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ABSTRACT The stability problem of switched positive nonlinear systems is presented in this paper. Both
continuous-time and discrete-time systems are considered. Compared with the average dwell time (ADT)
switching, the switching law designed here is more general in which each mode possesses its own ADT.
Unlike most of the existing results, based on the approach in which the Lyapunov function method is not
involved, several stability criteria are derived. In the end, a numerical example is presented to illustrate the
main results. The simulation results demonstrate that the proposed MDADT switching signal can achieve
better performance, which shows that the state trajectories converge faster than the ADT switching.

INDEX TERMS Stability, switched nonlinear positive system, mode-dependent average dwell time.

I. INTRODUCTION
In nature and society, there exist a class of systems with
non-negative state variables. This kind of systems are called
positive systems [1], which have wide applications in com-
partment systems, chemical systems and so on. In recent
years, stability problem of positive systems has been studied
extensively, see e.g., ([2]–[4]). Switched positive systems
consisting of some positive subsystems and a switching signal
have been paid more attention in different kind of areas. From
the point of engineering application, it is essential to consider
the qualitative theory of the system before designing the
controller, such as oscillation ([5]–[7]) and stability ([8], [9]).
Especially, stability is the typical feature which should to
be considered in advance. Based on time driven or state
driven, the method for studying stability of switched sys-
tems can be divided into time-dependent switching [10] and
state-dependent switching [11].

In recent years, stability of switched positive systems has
been paid more attention ([12]–[21]). As the time-dependent
switching, the ADT method is usually utilized to investi-
gate the stability of switched positive systems. To list a
few, Zhao et al. [12] utilized ADT method to study the
stability problem of switched positive linear systems, and
the results were further improved in [16] with average dwell
time switching. On the other hand, the MDADT method was

firstly proposed in [22] to investigate stability and stabiliza-
tion problem of switched linear systems, which illustrated
that the proposed method was more effective than ADT
method. Many stability criteria were established based on the
MDADT method ([23]–[26]). For example, Zhang et al. [23]
employed MDADT method to investigate stability and stabi-
lization of switched linear systems and improved the main
results in [12]. At present, most of existing results are
based on switched positive linear systems. For the switching
positive nonlinear systems, Dong [28] studied the stability
problem under ADT switching, which was generalized to
switched positive nonlinear systems with exogenous input
in [29]. Zhang et al. [30] and Liu et al. [31], the authors
considered the stability problem of a class of switched pos-
itive nonlinear systems with delays. Up to now, stability of
switched positive nonlinear systems under MDADT switch-
ing receives less attention. This motivates us for the present
study.

Stability of switched positive nonlinear systems is
addressed in this paper, and the main contributions of this
paper are attributed to two aspects: (i) Unlike ADT switching,
the switching law designed here is more general in which
each mode possesses its own ADT. (ii) Based on the approach
in which Lyapunov function method is not involved, sev-
eral stability criteria are derived under MDADT switching.
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At the end, we provide an example to illustrate the results
obtained in this paper.

Throughout the paper, the following notation is utilized.
Let N0, R, and Rn represent the set of natural numbers,
real numbers, and n-dimensional Euclidean space, respec-
tively. Vectors are defined by bold letters. For xp ∈ Rn and
i = 1, 2, . . . , n, xpi is the ith coordinate of xp with xp =
[xpi, . . . , xpn]T . Let Rn+ = {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n}.
For x, y ∈ Rn, we write: x ≥ y if xi ≥ yi for all 1 ≤ i ≤ n;
x > y if xi ≥ yi, and x 6= y; x� y if xi > yi for all 1 ≤ i ≤ n.
Given a positive vector v > 0, we use the weighted l∞-norm
for a vector x ∈ Rn: ‖x‖v = max1≤i≤n

xi
vi
. Amatrix A ∈ Rn×n

is nonnegative if aij ≥ 0 for 1 ≤ i, j ≤ n, and the matrix A is
Metzler if aij ≥ 0 for i 6= j.

II. PROBLEM DESCRIPTION AND PRELIMINARIES
Consider the switched nonlinear system

δx(t) = f σ (t)(x(t)), (1)

where x(t) ∈ Rn is the state, δ represents the derivative oper-
ator under the case of continuous-time (δx(t) = (d/dt)x(t))
and the shift forward operator under the case of discrete-time
(δx(t) = x(t + 1)). A switching signal σ (t) : [0,+∞) →
P = {1, 2, . . . ,M} is defined on a switching sequence
0 = t0 < t1 < · · · < tj < tj+1 < · · · , which is everywhere
continuous from the right, when t ∈ [tj, tj+1), the σ (tj)th
subsystem is active,M is the number of subsystems. The fol-
lowing definitions, proposition, and assumption are needed
to present the main results.
Definition 1 [27]: Assume that the vector field f :

Rn → Rn is continuous on Rn and continuously differen-
tiable on Rn\{0}. If the Jacobian matrix ∂f

∂a is Metzler for all
a ∈ Rn+\{0}, then it is said to be cooperative.
Proposition 2 [28]: Suppose that f is a cooperative vector

filed. For any x, y ∈ Rn\{0}, if they are satisfied with x ≥ y
and xi = yi, then we have fi(x) ≥ fi(y).
Definition 3: For ∀ x ∈ Rn and λ > 0, if f (λx) = λαf (x),

then we call that the vector field f is homogeneous of degree
α > 0.
f is homogeneous of degree one under the case α = 1.
Definition 4: If for any x, y ∈ Rn satisfying x ≥ y implies

f (x) ≥ f (y), then we call the vector field f : Rn → Rn is
order-preserving on Rn+.
Assumption 5: f p is cooperative and homogeneous of

degree one for ∀ p ∈P .
Assumption 5 guarantees that f (0) = 0, which implies the

system (1) possesses zero solution. On the other hand, it is
shown in [28] that system (1) which satisfies Assumption 5 is
a switched positive nonlinear systems (SPNS).
Definition 6 [22]: The zero solution x = 0 of sys-

tem (1) is globally uniformly exponentially stable (GUES)
under the switching signal σ (t) and the initial conditions
x(t0) (or x(k0)), if there exist constants α > 0 and r > 0
(respectively, 0 < ς < 1) such that the solution of the system
satisfies ‖x(t)‖ ≤ αe−r(t−t0)‖x(t0)‖, t ≥ t0 (respectively,
‖x(k)‖ ≤ αςk−k0‖x(k0)‖, k ≥ k0).

Definition 7 [22]:LetNσp(T , t) and Tp(T , t) be the switch-
ing numbers and the total active time of the pth subsystem
on the interval [t,T ], p ∈ P , respectively. We call that the
switching signal σ (t) possesses a mode-dependent average
dwell time τap under the condition that

Nσp(T , t) ≤ N0p +
Tp(T , t)
τap

, T ≥ t ≥ 0,

where N0p and τap are positive constants.

III. MAIN RESULTS
In this part, we consider the stability problem of both
continuous-time and discrete-time SPNSs under MDADT
switching. The continuous-time case is first considered.
Theorem 1 (Continuous-Time Case):Consider continuous-

time switched systems

ẋ(t) = f σ (t)(x(t)) (2)

and let Assumption 5 hold. If there exists a vector vp � 0
satisfying f p(vp) � 0 for ∀ p ∈ P , then the SPNS (2) is
GUES under a class of MDADT switching signal satisfying

τap > τ ∗ap =
lnµp
ηp

, (3)

where

µp = max
p,q∈P

vq
vp

with vq = max
1≤i≤n

vqi, vp = min
1≤i≤n

vpi,

and ηp ∈ (0,min1≤i≤n ηpi) with ηpi satisfying

fpi(vp)
vpi
+ ηpi = 0. (4)

Proof: Based on vp � 0 and f p(vp) � 0 for ∀ p ∈ P ,
(4) possesses a unique positive solution and

fpi(vp)
vpi
+ ηp < 0, 1 ≤ i ≤ n.

Consider the interval [tk , tk+1), k ≥ 0, without of generality,
we may assume σ (t) = σ (tk ) ≡ p, t ∈ [tk , tk+1). SPNS (2)
can be rewritten as

ẋ(t) = f σ (tk )(x(t)), t ∈ [tk , tk+1).

In the following, we will show that for t ∈ [tk , tk+1)

‖x(t)‖vσ (tk ) ≤ e
−ησ (tk )(t−tk )‖x(tk )‖vσ (tk ) .

Define

yi(t) =
xi(t)
vσ (tk )i

− e−ησ (tk )(t−tk )‖x(tk )‖vσ (tk ) ,

where t ∈ [tk , tk+1). yi(tk ) ≤ 0 for all i due to the definition
of ‖x(tk )‖vσ (tk ) . Next we will prove that

yi(t) ≤ 0, t ∈ [tk , tk+1), 1 ≤ i ≤ n. (5)

By contradiction, suppose (5) is not true for t ∈ [tk , tk+1),
there exist an index m ∈ {1, 2, . . . , n} and a time constant
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t∗ ∈ [tk , tk+1) such that yi(t) ≤ 0, t ∈ [tk , t∗) and ym(t∗)=0.
Then

ẏm(t∗) ≥ 0. (6)

By the definition of yi(t), we have

xm(t∗) = ‖x(tk )‖vσ (tk )e
−ησ (tk )(t

∗
−tk )vσ (tk )m

and

x(t∗) ≤ ‖x(tk )‖vσ (tk )e
−ησ (tk )(t

∗
−tk )vσ (tk ).

By Assumption 5 and Proposition 2,

fσ (tk )m(x(t
∗)) ≤ fσ (tk )m

(
‖x(tk )‖vσ (tk )

×e−ησ (tk )(t
∗
−tk )vσ (tk )

)
= ‖x(tk )‖vσ (tk )e

−ησ (tk )(t
∗
−tk )

×fσ (tk )m(vσ (tk )).

Therefore,

ẏm(t∗) =
ẋm(t∗)
vσ (tk )m

+ ησ (tk )e
−ησ (tk )(t

∗
−tk )‖x(tk )‖vσ (tk )

=
1

vσ (tk )m
fσ (tk )m(x(t

∗))

+ ησ (tk )e
−ησ (tk )(t

∗
−tk )‖x(tk )‖vσ (tk )

≤
fσ (tk )m(vσ (tk ))
vσ (tk )m

‖x(tk )‖vσ (tk )e
−ησ (tk )(t

∗
−tk )

+ ησ (tk )e
−ησ (tk )(t

∗
−tk )‖x(tk )‖vσ (tk )

= ‖x(tk )‖vσ (tk )e
−ησ (tk )(t

∗
−tk )

×

(
fσ (tk )m(vσ (tk ))
vσ (tk )m

+ ησ (tk )

)
< 0,

which contradicts (6). Therefore, yi(t) ≤ 0, t ∈ [tk , tk+1),
i.e.,

‖x(t)‖vσ (tk ) ≤ e
−ησ (tk )(t−tk )‖x(tk )‖vσ (tk ) ,

where t ∈ [tk , tk+1). Moreover,

‖x(t)‖vσ (tk ) = max
1≤i≤n

xi(t)
vσ (tk )i

= max
1≤i≤n

vσ (t−k )i

vσ (tk )i
xi(t)
vσ (t−k )i

≤ max
1≤i≤n

vσ (t−k )

vσ (tk )
‖x(t)‖v

σ (t−k )

= µσ (tk )‖x(t)‖vσ (t−k )
.

Denote t0 = 0 and t1, t2 . . . , tk the switching times on the
interval [0,T ], where k = Nσ (T , 0) =

∑M
p=1 Nσp(T , 0).

Therefore,

‖x(T )‖vσ (tk )

≤ e−ησ (tk )(T−tk )µσ (tk )‖x(tk )‖vσ (tk−1)

≤

Nσ∏
i=1

µσ (ti)e
−ησ (tk )(T−tk )

×e−
∑k−1

i=0 ησ (ti)(ti+1−ti)‖x(0)‖vσ (0)

≤

M∏
P=1

µ
Nσp
p exp

{
− ηp

∑
s∈ψ(p)

(ts+1 − ts)

− ησ (tk )(T − tk )
}
‖x(0)‖vσ (0)

≤ exp


M∑
p=1

N0p lnµp


× exp


M∑
p=1

Tp
τap

lnµp −
M∑
p=1

ηpTp

 ‖x(0)‖vσ (0)
= exp


M∑
p=1

N0p lnµp


× exp


M∑
p=1

(
lnµp
τap
− ηp)Tp

 ‖x(0)‖vσ (0) ,
where ψ(p) represents the set s with σ (ts) = p, ts ∈
{t0, t1, . . . , tNσ−1}, i.e.,

‖x(T )‖vσ (tk ) ≤ exp


M∑
p=1

N0p lnµp


× exp

{
max
p∈S

(
lnµp
τap
− ηp)T

}
‖x(0)‖vσ (0) .

This combined with (3) yields ‖x(T )‖vσ (tk ) converges to zero
as T → ∞. Therefore, SPNS (1) is GUES under any
MDADT switching signal satisfying τap > τ ∗ap =

lnµp
ηp

.
Remark 1: In [28, Theorem 3.4], the switched rule sat-

isfies τa > τ ∗a =
lnµ
η
, where µ = max1≤i≤n

vi
vi
, vi =

maxp∈P vpi, vi = minp∈P vpi, η ∈ (0,min1≤i≤n,p∈P ηpi)
with ηpi satisfying fpi(vp)/vpi+ηpi = 0.We have τ ∗a =

lnµ
η
≥

lnµp
ηp
= τ ∗ap, which allows that the ADT associated with

some of subsystems is less than the ADT of all subsystems.
Therefore, it is a typical advantage of the MDADT method.

In the following, we consider the discrete-time case.
Theorem 2 (Discrete-Time Case): Consider the discrete-

time switched nonlinear systems

x(k + 1) = f σ (k)(x(k)), k ∈ N0 (7)

and let Assumption 5 is satisfied. If there exists a vector vp �
0 such that f p(vp) � vp, p ∈ P , then SPNS (7) is GUES
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under the MDADT switching signal satisfying

τap > τ ∗ap = −
lnµp
ln γp

, (8)

where

µp = max
p,q∈P

vq
vp

with vq = max
1≤i≤n

vqi, vp = min
1≤i≤n

vpi,

and γp = max1≤i≤n γpi with γpi ∈ (0, 1) satisfying

fpi(vp)
vpi
= γpi. (9)

Proof: Since there exists a vector vp � 0 such that
f p(vp) � vp, p ∈ P . From (9), it is not difficult to get that
γpi ∈ (0, 1), and

fpi(vp)
vpi
= γpi ≤ γp.

In the following, 0 = k0 < k1 < k2 < . . . < kl < . . .

represent the switching points andNσ (K , k) denotes the num-
ber of switching times on the interval [k,K ]. Without of
generality, we may assume σ (k) = σ (kl) ≡ p, k ∈ [kl, kl+1).
SPNS (7) can be rearranged as

x(k + 1) = f σ (kl )(x(k)), k ∈ [kl, kl+1).

Next, we deduce that

‖x(k)‖vσ (kl ) ≤ γ
k−kl
σ (kl )
‖x(kl)‖vσ (kl ) , k ∈ [kl, kl+1). (10)

It is trivial that (10) is satisfied with k = kl , we will prove
that (10) holds by induction. Suppose it is true for k ≥ kl .
According to (10), we have

x(k) ≤ γ k−klσ (kl )
‖x(kl)‖vσ (kl )vσ (kl ), k ∈ [kl, kl+1).

Since f σ (kl ) satisfies Assumption 5, by Proposition 2, we get

fσ (kl )(x(k)) ≤ fσ (kl )
(
γ
k−kl
σ (kl )
‖x(kl)‖vσ (kl )vσ (kl )

)
= γ

k−kl
σ (kl )
‖x(kl)‖vσ (kl ) fσ (kl )(vσ (kl )).

Therefore, we conclude that

‖x(k + 1)‖vσ (kl ) = ‖f σ (kl )(x(k))‖vσ (kl )
≤ γ

k−kl
σ (kl )
‖x(kl)‖vσ (kl )‖fσ (kl )(vσ (kl ))‖vσ (kl )

≤ γ
k+1−kl
σ (kl )

‖x(kl)‖vσ (kl ) .

By induction, we have

‖x(k)‖vσ (kl ) ≤ γ
k−kl
σ (kl )
‖x(kl)‖vσ (kl ) , k ∈ [kl, kl+1).

In addition,

‖x(k)‖vσ (kl ) = max
1≤i≤n

xi(k)
vσ (kl )i

= max
1≤i≤n

vσ (t−k )i

vσ (tk )i
xi(t)
vσ (t−k )i

≤ max
1≤i≤n

vσ (t−k )

vσ (tk )

xi(t)
vσ (t−k )i

= µσ (tk )‖x(t)‖vσ (t−k )
.

Since k1, k2 . . . , kl are the switching points on [0,K ],
we have l = Nσ (K , 0) =

∑M
p=1 Nσp(K , 0). Therefore,

‖x(K )‖vσ (kl )

≤ γ
K−kl
σ (kl )
‖x(kl)‖vσ (kl )

≤ γ
K−kl
σ (kl )

µσ (kl )‖x(kl)‖vσ (kl−1)

≤

Nσ∏
i=1

µσ (ki)γ
K−kl
σ (kl )

l−1∏
i=0

γ
ki+1−ki
σ (ki)

‖x(k0)‖vσ (0)

≤

M∏
P=1

µ
Nσp
p exp{ln γp

∑
s∈ψ(p)

(ks+1 − ks)

+ ln γσ (kl )(K − kl)}‖x(0)‖vσ (0)

≤ exp


M∑
p=1

N0p lnµp


× exp


M∑
p=1

Tp
τap

lnµp +
M∑
p=1

ln γpTp

 ‖x(0)‖vσ (0)
= exp


M∑
p=1

N0p lnµp


× exp


M∑
p=1

(
lnµp
τap
+ ln γp)Tp

 ‖x(0)‖vσ (0) ,
where ψ(p) denotes the set s satisfying σ (ks) = p, ks ∈
{k0, k1, . . . , kNσ−1}. Then

‖x(K )‖vσ (kl ) ≤ exp


M∑
p=1

N0p lnµp


× exp

{
max
p∈S

(
lnµp
τap
+ ln γp)T

}
‖x(0)‖vσ (0) .

This together with (8) implies that ‖x(K )‖vσ (kl ) is exponen-
tially convergent. Therefore, SPNS (7) is GUES under a
certain class of MDADT switching signals satisfying τap >
τ ∗ap = −

lnµp
ln γp

, which completes the proof. �
Remark 2: In Theorem 1 and Theorem 2, we always

assume that each subsystem of the switched systems is
Lyapunov asymptotic stable.

IV. NUMERICAL EXAMPLE
In this part, an illustrative example is presented.
Example 1: Consider SPNS (1) with the following

parameters

f1(x1, x2) =

−3x1 + 4x2 − 3
√
x21 + x

2
2

2x1 − 2x2 +
√
x21 + x

2
2


and

f2(x1, x2) =

−2.5x1 + 0.5x2 +
√
x21 + x

2
2

x1 − 0.5x2 −
√
x21 + x

2
2

 .
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FIGURE 1. The state trajectories of subsystem 1 and subsystem 2 asymptotically converge to
zero, i.e., each subsystem of SPNS (1) is Lyapunov asymptotic stable.

FIGURE 2. The state trajectories of SPNS (1) converge to zero at 15s under ADT switching,
while the convergence time is 10s under MDADT switching, the proposed MDADT switching
signal can achieve better performance.

TABLE 1. Compare ADT switching with MDADT switching for Example 1.

It is easy to verify that f 1 and f2 satisfy assumption 5. Select
v1 =

[
1 3

]T and v2 =
[
3 1

]T , we can check that
f 1(1, 3) =

[
−0.4868 −0.8377

]T
� 0

and

f 2(3, 1) =
[
−3.8377 −0.6623

]T
� 0.

Table 1 provides the comparison between ADT switching
and MDADT switching for SPNS (1). The state trajectories
of subsystem 1 and the state trajectories of subsystem 2 after
Figure 1 (a) and Figure 1 (b) respectively. For the switching
law in Theorem 3.4 in [28], we choose to activate subsystems
1 and 2 with a periodic switching rule which is 7.5s and
0.5s, respectively. It is easy to obtain that the ADT of SPNS
(1) is τa = 4. Based on Theorem 3.4 in [28], SPNS (1)
is GUES. The state trajectories under ADT and the state
trajectories of under MDADT after Figure 2 (a) and Figure
2 (b) respectively. Fig. 2 (a) shows that SPNS (1) under the
ADT switching signal with τa = 4.
For the switching rule used in Theorem 1, we activate sub-

systems 1 and 2 with a periodic switching which is 4s and 3s,

respectively. It is easy to obtain that the MDADT of SPNS
(1) is τa1 = 4 and τa2 = 3. However, the ADT of SPNS (1)
is τa = 3.5 < 3.9344, Theorem 3.4 in [28] fails to apply.
By Theorem 1, SPNS (1) is GUES. Fig. 2 (b) shows that
SPNS (1) under the MDADT switching signal with τa1 = 4
and τa2 = 3. From Fig. 2, it is easy to obtain that the state
trajectories of SPNS (1) under the MDADT switching signal
converges faster than the ADT switching.

V. CONCLUSION
In this paper, stability analysis of switched positive nonlinear
systemswithmode-dependent average dwell time approach is
investigated in both continuous-time and discrete-time cases.
Based on non-Lyapunov function method developed in posi-
tive system, several stability criteria are derived. A numerical
example is presented to illustrate the main results.
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