if the
following conditions are satisfied.
• The path constraint of path P contains at least three
branch predicates p, q, and r.

• The branch predicates p, q, and r are defined as the
relational expressions Ep2α, Eq2β, and Er9γ , respec-
tively. The symbol E represents an expression, the sym-
bols α, β, and γ denote real numbers, and Er = Ep� Eq
and γ = α�β.

• The symbols 2, 9, and � denote the relational oper-
ators and should satisfy the conditions 2 ∈ {=},
9 ∈ {<, ! =, >} and � ∈ {+,−, ∗, /}, respectively.

The code segment in Fig. 5(b) is used to illustrate unsatis-
fiable path constraint pattern 8 (shown in line 9 of table 1),
it is also taken from a student’s project. If a path starts from
the entry of function rout_sub and takes the true branches
of branch nodes ‘if (major == sline)’ and ‘if (major ==
count)’, then the function ident_line will be called at line 8,
and if the false branch of predicate node ‘if (argx == argy)’
is traversed in function ident_line, then the path is regarded
as an interprocedural infeasible path, as there is a conflict
among the constraint conditions that are extracted from the
three predicate nodes above. Therefore, if the path constraint
of path P satisfies the following conditions, we say that it is
consistent with unsatisfiable constraint pattern 8.
• The path constraint of path P contains branch predicates
p1, p2, p3, . . . , pn, with n > 2.

• The branch predicates p1, p2, p3, . . . , pn are defined as
the relational expressions E12E2, E22E3, . . . ,En9E1,
respectively, where Ei (0 < i < n + 1) represents an
expression.

• The symbols 2 and 9 denote the relational opera-
tors and should satisfy the conditions 2 ∈ {=} and
9 ∈ {! =, >,<}, respectively.

To illustrate unsatisfiable path constraint pattern 9 (shown
in the last line of table 1), the code segment in Fig. 5(c), which
is taken from the open source project deco,3 is used. The func-
tion ffcopy has two predicate nodes and one loop node which
locate at statement 3, statement 7, and statement 10 of the
program, respectively. If a path traverses the false branches
of the three nodes above, then the path is considered to be an
interprocedural infeasible path, as there is a conflict among
the constraint conditions that are extracted from the three
nodes above. Thus, we say that the path constraint of path P is
consistent with unsatisfiable path constraint pattern 9 if and
only if the following conditions are satisfied.
• The path constraint of path P contains at least three
branch predicates p, q, and r.

• The branch predicates p, q, and r are defined as the rela-
tional expressions E2α, E9α, and E�α, respectively. E
represents an expression, and α represents a real number.

• The symbols2,9, and� denote the relational operators
and should satisfy the conditions2 ∈ {>=},9 ∈ {<=},
and � ∈ {! =}, respectively.

From the illustrations above, we find that a path will be
regarded as an infeasible path if there is a conflict among
the branch predicates of the path constraint. In general, there
are several reasons for the conflicts that between assignment

3http://deco.sourcearchive.com/documentation/3.9/main.html
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statement and branch statement or among branch predicates,
one of which is that an assignment statement affects the value
of a predicate node statement, and the assignment statement
is associated with the branch statement. As shown by the
examples in Fig. 3, a variable is usually referenced in a
predicate node statement, and its value is assigned by a return
value of a function. If the return value cannot satisfy one of
the branch predicates of the predicate node, then the path
that passes through these nodes is determined as an infeasible
path. Another major reason is that branches are not totally
independent of each other and instead may be correlated.
Considering the examples in Fig. 4 and Fig. 5, because the
interprocedural branches in the program are correlated, a con-
flict will exist among the interprocedural branch predicates.
Accordingly, the path that passes through these correlated
branch predicates will be regarded as an interprocedural
infeasible path.

C. EXTRACTION, CLUSTERING AND SIMPLIFICATION OF
PATH CONSTRAINTS
Although the extraction, clustering and simplification of path
constraints are the basic processes of detecting infeasible
paths, they are not the focus of this paper; thus, wewill simply
introduce these techniques. As shown in Fig. 2, to detect
whether a path is an interprocedural infeasible path, we first
need to extract its path constraint. It should be noted that
the path used for extraction is an interprocedural path; there-
fore, the supergraph of the program under test should be
constructed during symbolic execution. Then, we can extract
the constraint of the interprocedural path as the constraint of
the intraprocedural path. For example, the path 1-2-3-7-9-10-
12 in Fig. 4(f) is an intraprocedural path, and the path 1-2-3-9-
10-11-12-13-4-6 in Fig. 4(b) is an interprocedural path. Then,
when extracting their path constraints, path constraint N >=
0 ∧ N! = 0 ∧ N <= 0 is extracted from the former, while
path constraint R < 0 ∧ R = 0 is extracted from the latter.
The symbols N and R represent the corresponding variables
n and res, respectively, used during the symbolic execution.
To better recognize the path constraint using the unsatis-

fiable path constraint patterns, we need to perform several
conversions for the path constraint. Therefore, the operation
of constraint clustering is executed after the extraction of
the path constraint. Because the path constraint of a path
contains a certain number of predicates, and because some of
them may have common symbolic variables, a predicate may
be dependent on another predicate. Therefore, according to
the dependent relationships among the predicates in the path
constraint, a path constraint can be divided into several parts
in the process of constraint clustering, with every part being
considered as a set of dependent predicates. It should be noted
that a predicate may be put into different sets at the same
time. For example, path constraint X > 1 ∧ X < 0 ∧ Y >

0 ∧ X + Y > 0 ∧ Z > 0 can be divided into three sets of
dependent predicates: {X > 1 ∧ X < 0}, {X > 1 ∧ X <

0 ∧ Y > 0 ∧ X + Y > 0}, and {Z > 0}. Moreover, each
of the sets can be considered as a sub-constraint of the path

constraint. If one of the sub-constraints is unsatisfiable, then
the path will be considered as an infeasible path. Considering
the example in Fig. 1, the path constraint of path 2-3-4-5-
6-7-14-15-16-17 is X > 1 ∧ Y > 0 ∧ X < 0, while
{X > 1,X < 0} and {Y > 0}, which can be considered
as the sub-constraints of this path, are the sets of dependent
predicates. Finally, the path is determined to be an infeasible
path because the sub-constraint in the former is unsatisfiable.

The simplification of the path constraints is a step fol-
lowing the clustering of the path constraints. In this step,
the dependent predicates in the set of dependent predicates
are simplified so that we can improve the accuracy and the
speed of the matching between the set of dependent pred-
icates and the unsatisfiable path constraint patterns. First,
the basic expression is obtained by analyzing the expression
of each dependent predicate in the set. Then, a symbolic
variable is used to replace the basic expression so that the
complicated predicates in the set can be simplified to produce
simple predicates. Finally, the redundant predicates in the set
are removed so that the set of dependent predicates can be
recognized based on the unsatisfiable path constraint patterns.
For example, the set {M+N > 1,M+N > 0,M+N = 0}
is a set of dependent predicates, and the expression M+N is
a basic expression of the set. When executing the operation
of constraint simplification, the basic expression is replaced
by a symbolic variable MN, and the redundant dependent
predicate MN > 1 is removed because the dependent pred-
icate MN > 0 contains it. After that, the set of dependent
predicates is updated to the set {MN > 0,MN = 0},
which can easily be recognized based on the unsatisfiable
path constraint pattern.

D. ALGORITHMS
Based on the unsatisfiable path constraint patterns that have
been introduced above, in this subsection, we present a set of
algorithms for detecting whether a path is an interprocedural
infeasible path. Algorithm 1 is the main algorithm, which is
used to detect whether a path p is an interprocedural infea-
sible path in program M. Each function PatternMatch_i(s)
(PM_i(s)) that is called in the algorithm represents one of
the matching algorithms between the sub-constraint (depen-
dent predicates in set s) and the unsatisfiable path con-
straint patterns. Additionally, the functions SG(),Constrain-
tExtract(), and ConstraintCluster() are used to construct
the supergraph of the program, extract the path constraints
and cluster the path constraints, respectively. For simplicity,
we describe only two representative matching algorithms:
PatternMatch_5(s) for pattern 5 and PatternMatch_8(s) for
pattern 8.

In algorithm 1, the supergraph G* of program M should
be constructed in the initialization step, which is executed
only once to detect the feasibility of any path of the program
M (line 1). By extracting and clustering the path constraints
of path P, accordingly, the set λ, which consists of several
sets of dependent predicates, can be obtained (lines 2-3).
Each set of dependent predicates in the set λ represents a
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Algorithm 1AnAlgorithm for Detecting Infeasible Paths
Input: a path P of program M, program M
Output: true or false

1 G*← SG(M);
2 θ ← ConstraintExtract(p, G*);
3 λ← ConstraintCluster(θ );
4 for each s in λ; do
5 if (s.length == 1) then
6 if (PM_1(s)||PM_2(s)||PM_3(s)) then
7 return true;
8 end
9 else if (s.length == 2) then
10 if (PM_4(s)||PM_5(s)) then
11 return true;
12 end
13 end
14 else if (s.length == 3) then
15 if ((PM_9(s)||PM_6(s)||PM_7(s)||PM_8(s))

then
16 return true;
17 end
18 end
19 else if (s.length >= 4) then
20 if ((PM_6(s)||PM_7(s)||PM_8(s)) then
21 return true;
22 end
23 end
24 end
25 end
26 return false;

sub-constraint of path P, and the appropriate matching func-
tion, i.e., the algorithm used to match an unsatisfiable path
constraint patternwith the sub-constraint, is chosen according
to the number of dependent predicates that the set contains.
If one of the sub-constraints of path P can be successfully
matched with one of the nine patterns, the path p can be
regarded as an interprocedural infeasible path; otherwise,
the path P may be a feasible path (lines 4-25). Because the
number of dependent predicates in a sub-constraint may be
greater than the number of elements that the unsatisfiable path
constraint pattern contains after path constraint clustering is
performed, at some time, the sub-constraint can be matched
with one of the patterns, such as pattern 6, pattern 7, and
pattern 8, that can be matched with the sub-constraint, which
contains more than four dependent predicates based on an
analysis of the results of path constraint clustering. Therefore,
the functions PM_6(s), PM_7(s), and PM_8(s) are called
twice in algorithm 1. The overall complexity of algorithm 1 is
O(M*P), whereMdenotes the number of dependent predicate
sets after simplification of the path constraint has been carried
out, P denotes the maximum complexity of the algorithms
corresponding to nine patterns.

Algorithm 2 PatternMatch_5(s)
Input: a set s of dependent predicates
Output: true or false

1 s1 = {>,>=,=}, s2 = {<,=<,=};
2 for each predicate pair (p,q), p,q∈ s do
3 if (p_le = q_le) then
4 if (p_re > q_re) then
5 if (the operator of p ∈ s1) then
6 if (the operator of q ∈ s2) then
7 return true;
8 end
9 end

10 end
11 else
12 if (the operator of p ∈ s2) then
13 if (the operator of q ∈ s1) then
14 return true;
15 end
16 end
17 end
18 end
19 end
20 return false;

Algorithm 2 is an algorithm for determining whether the
sub-constraint can be matched with pattern 5. The symbols
p_le and p_re represent the left expression and the right
expression of predicate p, respectively. For each dependent
predicate pairs in the set s, the algorithm identifies whether
the left expressions of the two dependent predicates are equal
firstly. If they are not equal, then it will choose the next
predicate pair to determine whether the dependent predi-
cates are consistent with pattern 5. Otherwise, it will iden-
tify whether the right expressions of the two predicates are
equal (lines 1-3). If the right expressions are not equal, then
the matching operation of the operators will continue, and
if the operators of the dependent predicates belong to the
sets of operators that have been defined previously, then the
sub-constraint can match with pattern 5. Otherwise, it will
choose the next predicates pair to determine whether the
dependent predicates are consistent with pattern 5. If none
of the predicate pairs in set s are consistent with pattern 5,
it means that the sub-constraint cannot match with pattern 5
and should match with the other patterns to determine the
feasibility of the path (lines 4-20). In addition, the complexity
of algorithm 2 is O(Q), where Q represents the number of
predicate pairs in set s. The number of predicate pairs can be
calculated by counting the number of dependent predicates in
set s, and Q is equal to N*(N-1)/2 where N denotes the num-
ber of dependent predicates in set s, therefore, the complexity
of algorithm 2 is O(N 2).

Algorithm 3 is an algorithm for determining whether the
sub-constraint can be matched with pattern 8. First, according
to the operators of the dependent predicates, the dependent
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Algorithm 3 PatternMatch_8(s)
Input: a set s of dependent predicates
Output: true or false

1 s′ = φ, s′′ = φ,TS1 = φ,TS2 = φ;
2 for (each predicate p in s) do
3 if (the operator of p∈ {! =, >,<}) then
4 add p to s′ and continue;
5 end
6 TS1 = φ,TS2 = φ;
7 if (the operator of p equals ‘=’) then
8 for (each cs in s′′) do
9 if (p_le∈cs) then

10 TS1 = cs;
11 end
12 if (p_re∈cs) then
13 TS2 = cs;
14 end
15 end
16 if (TS1 == φ&&TS2 == φ) then
17 create a new set cs_new;
18 add p_le and p_re to cs_new;
19 add cs_new to s′′;
20 end
21 else if (TS1! = φ&&TS2 == φ) then
22 add p_re to TS1, and update the set s′′;
23 end
24 else if (TS1 == φ&&TS2! = φ) then
25 add p_le to TS2, and update the set s′′;
26 end
27 else if (TS1! = φ&&TS2! = φ) then
28 merge the sets TS1,TS2;
29 update the set s′′;
30 end
31 end
32 end
33 for (each p in s′) do
34 for (each cs in the s′′) do
35 if (p_le and p_re both in set cs) then
36 return true;
37 end
38 end
39 end
40 return false;

predicates in the set s are divided into two types and stored in
sets s’ and s’’. The former set stores the dependent predicates
whose operators belong to set {>,<, ! =}, while the latter
one stores the dependent predicates whose operators are ‘=’
(lines 1-7). Furthermore, when adding a dependent predicate
to set s’’, only the left and right expressions of the predicate
are added, and they are considered as a set. At the same time,
if a dependent predicate is added to set s’’, it needs to be
determined whether a set in set s’’ contains the left and right
expressions of the dependent predicate. If the set in set s’’

does not contain any expression of the dependent predicate,
then a new set must be created and should be added to set s’’.
If the set in set s’’ contains only one side of the expression of
the dependent predicate, then the other side of the expression
of the dependent predicate should be added to set s’’. If one set
in set s’’ contains one side of the expression of the dependent
predicate and another set in set s’’ contains the other side
of the expression of the dependent predicate, then it must
merge the two sets of set s’’ and update the set s’’ (lines 8-32).
Finally, if a set in set s’’ contains both the left expression and
right expression of a dependent predicate in set s’, then the
output of the algorithm is ‘true’, which denotes that the sub-
constraint can be matched with pattern 8; otherwise, it needs
to be determined whether the sub-constraint can be matched
with one of the other patterns (lines 33-40). The complexity
of algorithm 3 is O(N*W), where N denotes the number of
dependent predicates in set s and W denotes the number of
set cs. Since the set cs is composed of left or right expressions
of dependent predicates with the same value, that is, in the
worst case, W is equal to N/2 where N denotes the number of
dependent predicates in set s, the complexity of algorithm 3
is O(N 2).

V. EVALUATION AND DISCUSSION
In this section, we first introduce the experimental design
and evaluation metrics. Then, we introduce the experimental
results in detail to verify the accuracy and efficiency of our
approach. After that, we discuss the experimental results.
Finally, the threats to validity are introduced.

A. EXPERIMENTAL DESIGN
We implement our approach on DTS (defect testing system)
which is a code static analysis tool for detecting the defects in
program. To evaluate our approach, we conduct experiments
on five open source C language programs. The information
regarding these programs is given in table 2; the columns
File, LOC, and Function present the number of files, lines of
code and number of functions of the program, respectively.
As it is difficult to determine the actual number of interpro-
cedural infeasible paths of a complex program, to ensure the
effectiveness of the experiments, we select 10% of the total
number of interprocedural paths which are generated in the
previous experiments by a random program for detection and
manually confirm the interprocedural infeasible paths, treat-
ing these infeasible paths as seeds. Furthermore, although our
approach can detect both the intraprocedural and interproce-
dural infeasible paths, we mainly illustrate the detection of

TABLE 2. Basic information regarding the benchmark.
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TABLE 3. Experimental results of interprocedural infeasible paths detection.

interprocedural infeasible paths in this paper; thus, we only
conduct experiments on the interprocedural paths.

To better evaluate the effectiveness and efficiency of
our approach, we compare the approach proposed in this
paper with one that detecting infeasible paths by recogniz-
ing the identical/complement-decision, mutually-exclusive-
decision, check-then-do, and looping-by-flag patterns (the
overall complexity of algorithm is O(N 2E), where N denotes
the number of predicate nodes of selection construct in the
CFG and E denotes the number of edges of the CFG) [22].
We then confirm and count the number of false positives and
false negatives of each approach. If an interprocedural non-
infeasible path is detected as an interprocedural infeasible
path by an approach, a false positive is counted for that
approach. In contrast, if an infeasible path is wrongly detected
as a feasible path by an approach, a false negative is counted
for that approach. Moreover, we also count the number of
infeasible paths detected based on each pattern presented in
this paper. To evaluate the efficiency, the time costs of these
two approaches are compared.

B. EVALUATION METRICS
We use the standard Precision, Recall, and F-Score metrics to
evaluate the effectiveness of an approach. Precision measures
the actual interprocedural infeasible paths that are correctly
detected in terms of a percentage of the total number of inter-
procedural infeasible paths, while Recall measures the ability
of an approach to find actual infeasible paths. By using TP, FP,
and FN to denote true positive, false positive and false nega-
tive detection results, respectively, the Precision, Recall, and
F-Score can be computed using Equations (1), (2), and (3),
respectively.

Precision= TP/(TP+ FP). (1)

Recall = TP/(TP+ FN ). (2)

F = 2 ∗ Precision ∗ Recall/(Precision+Recall) (3)

Additionally, we evaluate the efficiency of an approach
by computing its time cost, the total time required for each
benchmark and the average processing time for each path.

C. EXPERIMENTAL RESULTS
Table 3 shows the experimental results of the two approaches
mentioned above. Columns Path, Seed,Cmax andCmin present
the number of interprocedural paths taken into consideration,
the number of truly interprocedural infeasible paths, and
the maximum and minimum call depth of the functions

traversed by the interprocedural infeasible paths, respectively.
Columns Time, AT, Pre, Rec, and F present the total time cost,
the average time cost for processing one path, the Precision
value, the Recall value, and the F-Score value, respectively.
Furthermore, columns Approach I and Approach II represent
the approach proposed in this paper and the approach pro-
posed by Ngo and Tan [22], respectively.

According to table 3, we randomly select 17626 interpro-
cedural paths from the five open source programs, 2788 paths
of which are manually confirmed to be infeasible paths. It is
important to note that the paths selected for detection are
different from the paths selected for mining the unsatisfiable
path constraint patterns. The value ofCmax ranges from 6 to 9,
and the value of Cmin ranges from 3 to 4. Approach I and
Approach II are able to detect 2498 interprocedural infeasible
paths and 2092 interprocedural infeasible paths, respectively,
with each of these paths being a true positive. Moreover,
the former approach causes 290 false negatives, while the
latter causes 692 false negatives. Fortunately, because neither
of these two approaches causes any false positives for the
seeds, all the detected interprocedural infeasible paths are the
actual infeasible paths. Thus, the Precision of each approach
is 100%. Accordingly, the Recall values and F-Score values
also can be calculated. The former approach achieves higher
Recall values and F-Score values than those of the latter
one, the Recall improvement of the former over the latter
ranges from 4.1% to 23.8% for all the subject programs,and
the F-Sore improvement of the former over the latter ranges
form 2.6% to 16.1% for all the subject programs. On average,
the former achieves an average Recall of 90.6% and an aver-
age F-Score of 94.7%, while the latter achieves an average
Recall of 76.5% and an average F-Score of 86.4%.

With respect to the efficiency of infeasible paths detection,
Approach I requires 1.59 seconds to process a path, while
Approach II requires 1.75 seconds on average. Furthermore,
comparing the total time costs of Approach I andApproach II,
Approach I requires approximately 46 minutes less than
Approach II to detect the infeasible paths among the given
paths. That is, the average time cost of Approach I decreases
by 9.1% compared to that of Approach II.

Table 4 shows the results detected based on each pattern
proposed in this paper. Columns P1, P2, P3, P4, P5, P6,
P7, P8, and P9 give the number of interprocedural infeasible
paths detected based on pattern 1, pattern 2, pattern 3, pat-
tern 4, pattern 5, pattern 6, pattern 7, pattern 8, and pattern 9,
respectively.
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From table 4, the number of interprocedural infeasible
paths detected based on each pattern can be determined.
Pattern 4 is able to detect 853 infeasible paths in total, while
pattern 7 detects only 33 infeasible paths. Moreover, accord-
ing to table 2, the percentage of infeasible paths detected
based on each pattern over all the infeasible paths detected is
as follows: 24.3% are detected based on pattern 1, 7.6% are
detected based on pattern 2, 5% are detected based on pattern
3, 34.1% are detected based on pattern 4, 17.7% are detected
based on pattern 5, 3.4% are detected based on pattern 6, only
1.3% are detected based on pattern 7, 1.4% are detected based
on pattern 8 and 5.2% are detected based on pattern 9.

TABLE 4. Results detected based on each pattern.

D. DISCUSSION
The above experimental results show that more infeasible
paths can be detected by our approach than by approach II,
because approach II detects the infeasible paths by recogniz-
ing four patterns which are just the common properties of
some infeasible paths in the program, compared with the nine
unsatisfiable path constraint patterns proposed in this paper,
the types of infeasible paths detected by our patterns include
not only the types of infeasible paths identified by the four
patterns, but also include some types of infeasible paths that
cannot be detected by approach II. Such as the pattern 4 of our
approach, it not only can be used to detect the infeasible paths
caused by the completely different path constraint conditions
(the identical/complement-decision pattern of approach II),
but also can be used to detect the infeasible paths caused by
the other type of conflicts among the constraint conditions.
That is, no matter how many experiments are performed and
the sample paths are selected in an experiment, the number
of infeasible paths detected by our approach would not less
than the number of infeasible paths detected by approach II.

Furthermore, in terms of the overall complexity of the
algorithm, algorithm 1 is the main algorithm of our approach,
and its overall complexity is O(M*P), where M denotes the
number of dependent predicate sets, P denotes the maximum
complexity of the our matching algorithms. P is equal to
O(N 2), where N denotes the number of predicates in the
dependent predicate set, i.e., the overall complexity of our
main algorithm is O(N 2*M). Compare with the overall algo-
rithm complexity O(N 2*E) of approach II, where N denotes
the number of predicate nodes of selection construct in the
CFG (is equal to N*M in our algorithm complexity) and
E denotes the number of edges of the CFG, it obviously
that the algorithm complexity of our approach is less than

approach II. In other words, our approach would take less
time than approach II to detect the infeasible paths, which is
consistent with the experimental results. Therefore, although
we have not perform more experiments on more paths, it has
only a little effect on the reliability of experimental results.

Fig.6 shows a code segment which is taken from project
a200c. In the code segment, the subpath 3-4-5-6-7-10-11-
12-13-14-15 is considered as an infeasible path because of
the conflict between the constraint conditions ‘Y>TABEND’
and ‘Y<TABSTART’. However, the infeasible path not
caused by one of the four patterns proposed in approach II,
as a result, it cannot be detected by approach II. Fortunately,
the path constraint of this infeasible path can match with the
pattern 5 proposed in this paper, so it can be detected by our
approach.

FIGURE 6. A case not detected by approach II.

Although the experimental results show that 89.6% of
the interprocedural infeasible paths can be detected and an
average Recall of 90.6% is achieved using our approach, there
are 290 false negative cases, which account for 10.4% of
all truly infeasible paths. We manually analyze all the false
negative cases and find that 12 cases do not follow any of
the patterns proposed in this paper. For example, Fig.7 shows
a false negative case which is taken from the project qlib.
Because the path constraint of path 3-4-5-6-7-8-11-12-13-15-
17-19 is aa <= 1.0∧bb <= 1.0∧aa > 0.0∧bb > 0.0∧ (bb *
(aa/(aa+bb)))>1.0, which has no solution, the path is con-
sidered as an interprocedural infeasible path. Unfortunately,
the path constraint of this path cannot be matched with the
unsatisfiable path constraint patterns proposed in this paper;
therefore, this path cannot be regarded as an infeasible path.
Accordingly, the path that contains this path also cannot be
regarded as an interprocedural infeasible path, thus causing a
true negative result.

The remaining 278 false negative cases are not detected
because of the limitations of our approach. According to the
basic process of our approach, to detect the feasibility of a
path, the path constraint must be extracted first. Then, the path
constraint can be analyzed. However, since the extraction of
a path constraint depends on the symbolic execution in our

15052 VOLUME 7, 2019



H. Zhu et al.: Detecting Interprocedural Infeasible Paths Based on Unsatisfiable Path Constraint Patterns

FIGURE 7. A case not detected by the proposed approach.

approach, and because the predicates in programs may have
a number of operations of the complicated data type, such
as the operation of struct, the symbolic execution technique
is unable to better address them. Therefore, although the
path constraint is processed according to our approach after
performing symbolic execution, it cannot bematchedwith the
unsatisfiable path constraint patterns. As such, the infeasible
paths in code segments of Fig. 8 and Fig. 9 cannot be detected.

FIGURE 8. A case not detected by the proposed approach.

FIGURE 9. A case not detected by the proposed approach.

In the code segment of Fig.8, variable str is a pointer with
respect to a str_t struct. ‘if (str → str[str → len − 1] ! =
‘\n’)’ and ‘if (!str)’ are predicate nodes located in function

read_file and function str_add_char, respectively. If a path
chooses the true branch of the former and the true branch of
the latter, then the branch predicates ‘(str→ str[str→ len −
1] ! = ‘\n’)’ and ‘!str’ are the constraint conditions of path
1-2-3-4-5-8-9-10. Moreover, these two constraint conditions
actually follow pattern 4, and the path should be consid-
ered as an interprocedural infeasible path. However, because
the symbolic execution cannot address the predicate ‘(str→
str[str→len - 1] ! = ‘\n’)’, which has a complicated struct,
the path constraint cannot be matched with pattern 4, and our
approach fails to detect the path.

In the code segment of Fig.9, a path which passes the sub-
path 3-6-7-8-9-10-11 should be considered as an infeasible
path, because the predicate node ‘if (len > w)’ in function
getwstring() will choose the false branch to execute when
the function getwstring() is called by function reread(), and
this situation actually follows pattern 3. However, since the
library function strlen() cannot be correctly addressed and
the value of variable len cannot be determined during the
symbolic execution, the constraint condition ‘len > w’ also
cannot be matched with pattern 3, and our approach fails to
detect the paths which pass subpath 3-6-7-8-9-10-11.

Additionally, as shown in table 5, we also summarized
the causes for these false negative cases and divided them
into three types. Columns ID, Number, Situation and Exam-
ple present the type of false negative cases, the number of
false negative cases, the cause for generation of false negative
cases and an example to illustrate a false negative case with
specified type, respectively.

TABLE 5. A summary for the false negative cases.

E. THREATS TO VALIDITY
In this subsection, we will discuss the validity threats appli-
cable to our approach.

1) CONSTRUCT VALIDITY
Although we perform an experimental study on five open
source C projects and the experimental results show that
89.6% of the interprocedural infeasible paths can be accu-
rately detected using our approach, there are still some false
negative cases. One cause of false positives is that, the path
constraint of the detected paths should be obtained firstly
during the detection of interprocedural infeasible paths.
Unfortunately, the extraction of the path constraint depends
on the symbolic execution which can not handle some com-
plex data types. As a result, some infeasible paths contained
complex data types can not match with the nine unsatisfiable
path constraint patterns we found, and these paths can not
be determined as interprocedural infeasible paths. In the
future work, we will pay more attention to study how to
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tackle complex type data during symbol execution, so as the
interprocedural infeasible path can match with one of the
unsatisfiable path constraint patterns proposed in this paper,
and more interprocedural infeasible paths can be detected.
In addition,the DTS uses the function summary to handle
recursion functions in C program during the code static
analysis, which may lead to imprecise interprocedural data
flow analysis, but it has no impact on the effectiveness of our
approach, because our approach is based on the unsatisfiable
path constraint patterns to detect the infeasible paths.

2) INTERNAL VALIDITY
The nine unsatisfiable path constraint patterns are discov-
ered by mining the unsatisfiable path constraint features
of 12695 infeasible paths in six C projects, which may be
incomplete because of the limited sample paths. Fortunately,
the experimental results show that the approach proposed
in this paper can detect the interprocedural infeasible paths
accurately, and only a small part of the interprocedural infea-
sible paths can not be detected due to the fact that it can not
match with one of the nine unsatisfiable path constraint pat-
terns. Furthermore, we can extract the constraint features of
the infeasible paths which can not detected by our approach,
and establish one or more new unsatisfiable path constraint
patterns for detecting the interprocedural infeasible paths in
future.

3) EXTERNAL VALIDITY
Although we only perform an experimental study on five
open source C projects to evaluate our approach, the inter-
procedural infeasible paths in the large C projects also can be
precisely detected by our approach. Compared with middle-
scale or small-scale C projects, the large-scale C projects
may have more functions and the length of the path may be
longer. Accordingly, more path constraints are included in
one path, and the constraint solving time of this path will be
increased in large-scale C projects. However, our approach
does not adopt the constraint solving technique, but uses the
path constraint of the detected path match with one of the
unsatisfiable path constraint patterns for detecting the infea-
sibility of the path. Furthermore, the constraint clustering
and simplified technology are used to improve the detection
efficiency. Therefore, the increase of path length has little
impact on our approach, and our approach can be applied to
the large-scale C projects to detect the interprocedural infea-
sible paths. Furthermore, our approach is used for detecting
the infeasible paths in C language programs at present, and
cannot be used for detecting the infeasible paths in object-
oriented languages programs, such as Java and python, since
there are many differences between C language and object-
oriented programming languages.

VI. CONCLUSIONS
An infeasible path, which is a path in a control flow graph,
cannot be executed for any input values. A large number of
infeasible paths make static analysis overly conservative in

software testing. In this paper, we put forward a new approach
based on unsatisfiable constraint patterns to detect interpro-
cedural infeasible paths. First, we discover nine unsatisfi-
able path constraint patterns by mining the common path
constraint features of a large number of infeasible paths.
Then, by comparing the simplified constraint conditions of
detected paths with the nine unsatisfiable constraint pat-
terns, we can unambiguously detect interprocedural infea-
sible paths. To evaluate the effectiveness and efficiency of
our approach, we also conduct experiments on five open
source C projects. The results show that, on average, our
approach is able to successfully detect the interprocedural
infeasible paths with an average Recall of 90.6%. Moreover,
it is also shown that our approach outperforms the code
pattern approach in the sense that our approach requires less
time and detects more interprocedural infeasible paths.

However, our approach is unable to adequately address
more complex data types. In the future, we will focus on
improving our approach to overcome this limitation,such as
modeling complex data types during symbolic execution and
improving the constraint patterns, so that more infeasible
paths in complex programs can be precisely detected.
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