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ABSTRACT The human central nervous system (CNS) effortlessly performs complex hand movements
with the control and coordination of multiple degrees of freedom. It is hypothesized that the CNS might use
kinematic synergies to reduce the complexity of movements, but how these kinematic synergies are encoded
in the CNS remains unclear. In order to investigate the neural representations of kinematic synergies, scalp
electroencephalographic (EEG) signals and hand kinematics were recorded from ten subjects during six
representative types of hand grasping. Kinematic synergies were obtained from recorded hand kinematics
using singular value decomposition. The recorded kinematics were then reconstructed using weighted linear
combinations of synergies, and the optimal weights were computed using optimal linear estimation. Using
EEG spectral powers as neural features, a multivariate linear regression model was trained on the weights
of the kinematic synergies. Using this model, kinematics from the testing subset of data was decoded from
the EEG features with threefold cross-validation. The results show that the weights of kinematic synergies
used in a particular movement reconstruction were strongly correlated to EEG features obtained from that
movement. EEG features were able to successfully decode synergy-based movements with an average
decoding accuracy of 80.1 ± 6.1% (best up to 93.4 ± 2.3%). These results have promising applications
in noninvasive neural control of synergy-based prostheses and exoskeletons.

INDEX TERMS Electroencephalography, principal component analysis, kinematic synergies, movement
primitives, multivariate linear regression.

I. INTRODUCTION
Movement control involves coordination across multiple
areas to integrate sensory and cognitive information, fol-
lowed by motor planning and execution. The motor cortex
is responsible for the majority of planning, executing, and
controlling voluntary behavior and includes the premotor
cortex, primary motor cortex, and supplementary motor area.
Previous studies [1], [2] demonstrated that activity from those
areas is related to movement generation including directional
modulation, elbow/shoulder flexion/extension, and specific
joint movement.

Producing movement in the upper limb involves coordi-
nating more than 40 degrees of freedom (DoF) [3]. The brain
could control each of these DoF individually, but this would
result in highly complex control. In 1967, Bernstein [4] pro-
posed the idea of synergy-based movement, which is based

The associate editor coordinating the review of this manuscript and
approving it for publication was Mohammad Zia Ur Rahman.

on two key concepts: 1) the central nervous system (CNS)
adapts strategies that reduce the complexity of motor con-
trol and 2) the CNS may use global variables, instead of
independent DoF, to reduce this complexity. Synergy control
preserves the functional integrity of the collection of rela-
tively independent DoF [5], providing a simplified, lower-
dimensional space compared with controlling those DoF
individually. By analyzing kinematics of hand joints only,
it was found that the first principal component accounted for
∼70 to 95% of variance in hand grasping movements [6], [7].
Each of these patterns is considered a kinematic synergy.
These kinematic synergies supported the major types of
grasps that humans use.

As the CNS is a collection of networks that span mul-
tiple areas, an anatomical placement of hand synergies has
not yet been defined. One of the challenges is determining
the relationship between synergies and their underlying
neural representations [8]. The multiple parallel interac-
tions among motor areas may reflect dynamic functions of
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hand movement. Within the primary cortex of monkeys,
it has been shown that a ‘hand’ and ‘arm’ area exist and
that selected neurons within these areas encode movement
at multiple joints [9], [10]. Other neurons in this region are
responsible for connecting the hand and arm regions [11].
Previous studies also demonstrated both single cell neu-
ral [12] and population activity of interneurons [13] are
correlated with muscle synergies during hand movement in
monkeys. Individual finger movements were also shown to
be encoded by neurons in specific regions [14]. Specific hand
grasp types, such as whole hand and precision [15], [16] have
also been decoded from neural recordings. Some investiga-
tors have attempted to correlate neural activity with kinematic
synergies. Saleh and colleagues [17] found high correlation
between single unity activity and kinematic (postural) syn-
ergies in monkeys. These studies show that a hand-related
spatial organization may exist within and/or across multiple
motor-related areas. A temporal pattern, however, may be
encoded through firing patterns, rather than distinct neuron
populations. When Graziano et al. [18] stimulated neurons
(500ms train) within the motor cortex, the movement of the
hand to mouth was characterized by a bell-shaped velocity
profile peaking at about 0.25ms into the stimulation. Func-
tional magnetic resonance imaging (fMRI) [19], [20] and
transcranial magnetic stimulation (TMS) [21] were used to
find neural representations of hand synergies.

It is evident that multiple areas of the brain may be sources
for synergy encoding or representation, while others may be
responsible for synergy manipulation or control. Thus, this
study is aimed to characterize various cortical brain regions
in order to further the understanding of synergy control at
the global cortical activity level using electroencephalogra-
phy (EEG). EEG is one of the most widely used methods
because of its greater applicability and sufficient temporal
resolution. Previous studies have shown that motor execution
can be represented in both low and high frequencies of corti-
cal EEG. Amajority of studies achieved hand movement pro-
file reconstruction using low frequency EEG in the temporal
domain [22]–[24], and amplitude modulations recorded from
low-frequency bands can decode finger movement. Non-
invasive EEG recordings have also been used to reconstruct
time-series muscle activity [25]. EEG activities have been
used to classify hand movement patterns [26] from delta
band (0.2-4 Hz) and individual finger movements [27] from
broad frequency range (>0.3 Hz) EEG activities.

In this study, scalp EEG signals were recorded during hand
grasping. Six objects that span different grasp types were
used, and grasp kinematics were recorded using CyberGlove.
Kinematic synergies were determined from the recorded
grasp postures and their reconstruction weights in these
grasps were calculated. EEG features were then trained on
kinematic synergy weights using multivariate linear regres-
sion. Using this model, kinematics was decoded from EEG
with 3-fold cross validation. We then attempted to calculate
the correlations between the reconstruction weights and EEG
features and to localize the synergies to active regions in

the motor cortex. Preliminary results from this study were
published in [28].

II. MATERIAL AND METHODS
A. EXPERIMENTAL PARADIGM
Ten individuals (4 males, 6 females; mean age 23.0 ±
3.1 years) participated. All subjects are righthanded with-
out any history of neurological abnormalities or disorders.
As seen in Fig. 1A, each grasp task consisted of grasping an
object placed 40 cm away from the midline of the subject’s
body. The hand starts in an initial resting position (20 cm
to the right of the subject’s midline), lasting 4 seconds. The
subject then rapidly grasps the object after hearing an audio
‘start’ stimulus and holds the grasp until an audio ‘stop’
stimulus is heard (additional 4 seconds). The experimental
timeline is provided in Fig.2. Subjects were asked to refrain
from blinking or swallowing during the pre-stimulus rest-
ing portion and grasping portion, if possible. The six grasp
tasks spanned different grip/grasp types found in activities of
daily living (ADL). These objects were: screw driver (tripod),
water bottle (cylindrical), CD (lateral), petri dish (spherical),
handle (hook), and bracelet (precision). Each object was
grasped with 30 repetitions, for a total of 180 grasping tasks
per subject.

FIGURE 1. Experiment setup. Electroencephalography (EEG) and hand
joint kinematics were recorded during grasping tasks. (A) For each task,
the subject began in a flat palm resting position. After an audio stimulus,
the subject rapidly grasped an object placed 40 cm away. The six objects
used were screw driver, water bottle, CD, petri-dish, handle, and bracelet.
(B) Neural signals were recorded from frontal, parietal, and occipital
areas. 32 electrodes including 24 denominative channels (in blue) and
8 intermediate locations (in grey) were used.

FIGURE 2. Experiment timeline. In the first 4 seconds, the subject
focused on the object with the hand located in resting position. An audio
‘start’ stimulus was given at 4 seconds to indicate to the subject to grasp
and hold the object until the ‘stop’ stimulus was heard.

B. DATA COLLECTION
Data was collected at Stevens Institute of Technology under
an approved IRB protocol. A custom-built LabVIEW pro-
gram provided the audio cues, collected CyberGlove data,
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and sent a synchronizing wave to the amplifiers to align kine-
matic and EEG data. For neural signal acquisition, subjects
wore a high-density EEG cap based on 10/20 system positions
with an additional 86 intermediate positions (g.GAMMAcap,
g.tec, Schiedlberg, Austria). During the experiment, EEGwas
recorded with 32 active electrodes. These electrode locations
are: F3, Fz, F4, FC3, FC1, FCz, FC2, FC4, C5, C3, C1,
CZ, C2, C4, C6, CP3, CP1, CPZ, CP2, CP4, P3, PZ, P4,
OZ covering frontal (F), central (C), parietal (P) and occip-
ital (O) areas. Eight other intermediate locations were also
recorded (In1, In2, In3, In4, In5, In6, In7, In8, grey circles
in Fig. 1(B)). A ground electrode was placed at the nasion
(yellow) and reference (Ag, AgCl) electrode was on the right
or left ear lobe. A conductive gel (g.GAMMAgel) was used to
place each electrode (g.Ladybird). Impedancewas kept below
5 kOhms and checked throughout the experiment. Data was
continuously capturedwith two amplifiers (g.USBamp) using
BCI2000 [29] with a sampling rate of 256 Hz. Kinematic data
was recorded using a CyberGlove worn on the subjects’ right
hand. In this study, we used 10 of 18 sensors that measured the
metacarpophalangeal (MCP) joints of the thumb and prox-
imal interphalangeal (PIP) joints of the four fingers (IP for
thumb). Each subject performed initial postures to calibrate
the glove data. CyberGlove data was captured at 125 Hz using
a custom-built LabVIEW (National Instruments Corporation,
Austin, TX, USA) program.

FIGURE 3. Recorded EEG and corresponding hand kinematics.
EEG modulation (pink) is observed after the stimulus. Movement occurs
almost at the same time in rapid grasp tasks. The PIP joint of the
thumb (blue) is provided to show the alignment of EEG activity and
movement. The shaded region indicated standard deviation.

C. EEG FEATURE EXTRACTION
EEG signals were first notch filtered at 60 Hz, followed by
bandpass filtering in 1-45 Hz range. As shown in Fig. 3,
EEG modulation is seen after the audio stimulus and move-
ment occurs with a slight delay even in a rapid grasp task.
Post-stimulus desynchronization is observed first, followed
by post-stimulus synchronization, and then hand movement
occurs. Neural activity gradually settles down accompanied
with the end of movement 2 seconds post-stimulus. The
hand grasp movement ends with an object holding phase.
The time-varying band powers were calculated for 2 seconds
from movement onset by a 750 ms wide sliding window
with a 500 ms overlap. The band power within a window
was calculated by averaging the energy, the sum of squared

EEG potentials, as described in Equation 1.

P[n] =
1
N

∑N

n=1
|x [n] |2 (1)

where P[n] and x[n] represent the average power and EEG
amplitudes respectively. N is the number of samples within a
time window. The 750 ms width was used to obtain a higher
spatial resolution in the frequency domain. Since only 2 sec-
onds were selected from stimulus onset to end of movement,
500ms overlapwas to ensure asmuch information as possible
was included. A total of six features corresponding to six time
periods were extracted for each electrode.

D. HAND KINEMATIC SYNERGIES
From a subset of grasp data, grasp kinematics were used to
derive kinematic synergies. First, data from movement onset
to movement completion was extracted from each grasp.
As explained in [30], synergies were derived using singular
value decomposition (SVD). With no time-delayed recruit-
ments used for rapid grasps, the synergy model from [30] was
reduced to:

v (t) =
∑P

p=1
cpSp (2)

where v(t) represents the angular velocity of joint at time t,
c is the amplitude coefficient of synergy S, and P is the total
number of synergies selected. The first three synergies are
provided in Fig. 4. We used an 80% variance threshold to
determine the number of synergies to be used in this decoder.
Thus, we selected the first six synergies in the decoder with
reconstruction error 0.1 (Fig. 5). Reconstruction (methods
described in [30]) of the same subset data was performed to
solve for vector C for each grasp.

FIGURE 4. Joint Kinematics of three synergies. Normalized kinematic
synergies derived from Subject 2 with MCP joint angular velocities (blue)
and PIP joint angular velocities (red) are shown here.

E. CORTICAL CORRELATES OF KINEMATIC SYNERGIES
Previous studies [22], [24], [31] applied linear regression
for modeling hand movements, where each joint movement
is independently regarded as a linear combination of neu-
ral activities in time domain. In this paper, instead of joint
movements, the weights of six synergies (response vectors)
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FIGURE 5. Fraction of variance and reconstruction error. Reconstruction
error based on kinematic synergies decreases with the increase in the
number of selected synergies. We selected the first six synergies with
fraction of variance>80% and corresponding mean reconstruction error
of 0.1 approximately.

are expressed by multiple neural features (variables). Thus,
a multivariate linear regression model was used to determine
the relationship between neural features and the weights of
synergies:

C = Xβ (3)

C represents the weights of synergies, determined by kine-
matic synergy-based reconstruction. For each task, C is a
n×mmatrix, where n is the number of repetitions andm is the
number of synergy weights. X is a n×p neural feature matrix,
and p represents the number of EEG features. The estimated
regression parameter β was determined using the mvregress
function in the Statistics and Machine Learning Toolbox in
MATLAB. This function uses a maximum likelihood estima-
tion to estimate, here, the diagonal elements of the variance-
covariance matrix. β is a p × m coefficients matrix. This
model was evaluated with 3-fold cross validation where two-
thirds of repetitions (20 grasps) from each grasp type (a total
of 120 grasps) was used for training β one-third of repeti-
tions (10 grasps) from each grasp type (a total of 60 grasps)
was used as the testing dataset to determine final decoding
accuracy. Decoding accuracy between synergy reconstructed
kinematics and neural decoded kinematics were measured
using Pearson correlation coefficient (ρ). The decoding error
is defined as 1-|ρ|. The decoding methodology is illustrated
in Fig. 6.

In order to investigate how each synergy was modulated
by brain activities in certain areas, we evaluated the inde-
pendence of the EEG channels used for decoding by the
following model:

Dsn =
∑K

k=1

√∑M

m=1
β2mks (4)

where Dsn represents nth EEG channel for the sth synergy.
M is the number of regression parameters β calculated above,
and K is the total number of grasping tasks.

FIGURE 6. Decoding methodology. Weights of synergies obtained from
SVD and neural features obtained from EEG signals are trained using
multivariate linear regression. The linear coefficients obtained from
training data were used to predict the synergy weights of the testing data.

III. RESULTS
Motor-related EEG activity is characterized by modulation
of specific motor-related areas. EEG activity was averaged
across all grasp types, repetitions, and subjects. Here the
averaged activity of a wide frequency range 1-45Hz is shown
in Fig. 7. Activity in the motor cortex increases post-stimulus
and peaks during the movement. The supplementary motor
area in the left hemisphere shows residual activation during
the object holding phase. The correlation of synergies with
EEG features was computed in order to find the cortical
areas correlated with individual synergies. Fig.8 illustrates
the correlation of synergies and EEG features. The first syn-
ergy and the sixth synergy are highly active in the beginning
of the task (post-stimulus first phase of grasp) while the
other synergies are activated later (grasp formation phase).
It is observed that the synergies and EEG features are highly
correlated during the action formation period. The correlation
attenuated gradually when the grasp entered the hold phase.
The synergies continued to remain mildly active in the left
hemisphere in sensorimotor areas and parietal areas.

The average reconstruction accuracy rates achieved by
neural decoding for all subjects are indicated in Table I.
The averaged decoding accuracy rate across all subjects is
80.8±6.1% (best up to 93.4±2.3% for Subject 7). Aver-
aged decoding errors based on joint types and grasp types
are shown in Fig. 9. Based on neural decoding, for each
joint (in blue) and for each grasp type (in green), it is shown
that the MCP joints generally have lower error while the
PIP joints of four fingers have relatively higher error. Tripod
grasps (screw driver) had the highest error among all grasp
types, while the cylindrical grasp (water bottle) observed
lowest error.
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FIGURE 7. Typical EEG activity during grasp. The averaged EEG activity amplitude from the wide frequency range of 1-45 Hz shows modulation in
motor areas in all the tasks (color bar indicates the normalized amplitude of EEG activity). Activity in the motor cortex increases post-stimulus and
peaks during the movement. The supplementary motor area in the left hemisphere shows residual activation during the object hold phase.

FIGURE 8. Spatial correlation of synergies and each EEG features. The
first six EEG features (band powers) corresponding to different times
during a grasp are illustrated from top to bottom. Synergy modulation
varies for each EEG feature. Synergies and EEG features are highly
correlated in the action formation period. The correlation attenuates
gradually from grasp to hold and later phases. Color bars indicate the
correlation of synergies and EEG features.

The trajectories of recorded kinematics, reconstructed
kinematics based on kinematic synergies, and reconstructed
kinematics based on neural decoding are provided in Fig. 10.
Results showed that the model was able to decode the weights
for different joint types and grasp types. Angular velocity
trajectories were accurately reconstructed by the synergy-
based neural decoding model. For simple grasps, such as
grasping a water bottle or petri dish, decoded kinematics
are close to recorded kinematics. For complex grasps, for
example, precision grasp (Fig. 10(B)), the key digits involved
were thumb, index and middle finger. The corresponding
kinematics trajectories are predicted accurately, while the
trajectories of ring and pinky finger varied slightly.

We evaluated the ability of the model to find the cortical
areas correlated with kinematic synergies. It was observed
that corresponding cortical areas for each synergy vary from
subjects. Fig. 11 shows the synergy activated areas that were
frequently shared among ten subjects. The electrodes which
are highly correlated with synergies are located on bilateral
hemispheres in the sensorimotor cortical areas.

IV. DISCUSSION
In this study, two models were used to decode the neu-
ral representations of synergy-based control mechanisms.
First, kinematic synergy-based reconstruction of rapid grasp
movement kinematics was used to determine the number
of kinematic synergies as well as the weights of kinematic
synergies for each grasp. The weights of each kinematic syn-
ergy were then linearly regressed with neural (EEG spectral
power) features recorded during the corresponding move-
ments. Decoding accuracies up to 95.6% were achieved,
which holds promise for potential applications in noninvasive
neural control of synergy-based prostheses and exoskeletons.

A. SYNERGIES SIMPLIFY COMPLEX CONTROL
In this study a synergy-based model was applied for recon-
structing movement kinematics, calculating the individual
contributions of synergies and their neural correlates to each
grasp. The movements are characterized as weighted linear
combinations of synergies, where each synergy is a coordi-
nated movement pattern across several joints of the hand,
expressed in joint angular velocities as shown in Fig. 4.
In previously reported studies, individual finger movements
(joint angular velocities) were decoded from nonhuman pri-
mates using the firing rates of neurons in primary motor
cortex (M1) [32] and from human subjects [16], [23], [31]
using intracranial EEG and scalp EEG.

Several studies achieved promising results in neural decod-
ing of reaching and grasping movements. However, the com-
plexity of the high dimensionality of joints and high DoF
involved in movement control still needs further exploration.
Some studies proposed simplified methods of recruiting hand
movements with lower dimensional vectors. It is hypothe-
sized that rather than directing individual DoF at each point
in time, the CNS may work in a lower dimensional sub-
space [4], [33]–[35]. This hypothetical subspace is made of
a minimal set of movement synergies, that have a ‘‘spa-
tial’’ component describing coordination across multiple DoF
as well as a ‘‘temporal’’ component describing coordina-
tion across time, which are generalizable across several
movements. According to our model, the synergies can be
expressed at the kinematic (joint) level but are controlled
(spatially and temporally) at the neural level. Furthermore,
it was observed that principal components extracted from
TMS-induced finger movements resembled the end pos-
tures of synergies derived from voluntary movements [21].
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TABLE 1. Neural decoding accuracies for all subjects.

FIGURE 9. Decoding error based on joints (in blue) and grasp
types (in green). MCP joints generally have lower errors while PIP joints
have relatively higher error.

This experimental evidence further supports that the concept
of synergies is not just theoretical but could be used as an opti-
mal central mechanism for control by the CNS in simplifying
and achieving complex movements.

B. NEURAL BASES OF HAND KINEMATICS
AND SYNERGIES
Several model-free neural decoding and kinematic analysis
findings have been reported in previous studies, nevertheless,
our model-based approach led to successful decoding accura-
cies. Research in synergy-basedmodels andmodels not based
on synergies of hand movement showed that the brain regions
unrelated to coordination are also active during synergistic
movements [20]. Additionally, the ipsilateral hemisphere,
dorsal premotor area and postcentral sulcus are highly active
during the independent digit movements. Neural activities in
bilateral motor areas are stronger in individuated movements
than synergistic movements. Although we hypothesized that
the hand grasp movement is composed of temporal postural
synergies, individual digits still play an important role in
achieving the movement. A simultaneous internal hierarchi-
cal model may be the reason behind the scalp EEG activities
observed in the Figures 6, 7, and 10. In contrast to Fig. 6,
which shows EEG activation in motor areas in contralateral
hemisphere during hand movement, Fig. 7 and Fig. 10 show
that the synergies were highly correlated with electrode acti-
vations in both hemispheres. Also, through the research on
repetition suppression using fMRI, it was observed that there
is a strong effect in the contralateral anterior intraparietal
sulcuswhen the same object is grasped, and grasp trajectory is
represented in the contralateral occipital sulcus and ipsilateral
precentral sulcus [36].

Previous studies based on single unit recordings in nonhu-
man primates revealed that hand movement variables, such
as hand velocity, and timing of execution of movements

are encoded in the parietal cortices, cerebellum and frontal
cortex [2], [37]. In agreement with these findings, our
outcomes indicated that kinematic synergies were highly
correlated with electrodes in parietal and frontal areas.
Johnson-Frey et al. [38] pointed out that the inferior frontal
regions are sensitive to detailed kinematic features when the
hand and object have a functional relationship. In our experi-
ment, the objects usedwere carefully chosen as representative
grasps associated with the objects we commonly interact with
in our activities of daily living. This further supports the
results of this study as to why some synergies are active in
bilateral hemispheres (Fig. 7 and Fig. 10).

C. DECODING HAND SYNERGIES USING EEG
Our previous studies on decoding asynchronous reaching
directions [39] in arm movements and hand biometrics
(extracting unique neural and behavioral movement mark-
ers) [40] from scalp EEG achieved promising outcomes,
enabling us to probe further into decoding the functional
details of hand movements in EEG.

In this study, we were able to demonstrate neural con-
trol of synergies to achieve hand grasps using multi-
variate regression. Very few studies have attempted to
decode hand synergies during grasping in EEG. Agashe and
Contreras-Vidal [22] used a regression analysis to model
hand grasp using individual joint kinematics and low fre-
quency (<1 Hz) EEG activity. They were able to achieve a
correlation r- value of 76±1% between original and decoded
grasps. Yoshimurae et al. [41] applied sparse logistic regres-
sion to decode finger movements using cortical current
sources estimated from EEG, obtaining an average decoding
accuracy of 72%. Acharya et al. [31] applied local motor
potentials recorded using intracranial EEG to decode princi-
pal components of joint kinematics and achieved 51% accu-
racy. In our study, joint kinematic synergies were introduced,
and weights of synergies were estimated using convex opti-
mization and then regressed with cortical activities obtained
from scalp EEG. We achieved an average decoding accuracy
of 80.1±6.1% (best up to 93.4±2.3%).

In our study, EEG features extracted from power spectral
densities (frequency range 1-45 Hz) were used to regress
the weights of hand synergies utilized in grasping move-
ment reconstruction. Previous studies have used slow cortical
potentials (< 2 Hz) to decode hand and arm kinematics
(velocity and position) via regression analysis [22], [23], [42].
Korik et al. [43] decoded movement kinematics from neural
activities in the low delta band (0-2 Hz). Antelis et al. [24]
pointed out that these studies may actually be overestimat-
ing decoding performance because of the natural relation-
ship between slow cortical potentials and slow hand/arm
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FIGURE 10. Neural decoding of synergy-based movements. The recorded joint kinematics (green) were reconstructed by kinematic synergies (red)
and neural decoded synergies (blue). The shaded regions show standard deviations. (A) Recorded and reconstructed joint angular velocities for
index PIP joints in each grasp type for Subject 7. (B) Best reconstruction of joint angular velocities for each joint in Task 6 for Subject 7.

FIGURE 11. EEG modulation for each synergy. Subjects have diverse cortical areas/electrodes corresponding to each synergy. The most commonly
shared electrodes for synergies among ten subjects were ranked and selected for illustration. Top candidates are located in bilateral hemispheres
around the sensorimotor cortex. The color bar indicates how often the electrodes were shared by synergies by the subjects.

movements in time domain. However, this issue does not exist
in the spatial domain of any frequency bands. Additionally,
Korik et al. [43] pointed out that a band power based model
provided a better performance in movement decoding. There-
fore, our study was performed on rapid grasps decoded from
EEG in the frequency domain (spectral powers in 1-45Hz
frequency range) and not in lower frequencies, thus avoiding
overestimation.

D. POTENTIAL APPLICATIONS OF SYNERGY-BASED
MODELS IN NEURAL CONTROL OF PROSTHESIS
Reaching and grasping are the fundamental actions in inter-
acting with the world around us. Unfortunately, this abil-
ity is lost in many individuals with motor disabilities.
Currently, restoring lost limb functions are being demon-
strated using innovative invasive and noninvasive brain
machine interfaces [44]–[46]. Thus far, reliable neural control

of ten-dimensional prosthetics was demonstrated success-
fully using highly invasive brain machine interfaces. Whether
we can achieve high dimensional control using noninvasive
technologies needs to be further explored. How to improve
this control from 10 dimensions to the 25 dimensions present
in natural human hand remains a challenge. In either modal-
ities, synergy-based control [47] can help in expanding the
application of limited and complex neural signals to control
high dimensional end effectors.

V. CONCLUSION
In this study, we were able to decode neural correlates
of kinematic synergies in rapid hand grasping movements
in scalp EEG. We will consider the following aspects of
improvement in the near future. The synergy-based move-
ment generation model used in this study was simplified
to weighted linear combinations of synchronous synergies
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all combining at the same point in time. The model needs
to be realized in its original asynchronous form allowing
combination of synergies at different points in time. This
increases the complexity of neural decoding. Furthermore,
neural activities during motor planning occurring in premotor
areas prior to movement execution were not considered in
this study. Kawashima et al. [48] demonstrated that premo-
tor and posterior parietal cortices generate neural activities
during the planning phase, especially during the motor selec-
tion and choice reaction period. Additionally, in order to
avoid any stimulus-related neural activations we may adapt
asynchronous hand grasps that will involve self-selection of
the tasks by the subjects. Finally, the relationship between
neural features and kinematic synergies may be better esti-
mated using nonlinear models than the model based on linear
regression used in this study.
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