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ABSTRACT Recently, a novel network architecture for a distributed antenna system with interlaced
clustering has been proposed to mitigate the cell-edge problem. Under this network architecture, we propose
a more practical implementation for ultradensely deployed remote antenna units (RAUs) with large numbers
of users. Furthermore, we focus on the user selection (USC) and sparse beamforming technologies to
optimize the weighted sum rate (WSR) with both backhaul and power constraints. First, we divide each
cluster pattern (CP) into several adaptive cells, where RAUs are connected to a central processor via finite-
capacity backhaul links. Aiming at reducing the computational complexity for large numbers of users and
RAUs, we solve the original problemwith two steps. In the first stage, we propose an efficient USC algorithm
to find the largest user subset that satisfies the quality of service requirement. In the second stage, we adopt
a CP-based weighted sum minimum mean square error algorithm to optimize the WSR problem for the
selected users in the previous stage. Moreover, two decomposition algorithms, named primal decomposition
and dual decomposition, are exploited to further reduce the computational complexity. Furthermore, based
on the adaptive cells, we provide a low-complexity alternating optimization method for sparse beamforming.
Finally, simulation results show that the proposed algorithms can achieve a significant performance gain on
edge-user rates without losing much performance gain. At the same time, the backhaul information exchange
is largely reduced, and approximately 90%of the RAUs consumes less than 66.7% of backhaul for each RAU.

INDEX TERMS Distributed antenna system, sparse beamforming, interlaced clustering, CP-based weighted
minimum mean square error (CP-WMMSE), user selection (USC), primal decomposition and dual
decomposition.

I. INTRODUCTION
With a dramatic increase in mobile devices and the high
data-rate transmission demand for video-based applications,
the next-generation cellular network is expected to experi-
ence a 1000-fold growth in mobile traffic in the coming
decade [1]–[4]. As one of the most important technologies
in 5G cellular networks, ultradense small cell deployment
has the potential to significantly decrease the transmit power
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consumption. The reason behind this potential improvement
is that active base stations (BSs) can transmit to users with a
lower power due to their reduced cell size. However, closer
neighboring BSs also create stronger intercell interference,
leading to a more serious cell-edge problem.

The distributed antenna system (DAS) is a promising net-
work that provides high data-rate coverage via coordinated
multipoint (CoMP) processes [5]. In a DAS, remote antenna
units (RAUs) are geographically dispersed within a small
cell and are connected to a central processor via high-speed
backhaul links [6]–[8]. With the cooperation among RAUs,
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the DAS can serve single or multiple users in the same time-
frequency resource [9], [10]. Therefore, the DAS is also
called a distributed multiple-input multiple-output (MIMO)
system or cooperativeMIMO system. Unlike full cooperation
among all RAUs in the network, which requires massive
channel state information (CSI) [11]–[13] exchange and high
scheduling complexity, CoMP clustering can mitigate the
intracluster interference and improve cell-edge performance
with relatively low overhead [14]. Optimal cluster selec-
tion or design is the key to maximizing its benefits. Generally,
CoMP clustering can be categorized into static clustering,
dynamic clustering and semidynamic clustering. In static
clustering [15]–[18], CoMP clusters are formed statically,
i.e., the RAU clusters remain fixed; hence, the performance
is limited. Dynamic clustering can change pace with the
network [19]–[22]. This scheme can achieve better perfor-
mance than static clustering but with higher complexity of
scheduling and beamforming algorithms.

Interlaced clustering with a number of cluster patterns
(CPs) [23]–[25] is regarded as a compromise for the afore-
mentioned two schemes. The interlaced clustering can be
considered as a general architecture, and some other net-
work architectures such as centralized tiered networks and
fractional frequency reuse can be interpreted as instances of
interlaced clustering. In interlaced clustering, several differ-
ent CPs coexist on orthogonal frequency bands, and each user
can be served by either of them. Furthermore, this kind of
semidynamic clustering significantly reduces the intercluster
interference for distributed transmissions. To achieve higher
performance gain, the network architecture requires extensive
backhaul connectivity.

Recently, the backhaul requirement has increased signif-
icantly with the evolution of cellular networks [26], and
various backhaul technologies have been introduced in [27]–
[29]. In addition, the problem of minimizing the data transfer
in the backhaul with quality of service (QoS) constraints
and per-BS power constraints was studied in [30]. Further-
more, a user-centric clustering scheme with finite-capacity
backhaul was proposed by optimizing a sparse beamforming
vector for each user in the cloud radio access (C-RAN) net-
work [22]. In practice, sparse beamforming vector design is
implemented by the l0-norm optimization problem, in which
the nonzero elements in the beamforming vector correspond
to the user’s service cluster. As a result, the beamforming
vector can help to determine the best set of serving RAUs for
each user.

The number of optimized variables will increase as the
number of CPs increases. Fortunately, the decomposition
method can be used to transform the original problem into
independent per-CP problems [31], [32]. Decomposition in
optimization has appeared in early works on large-scale linear
programs (LPs) since the 1960s [33]. Primal decomposition
and dual decomposition are two classical methods to separate
a complex problem into several subproblems, which can be
solved in parallel [31]. Primal decomposition can achieve
the upper bound without great difficulty. However, primal

decomposition is not suitable for more than two CPs in this
paper. Instead, dual decomposition is a good alternative to
solve the original problem although its initialization should
be further considered.

A DAS with interlaced clustering is a promising network
architecture for the ultradense users scenario, while the com-
plexity of sparse beamforming for large numbers of users
also increases. User selection (USC) is a critical method
to ease the computational burden of sparse beamforming.
For example, an iterative user pool shrinking algorithm [22]
can significantly reduce the total number of variables to be
optimized. Furthermore, this algorithm requires running the
optimization problem at least once. Pan et al. [34] proposed
a novel USC algorithm to remove the users that could not
satisfy the power constraints and rate requirements. Further-
more, for ultradense networks serving large numbers of users,
it is challenging to design a linear precoding scheme that
can ensure as many users as possible be served in a time-
frequency (T-F) slot.

In this paper, we consider the ultradense DAS with ultra-
dense users under an interlaced clustering network archi-
tecture. We first decouple the problem of the transmission
methods design into user selection and beamforming design,
and propose a two-stage optimize problem. In the first stage,
we propose a low complexity USC algorithm as a solution
to the high-dimensional optimization problem for systems
with ultradense users. In the second stage, with the users
selected by first stage, we propose a CP-based weighted sum
MSE minimization (CP-WMMSE) algorithm, to solve the
joint sparse beamforming design and power allocation prob-
lem for DAS with interlaced clustering from a network util-
ity maximization perspective. Moreover, two decomposition
algorithms, named primal decomposition and dual decom-
position, are exploited to further reduce the computational
complexity. Furthermore, based on the adaptive cells, we pro-
vide a low-complexity alternating optimization method for
sparse beamforming. To the best of our knowledge, this paper
is the first attempt to design sparse beamforming vectors
for DAS with interlaced clustering with a multicell, multi-
antenna, multiuser cellular network. The main contributions
of this paper are summarized as follows:
• We first introduce sparse beamforming for DAS with
interlaced clustering to reduce backhaul consumption
and increase spatial multiplexing. Thus, by applying
sparse beamforming, the users in interlaced clustering
can achieve higher coverage compared with the strategy
in which all corresponding RAUs serve a single user in
one adaptive cell.

• To reduce the complexity of the computations of sparse
beamformingwith interlaced clustering, we introduce an
efficient USC algorithm with alternating optimization
as the first stage to select the users for the next stage.
Its complexity is much lower than the traditional USC
method, especially for dense users and RAUs. Simu-
lation results show that our algorithm achieves similar
performance as the traditional algorithm.
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• We propose an adaptive cell-based scheme to ease the
heavy computational burden, which requires signifi-
cantly fewer candidate RAUs and users. The proposed
scheme, together with alternating optimization, can be
generally applied in interlaced clustering or similar net-
works. In this paper, we apply this strategy in the first
stage to further reduce the computations of the USC
algorithm and the popular WSR problem. The results
show that it can converge quickly without losing obvious
gains.

• We solve the popular WSR problem with power
allocation in interlaced clustering. To adapt to the archi-
tecture of interlaced clustering, the CP-WMMSE algo-
rithm is proposed, where we consider both the sparse
beamforming design and power allocation among dif-
ferent CPs. Furthermore, decomposition methods are
proposed to address the heavy computational burden
problem. Primal decomposition can achieve the upper
bound without assistant technology but cannot be easily
extended to more than two CPs. Dual decomposition
can solve the problem with the proper initiation values.
Finally, alternating optimization associated with the pri-
mal decomposition algorithm, dual decomposition algo-
rithm and CP-WMMSE algorithm is considered in this
paper to further reduce the computational complexity of
the WSR problem in interlaced clustering. Simulation
results show that the proposed algorithms can achieve
similar performance.

The remainder of this paper is organized as follows.
Section II presents the channel model, problem formula-
tion and introduces sparse beamforming for DAS with the
interlaced clustering architecture. Then, we propose the USC
algorithm for interlaced clustering in Section III. Based on
the WMMSE algorithm, Section IV describes the proposed
five iterative algorithms for sparse beamforming under the
CP network architecture. The performance of the proposed
algorithms is evaluated by simulations in Section V. Finally,
Section VI summarizes the paper.

Notation: Throughout this paper, scalars are represented
by lowercase letters (e.g., i); matrices are represented by
uppercase bold letters (e.g., H); vectors are represented by
lowercase bold letters (e.g., v). The matrix inverse, conjugate
transpose and lp-norm of a vector are denoted as (.)−1, (.)H

and |.|p, respectively. We use CM×N to denote the set of
complexM×N matrices. The complex Gaussian distribution
is represented by CN (0, σ 2). Calligraphy letters are used to
denote sets.

II. SYSTEM MODEL
A. DAS WITH INTERLACED CLUSTERING ARCHITECTURE
In the DAS, RAUs are grouped into disjoint cooperation
clusters. Each snapshot of a classification is called a CP. The
idea behind interlaced clustering is to assign different CPs to
orthogonal frequency bands. For simplicity, we choose two
CPs. As an illustration, Fig.1 shows two such possible CPs

FIGURE 1. An example layout of sparse beamforming for DAS with
interlaced clustering.

(CP1 and CP2). The total system bandwidth is B = B1 + B2,
where B1 and B2 represent the orthogonal frequency bands of
CP1 and CP2, respectively.
In [23], when considering the linear beamforming design

scheme, the analysis is limited to one scheduled user per T-F
slot in a cluster to reduce the complexity of the analysis.
Therefore, not all users can be served simultaneously on
the same T-F resource. For example, in Fig 1, the possi-
ble combination scheme is {Ua,Ub}, {Ub,Uc} and {Ua,Uc}.
Hence, the service coverage is 66.7%. However, with sparse
beamforming, there are two pairs of users in CP1, the service
RAUs for Ua are RAU1 and RAU4, the service RAUs for Ub
are RAU1 and RAU2; there are three pairs of users in CP2,
the service RAUs for Ua are RAU4 and RAU8, the service
RAUs for Ub are RAU2 and RAU3, the service RAUs for Uc
are RAU3, RAU5 and RAU9. Therefore, the RAUs can serve
the three users at the same time, and the service coverage is
100%. The reason is because, in our scheme, we can design
the linear sparse beamforming with a backhaul constraint,
which does not have complications due to the low complexity
of the proposed algorithms, and all the users can be served at
one time.

Furthermore, different from [22], we define the cell in each
CP as one adaptive cell and apply sparse beamforming as a
solution to reduce the backhaul consumption in interlaced
clustering, which regards all RAUs and users within the
network as the initial sample.We alternate between designing
the sparse beamforming for each adaptive cell by fixing the
other adaptive cells. Assume that in each adaptive cell, there is
a backhaul network connecting the RAUs within the adaptive
cell to a central processor. The central processor allocates
the CSI or the users’ data for all RAUs within the selected
adaptive cell. Furthermore, the central processor has access to
the global CSI and the user data in its adaptive cell. With such
data sharing strategies, user data are restricted to the adaptive
cell, and thus, both the complexity and backhaul capacity
consumption are effectively reduced.

Fig.1 also shows the affiliation between the adaptive cells
and the CPs. For example, {RAU1, RAU2, RAU3, RAU4} ∈

C1,1, {RAU2, RAU3, RAU5, RAU9} ∈ C2,1, where C1,1 and
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C2,1 represent the 1st adaptive cell in CP1, and the 1st adaptive
cell in CP2, respectively. Note that, in different CPs, the dis-
tribution of adaptive cells may not be the same.

B. SYSTEM MODEL
Consider a downlink DAS system that contains F ={
f1, · · · , fq, · · · , fQ

}
different CPs operating on disjoint fre-

quency bands B =
{
Bf1 , · · · ,Bfq · · · ,BfQ

}
, where Bfq

denotes the frequency band for CP fq. For simplicity of
notations, we assume that each RAU is equipped with M
transmit antennas, and that each user has N receive antennas.
Throughout the paper, we use k , m, r to indicate the user
index, i, j for the cell index, and d , l, b for the RAU index.
Define A =

{
Af1 ,Af2 , · · · ,AfQ

}
as the collection of all

adaptive cells, whereAfq represents the collection of the cells
within CP fq, and the relationship between different CPs is
defined as follows:{

Af1 ∪Af2 ∪ · · · ∪AfQ = A,
Af1 ∩Af2 ∩ · · · ∩AfQ = ∅.

(1)

where ∅ denotes a null set.
Let Ai,fq denote the i-th adaptive cell in Afq . Then,

we defineDi,fq as the distributed RAUs located in the adaptive
cellAi,fq . Likewise, let K̃fq , K̃i,fq ⊂ K̃fq be the subset of users
assigned to a CP fq and the adaptive cell Ai,fq , respectively.
Let Ki,fq ⊂ K̃i,fq be the set of users that should be admitted
to the adaptive cell Ai,fq , i.e., Ki,fq represents the set of users
after USC, which we will introduce in Part A of Section III.

Let Gk,l,j,fq ,∀k ∈ Ki,fq ,∀l ∈ Di,fq ,∀i, j ∈ Afq denote the
CSI matrix between the lth RAU in adaptive cell j and the
user k that in adaptive cell i. Let

Hk,j,fq
1
=
[
Gk,1,j,fq , . . . ,Gk,

∣∣∣Dj,fq

∣∣∣,j,fq
]
∈ CN×M

∣∣∣Dj,fq

∣∣∣
denote the CSI matrix between all the RAUs in the jth adap-
tive cell to the user k .
Instead of a network-wide beamforming vector [22], [34],

we introduce an adaptive cell-wide beamforming vector

vk,i,fq
1
=

[
vHk,1,i,fq , . . . , v

H
k,
∣∣∣Di,fq

∣∣∣,i,fq
]H
∈ CM

∣∣∣Di,fq

∣∣∣×1
for each user k in adaptive cell i, where vk,d,i,fq ∈

CM×1,∀d ∈ Di,fq denotes that the d th RAU in adaptive cell
i is used to transmit a single stream of data signal sk,i,fq ∈ C
to the kth user, where sk,i,fq is independent and identically
distributed according to CN

(
0, 1

)
.

The received signal yk,i,fq ∈ CN×1 of the user k is

yk,i,fq = Hk,i,fqvk,i,fqsk,i,fq
+

∑
m6=k,m∈Ki,fq

Hk,i,fqvm,i,fqsm,i,fq︸ ︷︷ ︸
intracell interference

+

∑
j6=i,j∈Afq

∑
r∈Kj,fq

Hk,j,fqvr,j,fqsr,j,fq︸ ︷︷ ︸
intercell interference

+nk,i,fq (2)

where nk,i,fq ∈ CN×1 is the additive white Gaussian noise
with its distribution CN

(
0, σ 2

k,i,fqIN
)
.

C. PROBLEM FORMULATION
With an increasing number of CPs, the resource allocation
should be further considered. Assume that the bandwidth
budget of CP fq is Bfq = µfqBsum, where Bsum and µfq
represent the sum bandwidth budget, the ratio between Bfq
and Bsum, respectively. Similarly, the power and the backhaul
budget of d th RAU within CP fq are given by

Pd,i,fq = ηd,i,fqPsum,d , (3a)

Cd,i,fq = βd,i,fqCsum,d (3b)

where Psum,d , Csum,d , ηd,i,fq , βd,i,fq are defined as the sum
power budget and sum backhaul budget of the d th RAU,
the ratio between Psum,d and Pd,i,fq , the ratio between Csum,d
and Cd,i,fq , respectively. The constraints of the resource bud-
get are given by

C1 :
∑
f ∈F

ηd,i,fq=1,
∑
f ∈F

βd,i,fq=1,
∑
f ∈F

µfq=1, ∀d ∈Di,fq .

(4)

Due to the orthogonal frequency allocations among the
CPs, different CPs could be considered independent of one
another. Thus, for the sake of simplicity, we set the variables
βd,i,fq , µfq equal to

1
Ncp

βd,i,fq = µfq =
1
Ncp

(5)

where Ncp is expressed as the number of CPs.
The user rate (bit/s/Hz) of the user k in CP fq is

Rk,i,fq = log
(
1+ vHk,i,fqH

H
k,i,fqZ

−1
k,i,fqHk,i,fqvk,i,fq

)
, (6)

where

Zk,i,fq =
∑

(m,j)6=(k,i)

Hk,j,fqvm,j,fqv
H
m,j,fqH

H
k,j,fq + σ

2
k,i,fqI (7)

is the interference-plus-noise covariance matrix. In interlaced
clustering, each user can locate in the interior of at least
one adaptive cell belonging to one of the CPs with a high
probability. Thus, the users with a low rate should be served
by the other CPs that can provide high signal-to-interference-
plus-noise ratio (SINR) for the users. Therefore, the system
has the ability to provide high QoS for users, and each user’s
data rate should be higher than the minimum requirement:

C2 : Rk,i,fq ≥ Rmin,k,i,fq . (8)

With densely deployed RAUs, the power and backhaul
consumption on the RAUs may be significant. Therefore, it is
a realistic problem to consider the power and the backhaul
constraints of RAUs when applying sparse beamforming in
interlaced clustering. In addition, the backhaul constraint of
the RAUs is the key step for designing sparse beamforming.
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The per-RAU power constraint and the per-RAU backhaul
constraint are given by

C3 :
∑

k∈Ki,fq

∥∥vk,d,i,fq∥∥22 ≤ ηd,i,fqPsum,d ,∀d ∈ Di,fq

C4 :
∑

k∈Ki,fq

1

{∥∥vk,d,i,fq∥∥22}Rk,i,fq ≤ 1
Ncp

Csum,d∀d ∈ Di,fq

(9)

where 1
{∥∥vk,d,i,fq∥∥22} represents the indicator function with

the facility of scheduling choice:

1

{∥∥vk,d,i,fq∥∥22} =
{
0, if

∥∥vk,d,i,fq∥∥22 = 0
1, otherwise.

(10)

With the minimum rate constraint, the system can allocate
the users for each CP in a T−F slot, which will greatly reduce
the complexity of the proposed algorithms. Hence, we first
formulate a user selection problem to maximize the number
of admitted users supported by each CP. The USC can be
formulated as

max
vk,d,i,fq ,Kfq⊂K̃fq

∑
fq∈F

Kfq ,∀d ∈ Di,fq

s.t. C2, C3, C4. (11)

Next, we fix the users selected from the user selection algo-
rithm and apply sparse beamforming in interlaced clustering
to solve the weighted sum-rate (WSR)maximization problem

max
{vk,d,i,fq |k∈Ki,fq

,d∈Di,fq }

∑
fq∈F

∑
i∈Afq

∑
k∈Ki,fq

9k,i,fqRk,i,fq

s.t. C3, C4, (12)

where 9k,i,fq represents the priority of the user k .
The the nonconvex constraint C4 in both problem (11) and

(12) motivates us to first convert the nonconvex constraint
C4 to a convex constraint. Motivated by compressive sensing
technology and its applications in [22], [35], and [36], we can
rewrite the constraint C4 of problem (10) as

C5 :
∑

k∈Ki,fq

ϒk,d,i,fqR
(n)
k,i,fq

∥∥vk,d,i,fq∥∥22 ≤ 1
Ncp

Csum,d ,

∀d ∈ Di,fq , (13)

where R(n)k,i,fq is the fixed rate obtained from the previous
iteration and ϒk,d,i,fq is a constant weight associated with
the d th RAU and the kth user, which is updated iteratively
according to

ϒk,d,i,fq =
1∥∥∥v(n)k,d,i,fq∥∥∥22 + ς

(14)

with regularization factor ς ≥ 0 and
∥∥∥v(n)k,d,i,fq∥∥∥22 from the

previous iteration, and their values are small.

However, although the constraint C4 is converted to a
convex constraint, the problems (11) and (12) are both mixed-
integer nonlinear programming (MINLP) problems, which
are still difficult to solve. Furthermore, the adaptive cell-
wide beamforming vector introduced in this paper makes the
problems more complex. In the next section, we will try to
solve the problems (11) and (12) in turn.

III. THE FIRST STAGE: USER SELECTION ALGORITHM
WITH BACKHAUL CONSTRAINTS
A. USC ALGORITHM FOR CP SCHEME
By introducing a series of auxiliary variables

{
ωk,i,fq

}
,

we approximate the problem (11) as

min
{ωk,i,fq }k∈K̃fq

,vk,i,fq

∑
fq∈F

∑
i∈Afq

∑
k∈K̃i,fq

(ωk,i,fq − 1)2

s.t. C3, C5,

Rk,i,fq ≥ ω
2
k,i,fqRmin,k,i,fq . (15)

To reduce the complexity of the network-wide beamform-
ing design for large numbers of RAUs and users, we introduce
an alternating optimizationmethodwith a user selection algo-
rithm by using an adaptive cell-wide beamforming vector as
follows. First, we initialize the adaptive cell-wide beamform-
ing vector vk,i,fq ,∀i ∈ Afq , and choose an adaptive cell as the
optimized target. At the same time, we consider signals from
the other adaptive cells as constant interference by fixing the
beamforming vector vr,j,fq (j 6= i). Second, we design the
beamforming of the fixed adaptive cell and iteratively solve
the optimization problems (15) by fixing the adaptive cell in
turn until convergence is obtained.

Furthermore, the factor of power allocation is not easy
to obtain, which we optimize in the second stage. Thus,
in the first stage, for the sake of simplicity, we relax the
power constraints by setting ηd,i,fq = 1 for all CPs. Then,
the number of users admitted to the network will be larger
than the practice value. Increasing the number of users who
were admitted in the first stage will not affect the final result
in the second stage, and this conclusion is verified through
the simulation results.

With the above description, we rewrite the optimization
problems (15) as a series of subproblems:

min
{ωk,i,fq }k∈K̃i,fq

,

vk,i,fq

∑
k∈K̃i,fq

(ωk,i,fq − 1)2 (16a)

s.t. C5,
∑

k∈K̃i,fq

∥∥vk,d,i,fq∥∥22 ≤ Psum,d ,∀d ∈ Di,fq , (16b)

Rk,i,fq ≥ ω
2
k,i,fqRmin,k,i,fq . (16c)

It is obvious that (16a) and (16b) are already in convex form,
so we only need to deal with the constraint (16c). To proceed,
we introduce the following lemma:
Lemma 1: Given expression

g(v) = bH (v)A−1(v)b (v) (17)
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where bH (v) and A(v) are arbitrary given functions: Cr1 →

Cr2 and Cr1 → Sr2×r2++ , respectively, and v ∈ V where V ⊆
Cr1 , r1, r2 ∈ N.
We can obtain the following inequivalent

bH (v)A−1(v) b (v) ≥ G (v) (18)

whereG (v) = 2<
{
χHb (v)

}
−χHA (v)χ andχ ∈ Cr2 refers

to an auxiliary variable. The proof of Lemma 1 is relegated
to Appendix B.

According to Lemma 1, we can rewrite constraint (16c) as

1+ G
(
vk,d,i,fq

)
≥ 2

ω2
k,i,fq

Rmin,k,i,fq , (19)

where

G
(
vk,d,i,fq

)
= 2<

{
χHk,i,fqHk,i,fqvk,i,fq

}
−χHk,i,fqZk,i,fqχk,i,fq .

It is obvious that, according to Lemma 1, by transforming the
problem (17) into a multidimensional quadratic transform,
the SINR term in (16c) is converted to a concave function of
vk,d,i,fq . Then, (19) can be further equivalently transformed
into a more tractable form as∑

m6=k

χHk,i,fqHk,i,fqvm,i,fqv
H
m,i,fqH

H
k,i,fqχk,i,fq ≤ φk,i,fq (20)

where

φk,i,fq = 1+ 2<{χHk,i,fqHk,i,fqvk,i,fq}

− 2
ω2
k,i,fq

Rmin,k
− σ 2

k,i,fqχ
H
k,i,fqIyk,i,fq

−

∑
j6=i

χHk,j,fqHk,j,fqvr,j,fqv
H
r,j,fqH

H
k,j,fqχk,j,fq . (21)

Then, we iteratively optimize problem (16) over vk,d,i,fq and
χk,i,fq . First, we set optimal χ̃k,i,fq to its optimal value for
given vk,d,i,fq as (see Lemma 1):

χ̃k,i,fq = Z−1k,i,fqHk,i,fqvk,i,fq (22)

Second, for a given χk,i,fq , the problem (16) can be rewrit-
ten as a second-order cone programming (SOCP) problem:

min
{ωk,fq }k∈K̃i,fq

,

vk,i,fq

∑
k∈K̃i,fq

(ωk,i,fq − 1)2

s.t.
∥∥θk,i,fq∥∥2 ≤ √φk,i,fq ,∥∥∥ϕd,i,fq∥∥∥2 ≤ √Psum,d ,∥∥∥ρd,i,fq∥∥∥2 ≤

√
1
Ncp

Csum,d , (23)

where θk,i,fq , ϕd,i,fq , ρd,i,fq are given by

θk,i,fq =

[
χHk,i,fqHk,i,fqv1,i,fq , . . . ,χ

H
k,i,fqHk,i,fqv

∣∣∣Ki,fq ∣∣∣,i,fq
]H
,

(24)

ϕd,i,fq =

[
vH1,d,i,fq , . . . , v

H
K∣∣∣Kd,i,fq

∣∣∣,d,i,fq ,d,i,fq
]H

(25)

ρd,i,fq =

[√
ϒ1,d,i,fqR

(n)
1,i,fq

vH1,d,i,fq , . . . ,√
ϒ∣∣∣Kd,i,fq

∣∣∣,d,i,fqR(n)∣∣∣Kd,i,fq

∣∣∣,i,fqvH∣∣∣Kd,i,fq

∣∣∣,d,i,fq
]H
, (26)

where Kd,i,fq is the candidate set of users served by the
d th RAU. Thus,

∣∣Kd,i,fq

∣∣ and ∣∣Ki,fq

∣∣ represent the number
of users served by the d th RAU and the total number of
users admitted in adaptive cell i of CP fq, respectively, and
Ki,fq = {K1,i,fq , · · · ,K∣∣∣Kd,i,fq

∣∣∣,i,fq}.
To obtain Ki,fq , we initialize Ki,fq = K̃i,fq . Then, the prob-

lem (23) has a global optimal solution by traditional tech-
niques such as the interior point method [37], [38].

After solving problem (23), we obtain Ki,fq according to

Ki,fq =

{
K̃i,fq , if ωk,i,fq = 1,∀k ∈ Ki,fq
K̃i,fq\k

∗
k,i,fq , otherwise.

(27)

where k∗k,i,fq = arg mink∈K̃k,i,fq
ωk,i,fq .

Based on the above description and analysis, the iterative
algorithm for problem (15) is summarized in Algorithm 1.

Algorithm 1 User Selection for Interlaced Clustering
Input:

v(0)k,i,fq , R
(0)
k,i,fq , K(0)i,fq = K̃i,fq ,∀k ∈ K(0)i,fq ,

∀d ∈ Di,fq , ∀i.
fix fq, v

(0)
r,j,fq ,K

(0)
j,fq ,∀j

Set n→ 0
Set adaptive cell i as the target optimal cell.

1: repeat
2: repeat
3: Given K(n)i,fq , fix v(n)k,i,fq ,∀k ∈ Ki,fq , compute

χ
(n)
k,i,fq according to (22), ∀k ∈ K(n)i,fq .

4: Find the optimal transmit beamformer v(n+1)k,i,fq

and auxiliary variable ω(n+1)k,i,fq under fixed χ (n)k,i,fq
by solving the SOCP problem (23) with CVX
[39].

5: Update R(n+1)k,i,fq and ϒ
(n+1)
k,d,i,fq according to (14)

and (6) respectively, ∀d ∈ Di,fq ,∀k ∈ K(n)i,fq .
6: Update K(n+1)i,fq and χ (n+1)k,i,fq according to (27) and

(22) respectively.
7: Set n→ n+ 1
8: until ω(n+1)k,i,fq = 1,∀k ∈ K(n+1)i,fq .
9: Set adaptive cell j → i, j 6= i, j ∈ Afq as the target

optimal cell. Go to step 3.
10: until Go through all adaptive cells and CPs.
11: return vk,i,fq and ωk,i,fq and go to Stage II.
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B. COMPLEXITY ANALYSIS OF USC ALLOCATION
In this section, we analyze the complexity of Algorithm 1,
and the main complexity of each iteration lies in step 2,
which mainly solves the SOCP problem. Due to the alternat-
ing optimization methods, we first limit the analysis within
an adaptive cell. In each adaptive cell, the problem has
2M

∣∣Di,fq

∣∣∣∣K̃i,fq

∣∣ + ∣∣K̃i,fq

∣∣ variables, ∣∣K̃i,fq

∣∣ SOC constraints
with 2

∣∣K̃i,fq

∣∣+1 dimensions, and 2
∣∣Di,fq

∣∣ SOC constraints
with 2M

∣∣K̃i,fq

∣∣ dimensions. Then, we obtain the complexity
O(Vcom) [40], where

Vcom =
(
2M

∣∣Di,fq

∣∣∣∣K̃i,fq

∣∣+ ∣∣K̃i,fq

∣∣)2
×

(
2
∣∣K̃i,fq

∣∣2+∣∣K̃i,fq

∣∣+ 4M
∣∣K̃i,fq

∣∣∣∣Di,fq

∣∣)
and the total number of iterations is O

(√∣∣K̃i,fq

∣∣+ ∣∣Di,fq

∣∣).
Therefore, the total complexity to solve the SOCP problem

(23) is given byO
(√∣∣K̃i,fq

∣∣+ ∣∣Di,fq

∣∣Vcom). Next, we can see
that Algorithm 1 should run

∣∣K̃i,fq

∣∣ times at most, and the
maximal total complexity of the USC algorithm within each

adaptive cell is O
(∣∣K̃i,fq

∣∣√∣∣K̃i,fq

∣∣+ ∣∣Di,fq

∣∣Vcom). Finally,

as there exists
∣∣A∣∣ adaptive cells and

∣∣F ∣∣ CPs, running K
times at most, we obtain the overall complexity of the first

stage as O
( ∑
fq∈F

∑
i∈Afq

(∣∣K̃i,fq

∣∣√∣∣K̃i,fq

∣∣+ ∣∣Di,fq

∣∣Vcom)).
IV. THE SECOND STAGE: ITERATIVE ALGORITHMS
FOR SPARSE BEAMFORMING
After the USC algorithm, we consider solving problem
(12) for the selected users. Under the CP network architec-
ture, we develop four low-complexity algorithms, named the
CP-WMMSE algorithms, including the CP-WMMSE algo-
rithm for sparse beamforming, the primal decomposition-
based power allocation algorithm for sparse beamforming,
the dual decomposition-based power allocation algorithm for
sparse beamforming and a fast iterative algorithm for sparse
beamforming.

In the CP-WMMSE algorithm for sparse beamforming,
since the WMMSE algorithm [41] can be jointly applied
between different CPs, we combine each CP jointly to
solve the WSR problem. However, applying the algorithm
in this way will consume a significant amount of comput-
ing resources. To further reduce the operation complexity,
we introduce the decomposition algorithm-based power allo-
cation for sparse beamforming. The reason is that further
research revealed that the WMMSE algorithm can be applied
to solve the WSR problem in different CPs in parallel. To use
primal decomposition, we introduce a series of variables that
represent the power allocation. By using these auxiliary vari-
ables, we can divide the original problem into two subprob-
lems, and then we can update the resource allocation using a
subgradient master algorithm. To further extend the decom-
position to more CPs, we propose a dual decomposition-
based power allocation algorithm for sparse beamforming.

Since the users and RAUs may be densely deployed in the
practical environment, an additional fast iterative algorithm
is required for reducing the computational complexity of the
systems. By alternately optimizing the target adaptive cell and
considering the other adaptive cells as constant interference,
the algorithm reduces the complexity further without signif-
icant performance loss. Note that the fast iterative algorithm
can be combined with both the primal decomposition- or dual
decomposition-based power allocation algorithm for sparse
beamforming and the CP-based scheme independently.

A. CP-WMMSE ALGORITHM FOR SPARSE BEAMFORMING
In traditional communication systems, the WSR problem has
been solved efficiently, but in interlaced clustering, the prob-
lem may be difficult to solve due to resource allocation.
Next, we introduce the CP-WMMSE algorithm for sparse
beamforming and show it more clearly; we first rewrite C3 as

C7:
∑
fq∈F

∑
i∈Afq

∑
k∈Ki,fq

∥∥vk,d,i,fq∥∥22 ≤ Psum,d , ∀d ∈ Di,fq .

(28)

Now, we introduce the following proposition, which
extends the WMMSE algorithm to interlaced clustering.

Proposition 1: Assume that interlaced clustering is
assigned to different CPs with orthogonal frequency bands.
For DAS with interlaced clustering, the original WMMSE
algorithm can be solved jointly, i.e., the original WSR prob-
lem (12) can be rewritten as

max
vk,i,fq

∑
fq∈F

∑
i∈Afq

∑
k∈Ki,fq

9k,i,fqRk,i,fq

s.t. C5, C7. (29)

The corresponding CP-WMMSE expression is

min
{εk,i,fq ,uk,i,fq ,

vk,i,fq }

∑
fq∈F

∑
i∈Afq

∑
k∈Ki,fq

9k,i,fq
(
εk,i,fqek,i,fq − log εk,i,fq

)
s.t. C5, C7. (30)

where ek,i,fq , εk,i,fq , and uk,i,fq are the MSE, the MSE weight,
and the optimal receiver for user k , respectively, which are
defined as

ek,i,fq = uHk,i,fqTk,i,fquk,i,fq − 2<{uHk,i,fqHk,i,fqvk,i,fq} + 1,

(31a)

εk,i,fq = e−1k,i,fq , (31b)

uk,i,fq = T−1k,i,fqHk,i,fqvk,i,fq , (31c)

where Tk,i,fq is

Tk,i,fq =
∑

r∈Kj,fq ,

j∈Afq

Hk,j,fqvr,j,fqv
H
r,j,fqH

H
k,j,fq+σ

2
k,i,fqI,∀j ∈ Afq .

The proof of Proposition 1 is shown in Appendix A. In the
following, we try to solve problem (30) using the block
coordinate descent (BCD) method with a series of variables
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of three sets over εk,i,fq , uk,i,fq and vk,i,fq . Given vk,i,fq , syn-
chronously update εk,i,fq and uk,i,fq by
ek,i,f1 = uHk,i,f1T k,i,fquk,i,f1 − 2<

{
uk,i,f1Hk,i,f1vk,i,f1

}
+1,

. . .

ek,i,fq = uHk,i,fqT k,i,fquk,i,fq − 2<
{
uk,i,fqHk,i,fqvk,i,fq

}
+1,

εk,i,f1 = e−1k,i,f1 ,
. . .

εk,i,fq = e−1k,i,fq ,


uk,i,f1 = T−1k,i,fqHk,i,f1vk,i,f1 ,
. . .

uk,i,fq = T−1k,i,fqHk,i,fqvk,i,fq ,

(32)

By applying the BCD method with fixed uk,i,fq and εk,i,fq ,
the problem (12) can be expressed as a CP-based quadrat-
ically constrained quadratic programming (CP-QCQP)
problem

min
{vk,i,fq |k∈Ki,fq ,d∈Di,fq }

∑
fq∈F

∑
i∈Afq

Jk,i,fq

s.t. C5, C7 , (33)

where Jk,i,fq is defined as

Jk,i,fq = −2
∑

k∈Ki,fq

9k,i,fqεk,i,fq<

{
uHk,i,fqHk,i,fqvk,i,fq

}
+

∑
k∈Ki,fq

vHk,i,fq
( ∑
j∈Afq

∑
m∈Kj,fq

9m,j,fqεm,j,fqH
H
m,j,fq

×um,j,fqu
H
m,j,fqHm,j,fq

)
vk,i,fq . (34)

The problem in (29) involves two loops: an inner loop
to design sparse beamforming vk,i,fq by solving the multi-
CP optimization problem (33) with the BCD method, and
an outer loop to synchronously update the optimal receiver
εk,i,fq and the optimal MSE weight uk,i,fq . The two loops are
summarized in Algorithm 2.

Algorithm 2 CP-WMMSE Algorithm for Sparse
Beamforming.
Input:

ϒ
(0)
k,d,i,fq , v

(0)
k,i,fq , R

(0)
k,i,fq , ∀k ∈ Ki,fq , ∀d ∈ Di,fq , ∀i.

Set n→ 0.
1: repeat
2: Fix v(n)k,i,fq ,∀k ∈ Ki,fq , compute the MMSE receiver

u(n+1)k,i,fq and the corresponding MSE e(n+1)k,i,fq according
to (32), ∀k ∈ Ki,fq .

3: Find the optimal transmit beamformer v(n+1)k,i,fq under

fixed u(n+1)k,i,fq , e
(n+1)
k,i,fq by solving QCQP problem (33).

4: Update R(n+1)k,i,fq and ϒ (n+1)k,d,i,fq according to (14) and
(6) respectively, ∀d ∈ Di,fq ,∀k ∈ Ki,fq .

5: Set n→ n+ 1.
6: until Convergence.
7: return vk,i,fq ,∀k .

Although, the original problem (12) can be solved by
applying Algorithm 2, the high computational complexity has
to be considered in practical applications, especially when
the number of CPs is high. To further reduce the complexity,
we propose the primal decomposition-based power allocation
algorithm for sparse beamforming in the next subsection.

B. PRIMAL DECOMPOSITION-BASED POWER
ALLOCATION ALGORITHM FOR SPARSE BEAMFORMING
In this section, we go one step further to design an algorithm
with lower complexity. First, we assume that there are two
CPs in our system. Obviously, problem (30) is convex and
decomposable. Hence, the duality gap between constraint
C7 of problem (30) and its optimal dual problem is zero.
Then, we can decompose the original problem into two sub-
problems and solve it by computing the subgradient.

As assumed before, we rewrite the problem (30) as two
subproblems; the first subproblem becomes

min
{εk,i,f1 ,uk,i,f1 ,

vk,i,f1 }

∑
i∈Af1

∑
k∈Ki,f1

9k,i,f1
(
εk,i,f1ek,i,f1 − log εk,i,f1

)
s.t. C8 :

∑
k∈Ki,f1

ϒk,d,i,f1 R̃k,i,f1
∥∥vk,d,i,f1∥∥22 ≤ 1

2
Csum,d ,

C9 :
∑

k∈Ki,f1

∥∥vk,d,i,f1∥∥22 ≤ ηd,i,f1Psum,d ,∀d ∈ Di,f1 ,

(35)

and the second subproblem becomes

min
{εr,j,f2 ,ur,j,f2 ,

vr,j,f2 }

∑
j∈Af2

∑
r∈Kj,f2

9r,j,f2
(
εr,j,f2er,j,f2 − log εr,j,f2

)
s.t. C10 :

∑
r∈Kj,f2

ϒr,d,j,f2 R̃r,j,f2
∥∥vr,d,j,f2∥∥22 ≤ 1

2
Csum,d

C11 :
∑

r∈Kj,f2

∥∥vr,d,j,f2∥∥22 − Psum,d ≤−ηd,i,f1Psum,d ,
∀d ∈ Dj,f2 (36)

where ηd,i,f1 represents the ratio of power allocated to the first
CP, and C8, C9, C10, C11 are the backhaul constraint and
power constraint of CP1 and CP2. Note that, the constraint
C8,C9,C10,C11 must be for the same RAU d .
To further describe the problem, we redefine the above two

subproblems (35) and (36) as

min
{εk,i,ff1

,uk,i,f1 ,
vk,i,f1 }

∑
i∈Af1

∑
k∈Ki,f1

f1
(
vk,i,f1 , εk,i,f1 ,uk,i,f1

)
s.t. C12:

{
vk,d,i,f1 ∈ V1,

λd,f1 : hf1
(
vk,d,i,f1

)
≤ gd ,

(37)

min
{εr,j,ff2

,ur,j,f2 ,
vr,j,f2 }

∑
j∈Af2

∑
r∈Kj,f2

f2
(
vr,j,f2 , εr,j,f2 ,ur,j,f2

)
s.t. C13:

{
vr,d,j,f2 ∈ V2,

λd,f2 : hf2
(
vr,d,j,f2

)
≤ −gd ,

(38)
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respectively, where V1 and V2 are the two feasible sets of
the subproblems, i.e., for CP1, the feasible set is defined in
C8, gd = ηd,i,f1Psum,d represents the amount of power allo-
cated to the first CP for the d th RAU, f1

(
vk,i,f1 , εk,i,f1 ,uk,i,f1

)
and f2

(
vr,j,f2 , εr,j,f2 ,ur,j,f2

)
are the object functions of the

subproblem (35) and the subproblem (36) respectively, and
λd,f1 and λd,f2 are the optimal dual variables associated with
the constraints hf1

(
vk,d,i,f1

)
≤ gd and hf2

(
vr,d,j,f2

)
≤ −gd .

In addition, we define

λ1 =
[
λ1,f1 , λ2,f1 , . . . , λD,f1

]H
,

λ2 =
[
λ1,f2 , λ2,f2 , . . . , λD,f2

]H
,

g =
[
λ1,f1 , λ2,f1 , . . . , λD,f1

]H
.

Each subproblem can be solved by using the BCDmethod:
given vk,i,fq and uk,i,fq , update εk,i,fq by using (31b); update
uk,i,fq with vk,i,fq and εk,i,fq by using (31c); and under fixed
uk,i,fq and ek,i,fq , we obtain the QCQP problems

min
{vk,i,f1 |k∈Ki,f1 ,d∈Di,f1 }

∑
i∈Af1

Jk,i,f1

s.t. C12, (39)

and

min
{vr,j,f2 |k∈Kj,f2 ,d∈Dj,f2 }

∑
j∈Af2

Jr,j,f2

s.t. C13, (40)

where Jk,i,f1 and Jr,j,f2 are defined in (34), where q = 1 and
q = 2, respectively.
Then, we can solve the original problem (30) by applying

primal decomposition with a subgradient master algorithm,
which is given in Algorithm 3.

Algorithm 3 Primal Decomposition-Based Power Allocation
Algorithm for Sparse Beamforming.
Input:
ϒ
(0)
k,d,i,fq , v

(0)
k,i,fq , R

(0)
k,i,fq , g, ∀k ∈ Ki,fq , ∀d ∈ Di,fq ,

q = 1, 2, ∀i
Set n→ 0.

1: repeat
2: Run 2 in Algorithm 2, where q = 1, 2.
3: Find the optimal transmit beamformer v(n+1)k,i,fq and

λd,fq under fixed u(n+1)k,i,fq , e
(n+1)
k,i,fq by solving QCQP

problem (39) and (40) respectively, where q = 1, 2.
4: Update the power allocation: g := g−

αn (λ2 − λ1), where αn are series-appropriate
step sizes for RAUs.

5: Run 4 in Algorithm 2, where q = 1, 2.
6: Set n→ n+ 1.
7: until Convergence.
8: return vk,i,fq ,∀k .

C. DUAL DECOMPOSITION-BASED POWER ALLOCATION
ALGORITHM FOR SPARSE BEAMFORMING
The primal decomposition is suited for two CPs; when the
system consists of more than two CPs, the primal decompo-
sition in the previous section will not work. This limitation
motivated us to further introduce a dual decomposition-based
power allocation algorithm for sparse beamforming, which
can be used for more CPs. As the subject C7 is convex, we can
add it to the objective by using dual variables λ.
With a few simple manipulations, the Lagrangian function

of problem (30) is given by

L
(
vk,i,fq ,λ

)
=

∑
fq∈F

∑
i∈Afq

∑
k∈Ki,fq

ffq
(
vk,i,fq , εk,i,fq ,uk,i,fq

)

+λT
∑
fq∈F

∑
i∈Afq

∑
k∈Ki,fq

hfq
(
vk,d,i,fq

)

=

∑
fq∈F

∑
i∈Afq

∑
k∈Ki,fq

(
ffq
(
vk,i,fq , εk,i,fq ,uk,i,fq

)

+λT hfq
(
vk,d,i,fq

))
, (41)

where λ are the given dual variables, the dual function is
defined as

g(λ) =
∑
fq

gfq (λ),

and the current resource function is defined as

hfq
(
vk,i,fq

)
=

∑
k∈Ki,f1

∥∥vk,d,i,fq∥∥22.
Note that fq

(
vk,i,fq , εk,i,fq ,uk,i,fq

)
is defined the same as in

(37) and (38), but can handle more than 2 CPs.
To find gfq (λ), we solve the subproblems

min
vk,i,fq

∑
i∈Afq

∑
k∈Ki,fq

(
fq
(
vk,i,fq , εk,i,fq ,uk,i,fq

)
+λT hfq

(
vk,d,i,fq

))
s.t. vk,i,fq ∈ Vq. (42)

The subgradient of−gfq at λ is hfq
(
ṽk,i,fq

)
, where ṽk,i,fq are

any solution of subproblem (42). By solving the subproblems
(42), we obtain solutions ṽk,d,i,fq and find the subgradient
of gfq , the master problem objective. Hence, the subgra-
dient of −gfq is

∑
fq hfq

(
ṽk,i,fq

)
. Finally, we obtain a dual

decomposition-based power allocation algorithm for sparse
beamforming by using a projected subgradient method to
update λ and the BCD method to find the optimal ṽk,i,fq .
In the dual decomposition-based power allocation algo-

rithm for sparse beamforming, we first initialize λ. Then,
we solve each subproblem by using the BCD method, which
is similar to Section IV Part C. Under fixed uk,i,fq and ek,i,fq ,
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we obtain the following problem:

min
{vk,i,fq |k∈Ki,fq ,d∈Di,fq }

∑
i∈Afq

J̃k,i,fq

s.t. vk,i,fq ∈ Vq, (43)

where

J̃k,i,fq = Jk,i,fq + λ
T
(
hfq
(
vk,d,i,fq

))
, (44)

and Jk,i,fq and Vq are defined in (34) and (37), respectively.
Note that, in the dual decomposition algorithm, we trans-

form the power constraint into an objective function. There-
fore, the iterations in the algorithm need not be feasible; how-
ever, in practice, we can construct a feasible set of variables
by solving additional subproblems [31], [42].

Based on the above analysis, the dual decomposition-based
power allocation algorithm for sparse beamforming is given
in Algorithm 4.

Algorithm 4 Dual Decomposition-Based Power Allocation
Algorithm for Sparse Beamforming.
Input:

ϒ
(0)
k,d,i,fq , v

(0)
k,i,fq , λ

(0), R(0)k,i,fq , ∀k ∈ Ki,fq , ∀d ∈ Di,fq ,
q = 1, . . . ,Q, ∀i
Set n→ 0.

1: repeat
2: Run 2 in Algorithm 2.
3: Find the optimal transmit beamformer v(n+1)k,i,fq under

fixed u(n+1)k,i,fq , e
(n+1)
k,i,fq by solving subproblem (42).

4: Update dual variables (the price vector):
λ(n+1) :=

(
λ(n) + αn

∑
v(n+1)k,d,i,fq

hfq
(
v(n+1)k,d,i,fq

))
+

.

5: Run 4 in Algorithm 2.
6: Set n→ n+ 1.
7: until Convergence.
8: return vk,i,fq ,∀k .

D. A FAST ITERATIVE ALGORITHM FOR SPARSE
BEAMFORMING
The above analysis shows that the primal decomposition
and the dual decomposition can solve the original prob-
lem with lower complexity; however, with increasing densi-
ties, the computational cost must be further reduced. In this
section, a fast iterative algorithm is applied to realize this
requirement.

Similar to Section III, we can also apply an alternative opti-
mize method in each subproblem of the above two decompo-
sition algorithms. For primal decomposition, we limit the data
sharing strategy in the adaptive cell, and the final problem of
the two subproblems can be rewritten as

min
{vk,d,i,f1 |k∈Ki,f1 ,d∈Di,fq }

Jk,i,f1

s.t. C12 , (45)

and

min
{vk,j,f2 |r∈Kj,f2 ,d∈Dj,fq }

Jr,j,f2

s.t. C13 , (46)

where Jk,i,f1 and Jr,j,f2 are defined in (34), where q = 1 and
q = 2, respectively.
For dual decomposition, we have the final optimization

subproblem

min
{vk,d,i,fq |k∈Ki,fq ,d∈Di,fq }

J̃k,i,fq

s.t. vk,d,i,fq ∈ Vq, (47)

where J̃k,i,fq is defined in (44).
Then, fast iterative algorithms for sparse beamforming

with primal decomposition and dual decomposition are given
in Algorithm 5 and Algorithm 6, respectively.

Algorithm 5 A Fast Iterative Algorithm for Sparse
Beamforming with Primal Decomposition.
Input:

ϒ
(0)
k,d,i,fq , v

(0)
k,i,fq , R

(0)
k,i,fq , ∀k ∈ Ki,fq , ∀d ∈ Di,fq , ∀i

Set n→ 0
Set adaptive cell i as the target optimal cell.

1: repeat
2: repeat
3: Under the fixed target adaptive cell, run 2, 3,

4 and 6 of Algorithm 3, where in 3 and 4,
we find the optimal transmit beamformer v(n+1)k,i,fq
and λd,f1 by solving problems (45) and (46)
instead of (39) and (40).

4: Set adaptive cell j → i, j 6= i, j ∈ Afq as the
target optimal cell. Go to step 3.

5: until Go through all adaptive cells.
6: Run 5 of Algorithm 3.
7: Set n→ n+ 1.
8: until Convergence.
9: return vk,i,fq ,∀k .

E. COMPLEXITY ANALYSIS OF THE ALGORITHMS
PROPOSED IN THE SECOND STAGE
In this subsection, we analyze the complexity of the algo-
rithms to solve the original problem (12). First, we assume
that a practical network with

∣∣K̃i,fq

∣∣ > ∣∣Di,fq

∣∣ > M > N .
In the CP-WMMSE algorithm, the computational complexity
of step 2 is O

( ∑
fq∈F

∑
i∈Afq

∣∣K̃i,fq

∣∣2∣∣Di,fq

∣∣MN), and updating

the weights εk,i,fq is only O
( ∑
fq∈F

∑
i∈Afq

∣∣K̃i,fq

∣∣). In step 2,

we solve a QCQP problem, which can also be equivalently
reformulated as an SOCP problem. Then, the total the num-
ber of variables as

∑
fq∈F

∑
i∈Afq

∣∣K̃i,fq

∣∣∣∣Di,fq

∣∣M and the com-

putational complexity is approximately O
( ∑
fq∈F

∑
i∈Afq

∣∣K̃i,fq

∣∣∣∣
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Algorithm 6 A Fast Iterative Algorithm for Sparse Beam-
forming with Dual Decomposition.
Input:

ϒ
(0)
k,d,i,fq , v

(0)
k,i,fq , λ, R

(0)
k,i,fq , ∀k ∈ Ki,fq , ∀d ∈ Di,fq , q =

1, . . . ,Q, ∀i.
Set n→ 0.
Set adaptive cell i as the target optimal cell.

1: repeat
2: repeat
3: Run 2, 3 and 5 of Algorithm 4, where in 3,

we find the optimal transmit beamformer v(n+1)k,i,fq
according to (47) instead of (42).

4: Set adaptive cell j → i, j 6= i, j ∈ Afq as target
optimal cell. Go to step 3.

5: until Go through all adaptive cells.
6: Run 4 of Algorithm 4.
7: Set n→ n+ 1.
8: until Convergence.
9: return vk,i,fq ,∀k .

Di,fq

∣∣M)3.5 [43] when solving the problem with the interior-
point method. In step 4, the computational complexity of the
rate updating procedure is O

( ∑
fq∈F

∑
i∈Afq

∣∣K̃i,fq

∣∣2∣∣Di,fq

∣∣MN),
which is the same as computing theMSE. Therefore, the com-
putational complexity of the CP-WMMSE algorithm mainly
derives from step 2. Suppose Algorithm 2 requires η total
number of iterations to converge; the overall complexity is

then O
(( ∑

fq∈F

∑
i∈Afq

∣∣K̃i,fq

∣∣∣∣Di,fq

∣∣M)3.5η). As the computa-

tional complexity of the proposed algorithms mainly lies in
solving the QCQP problem, we focus on analyzing the QCQP
computation in the following.

In Algorithm 3 and Algorithm 4, the number of variables is∑
i∈Afq

∣∣K̃i,fq

∣∣∣∣Di,fq

∣∣M ; then, the total computational complex-

ity is O
( ∑
i∈Afq

∣∣K̃i,fq

∣∣∣∣Di,fq

∣∣M)3.5, and the overall computa-

tional complexity is

O
( ∑
fq∈F

( ∑
i∈Afq

∣∣K̃i,fq

∣∣∣∣Di,fq

∣∣M)3.5η).
Similar to Algorithm 3 and Algorithm 4, the computational

complexity of Algorithm 5 and Algorithm 6 is given by

O
( ∑
fq∈F

( ∑
i∈Afq

∣∣K̃i,fq

∣∣∣∣Di,fq

∣∣M)3.5η). From the above analy-

sis, we can conclude that with decomposition, the complexity
is reduced, and that with alternating optimization, the com-
plexity is further reduced.

F. PERFORMANCE COMPARISON OF THE ALGORITHMS
PROPOSED IN THE SECOND STAGE
Overall, we summarize the advantages and disadvantages of
the proposed algorithms as follows:

1) The order of complexity of the proposed algorithms
from high to low is Algorithm 2, Algorithm 3 and Algo-
rithm 5. Furthermore, Algorithm 4 and Algorithm 6 have the
same complexity as Algorithm 3 and Algorithm 5, respec-
tively.

2) Since Algorithm 2 jointly optimizes the beamforming
and the power allocation for RAUs between CPs through-
out the network, the performance of Algorithm 2 should be
higher than that of the other proposed algorithms. Similarly,
by jointly optimizing the beamforming and the power allo-
cation for RAUs within each CP simultaneously, the perfor-
mance of the two decomposition algorithms should be higher
than the fast iterative algorithm with corresponding decom-
position algorithm, respectively. Thus, the performance order
from high to low is Algorithm 2, Algorithm 3, Algorithm 5;
similarly, the complexity of the other two algorithms together
with Algorithm 2 is ranked as Algorithm 2, Algorithm 4,
Algorithm 6.

V. NUMERICAL RESULTS
In this section, we perform a numerical evaluation of our
proposed algorithms. Numerical evaluations are conducted to
show the effectiveness of the proposed algorithms, with the
simulation parameters listed in Table 1.

TABLE 1. Simulation parameters.

FIGURE 2. Cluster patterns and simulation layouts. (a) Planar, CP1.
(b) Planar, CP2.

Fig 2 shows a large simulation layout containing several
adaptive cells. For the sake of brevity, the simulation results
are restricted to the important case of interlaced clustering
with equal partitioning of bandwidth among the CPs as illus-
trated in Fig. 2a and Fig.2b.
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A. USER SELECTION PERFORMANCE IN THE CLUSTER
PATTERN SCHEME

1) Convergence behavior of USC: Fig. 3 shows the conver-
gence behavior of USC with different rate requirements for
selected users. For different CP schemes, different channel
realizations may lead to different solutions; we run the two
CPs differently, and then compute the average of the two
CPs. It can be seen from Fig. 3 that the number of users
monotonically increases during the iterative procedure for
two CP schemes. The algorithm converges very fast, and in
general, six iterations can achieve a stable value for different
rate requirements and different CP schemes. In addition, it is
obvious that the lower the rate requirement is set, the more
users that will be selected.

FIGURE 3. Convergence behavior of USC.

2) Sum-rate performance of the USC algorithm: Fig. 4
compares the sum-rate performance of the USC algorithm
with our proposed algorithms. Under a fixed rate requirement,
we compute the sum-rate of the five proposed algorithms
with the same channel realizations. As expected, the sum-
rate decreases with the rate requirements for all algorithms.
The different algorithms have almost the same rate of decline.
Moreover, when the rate requirement increases to 1 bit/s/Hz
the sum-rate decreases only 2.03%, which can be negligible.
In addition, the gap between the algorithm with the lowest
sum-rate, i.e., a fast iterative algorithm for sparse beamform-
ingwith dual decomposition and the highest sum-rate, i.e., the
CP-WMMSE algorithm is approximately 2.18%, which can
also be negligible. Therefore, the proposed algorithms can
be considered to have approach performance gains in the
sum-rate.

3) The user selection performance and complexity of the
USC algorithm along with the proposed algorithms: The user
selection performance and complexity of the USC algorithm
are shown in Fig. 5a and Fig. 5b respectively. In Fig. 5a,
three different schemes are considered, i.e., CP1, CP2, and the
number of selected users throughout the network. We can see
that the selected users decrease with the rate requirement, and
the two CPs have almost the same performance on the num-
ber of selected users. When the rate requirement increases
to 1 bit/s/Hz, the users selected of each CP decreases to

FIGURE 4. Sum-rate change versus rate requirement.

approximately 49.39. However, the number of all the selected
users in the system is above 72.54, which is one of the
advantages of the CP schemes. Accordingly, the complexity
of the USC algorithm along with the proposed algorithms can
be seen in Fig. 5b. It can be seen from the figures that the CP-
WMMSE and the decomposition algorithms with the same
complexity performance decrease with the USC algorithm.
When the rate requirement increases to 0.6, i.e., the selected
users are below 67.82, the complexity of the two algorithms
changes slowly. At the same time, the complexity of the fast
decomposition algorithms changes slowly and on a high posi-
tion as the number of users decreases throughout. Compared
to the other algorithms, the fast decomposition algorithms run
with lower complexity but can still decrease nearly 27.13%
with the USC algorithm when the rate requirement increase
to 0.6. When the rate requirement increases to 1 bit/s/Hz,
the complexity can be reduced by approximately 30%.

B. PERFORMANCE OF THE PROPOSED SPARSE
BEAMFORMING ALGORITHMS
After considering the tradeoff between the complexity and
the sum-rate performance loss, and based on the above anal-
ysis, we choose 0.6 bit/s/Hz as the users’ rate requirement
for the USC algorithm and analyze the performance of the
proposed algorithms. In this subsection, we compare the
performance of the proposed algorithms with the dynamic
cluster (DCA) algorithm [22]. The complexity of the DCA is

O
( ∑
fq∈F

( ∑
i∈Afq

∣∣∣K̃i,fq

∣∣∣ |D|M)3.5η), which is higher than the

CP-WMMSE. Thus, the additional techniques are necessary
to deal with the high complexity. We choose the iterative user
pool shrinking technique when running the DCA algorithm,
i.e., the user rate below 0.01 bps/Hz will be negligible in each
iteration.

1) Convergence behavior of the proposed algorithms based
on power allocation: Fig. 6 shows the convergence behavior
of the proposed algorithms along with the DCA algorithm.
As we can see, in the CP-based scheme, the proposed algo-
rithms converge in approximately 30−40 iterations under the
same settings, which is a faster convergence than the DCA
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FIGURE 5. The complexity and the selected user selection performance
under the rate requirement increase. (a) The number of the selected users
versus the rate requirement. (b) The complexity of the proposed
algorithms versus the rate requirement.

FIGURE 6. Convergence behavior of the proposed algorithms in
the second stage.

algorithm, although the sum-rate of the proposed algorithms
is slightly lower than that of the DCA algorithm.

2) Cumulative distribution function of the long-term aver-
age user rates: In Fig 7, we compare the cumulative distri-
bution function of the long-term average user rates between
the proposed algorithms with the CP-based scheme and the
DCA algorithm. As expected, the performance of the DCA

FIGURE 7. Cumulative distribution function of the average user data rate
compared with that of the DCA algorithm.

algorithm is slightly better than that of the proposed algo-
rithms in the user rate. The slightly lower performance gains
are caused by more users being served in the CP-based
scheme with the adaptive cell-wide beamforming design in
our scheme rather than the network-wide design in the DCA
algorithm.

3) Performance of the user rate distribution: The long-
term average user rates distributions are given in Fig. 8.
We observe from the results that the cell-edge performance
of the CP-WMMSE algorithm that the primal decomposi-
tion algorithm and the primal decomposition-fast algorithm
are similar to each other, while the two dual decomposition
algorithms are similar. The reason is that the above three
algorithms have the same power constraints, while the dual
decomposition algorithms have no power constraints. How-
ever, the proposed algorithms have a similar distribution of
cell-edge user convergence. In addition, we conclude that the
proposed algorithms enhance the edge-user rates compared
to the DCA algorithm (see Fig. 8g and Fig. 8h’). The reason
is that the DCA algorithm is based on a user-centric cluster
strategy throughout the network, i.e., the strategy does not
affect the cell-edge user when the CSI is not better than
other users. At the same time, the proposed algorithms jointly
consider the cell-edge users’ performance and user-centric
cluster strategy. In addition, some users located in the cluster
center are also well served compared with the DCA algorithm
and benefit from the sparse beamforming design with inter-
laced clustering.

4) Long-term users’ convergence performance: Since the
USC algorithm and the iterative user pool shrinking technique
are applied in this paper, the long-term users’ convergence
performance needs to be carefully analyzed. Fig. 9 shows the
long-term users’ convergence performance of the proposed
algorithms and the DCA algorithm. The network with the
CP-based algorithms can serve 91.12% of the users after the
6 T-F slot, which is higher than applying the DCA algorithm,
which only serves 80.71% of the users. Note that the pro-
posed algorithms have different convergence performance;
this is because, after designing sparse precoding, there are
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FIGURE 8. User rates distribution performance of the proposed algorithms. (a) Rates with DCA algorithm.
(b) Rates with the CP-WMMSE algorithm. (c) Rates with the primal decomposition algorithm. (d) Rates with the
primal decomposition-fast algorithm. (e) Rates with the dual decomposition algorithm. (f) Rates with the dual
decomposition-fast algorithm. (g) Rate improvement factor

RCP-WMMSE−RDCA
RDCA

. (h) Rate improvement factor
RDual−RDCA

RDCA
.
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FIGURE 9. Long-term users convergence performance.

FIGURE 10. Cumulative distribution function of the long-term average
RAU backhaul consumption.

few user rates below 0.01 bps/Hz, which can be ignored in this
paper.

5) Cumulative distribution function of the long-term
average RAU backhaul consumption: Fig. 10 shows the
cumulative distribution function of the long-term average
RAU backhaul consumption of the proposed algorithms and
the DCA algorithm. We can see that approximately 90%
of the RAUs consume less than 400 Mbps backhaul capac-
ity, while the DCA algorithm consumes almost all of the
600 Mbps backhaul capacity. The reason is that the CP-based
sparse beamforming design does not require user rate sharing
throughout the network; instead, the sharing is limited in
adaptive cells.

VI. CONCLUSION
In this paper, we studied the sparse beamforming for an ultra-
dense DASwith interlaced clustering under power constraints
and imperfect backhaul. Then, a power allocation and sparse
beamforming design were jointly considered by applying
WMMSE with different CPs. To solve the problem more
efficiently, we formulated a two-stage optimization problem.
The first stage selects the largest subset of users that can be
admitted to the network by a fast USC algorithmwith an alter-
nating optimizationmethod. Then, the second stage solves the

WSR problem with the CP-WMMSE algorithm, the primal
decomposition-based power allocation algorithm and the dual
decomposition-based power allocation algorithm. Finally,
we applied the alternating optimization method to cooperate
with the three algorithms, which decreased the complexity
of the three algorithms. Simulation results showed that the
proposed algorithms converge quickly, which is attractive for
practical implementation. With the USC algorithms, the sum-
rate performance of the proposed algorithms only slightly
decreased, but the complexity was significantly reduced, e.g.,
when the rate requirement increased to 1 bit/s/Hz, the sum-
rate decreased only 2.03% while the complexity reduced at
least 30%. Moreover, our proposed algorithms were shown
to enhance the performance gains of the cell-edge users and
reduce the backhaul consumption without losing significant
performance gains.

APPENDIX A
PROOF OF LEMMA 1
We first rewrite the right-hand side of (18) by completing the
square as

bH (v)A−1(v)b (v)

−

(
χ − A−1(v)b(v)

)H
A (v)

(
χ − A−1(v)b (v)

)
(48)

Then, it is easy to find that the maximized value of (48)
is bH (v)A−1(v)b (v)when χ̃ = A−1(v)b (v) [38]. In addition,
the inequation(

χ − A−1(v)b(v)
)H

A (v)
(
χ − A−1(v)b (v)

)
≥ 0

is always established for every χ , A(v) and b (v). Therefore,
inequivalence to (18) is therefore established, and the two
sides can be equal if and only if χ̃ = A−1(v)b (v). The proof
is therefore complete.

APPENDIX B
PROOF OF PROPOSITION 1
Since interlaced clustering assigns different CPs to orthogo-
nal frequency bands, the sum rate for the users in different
interlaced clusters are independent except for constraint C7,
i.e., the beamforming for users in different CPs will not
affect each other. Therefore, there are no variables coupled
together in the objective function. Moreover, C7 has a convex
form, so we only need to deal with the objective function
for each CP independently. Thus, first, we alternatively fixed
the other CPs and the other variables of the target CP; the
objective function in (30) is convex with respect to εk,i,f1 ,
. . . , εk,i,fq . Then, by alternatively checking the first-order
optimality condition for εk,i,fq , ∀fq ∈ F , we obtain

ε
opt
k,i,f1
= e−1k,i,f1 ,

. . .

ε
opt
k,i,fq = e−1k,i,fq ,

(49)

Substituting the optimal εk,i,f1 , . . . , εk,i,fq and uk,i,f1 ,
. . . , uk,i,fq , we have the following equivalent optimization
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problem:

max
{εk,i,fq ,uk,i,fq ,vk,i,fq }

∑
fq∈F

∑
i∈Afq

∑
k∈Ki,fq

9k,i,fq log e
−1
k,i,fq

s.t. C5, C7 (50)

Bringing formulas (31) of each CP into (50) completes the
proof.
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