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ABSTRACT With the aim of capturing learner engagement, we propose and advocate the use of commodity
wearable devices and their built-in sensors (e.g., accelerometer, gyroscope, and magnetic sensor) to detect
the fine-grained learning activities (e.g., writing notes or raising the hand in class). Next, by leveraging the
established theory that links learner activities to learner engagement, the detected learner activities can be
used to further infer the learner engagement levels, durations, and other key information. We thus designed
a hassle-free and non-intrusive system running on the latest wrist-worn commodity wearable devices, which
adopts the latest activity recognition and sensor data fusion techniques. We conducted the system-level
evaluation, survey, and interviews involving both students and teachers. The evaluation results show that
our system can accomplish the accurate learner activity recognition task, and meanwhile effectively capture
the learner engagement. We also provide the engagement-based intervention service during class to illustrate

the unique usefulness of the proposed system.

INDEX TERMS Educational technology, wearable sensors, learner engagement, activity recognition.

I. INTRODUCTION
Learner engagement (or student engagement) often refers
to “the quality of effort students themselves devote to edu-
cationally purposeful activities that contribute directly to
desired outcomes” [1]. This concept is closely related to
active learning in the way in which students engage cogni-
tively with learning material [2] rather than passively receiv-
ing the knowledge [3]. As a result, highly engaged students
are more likely to improve their academic performance and
learning outcomes [4]. Thus, understanding student engage-
ment is key to the evaluation of the learning outcomes [5],
yet accurately and effectively assessing student engagement
is still one of the challenging and difficult tasks that requires
further investigation [6], [7].

Recent studies [8] have shown that the extent to which
a learner engages in a learning task can be reflected in
the overt activities that the learner voluntarily exhibits and
undertakes. That is, the level of student engagement can
be explored through observation of the fine-grained student
learning behaviors, such as taking notes or asking questions.

The associate editor coordinating the review of this manuscript and
approving it for publication was Sandra Baldassarri.

In practice, experienced teachers understand the engagement
of their students from daily observations of their behaviors.
Nevertheless, understanding the engagement resulting from
teachers’ daily observation is not completely satisfactory.
Important behaviors often go unnoticed under circumstances
where a large number of students behave differently at the
same time, and even the observed behaviors might not be
accurately interpreted. Efforts are sought to solve these prob-
lems given the fact that the latest sensor technology with
machine learning techniques may overcome the inability of
traditional observation that is adopted in educational studies.
The schools and industry players, espcially in K-12 educa-
tion, also attempt to provide proper solution to tackle the
challenges:

o Inwhat ways and to what extent student learning behav-
iors can be properly recorded and recognized simultane-
ously?

o How to utilize the captured learning behaviors to deter-
mine the engagement level of individual learners?

The rapid advances in sensor-based activity recognition
techniques and the availability of the commodity wearable
devices offer a possible solution to the questions raised
above. Commodity wearable device refers to smart electronic
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equipment worn by users, including wrist-worn devices
(e.g., Apple’s smartwatch [9] or Fitbit’s wristband [10]) and
eyewear devices (e.g., Google glass [11]). Different from the
dedicated or customized equipment (e.g., smart textiles [12]),
commodity devices usually can be easily purchased from the
market at a relatively low price. On the other hand, many
built-in sensors, such as accelerometer, magnetic and gyro-
scope sensors, together with a powerful multicore processor
have become the de facto components of most commodity
wearable devices, which can be used to conduct human activ-
ity recognition and complicated data analytics tasks. In addi-
tion, commodity wearable devices are usually equipped with
Wi-Fi or 3G/4G modules to support wireless communica-
tion with the backend servers and cloud. Compared with the
vision-based solution that employs single or multiple cameras
to capture human activities, wearable devices do not require
any fixed infrastructure and thus have almost no maintenance
cost. Moreover, the vision-based systems often suffer from
low performance even in natural lighting conditions [13].

Driven by the above research questions and motivated by
the latest wearable technology, we propose and advocate the
use of commodity wearable devices and sensor-based activity
recognition techniques to identify overt learning activities,
and subsequently infer the learner engagement level. The cap-
tured learner engagement level information can be directly
used for proper intervention and service design. We accord-
ingly implement such a system on the commodity wearable
device, which provides a hassle-free and non-intrusive solu-
tion to achieve the above objectives. The main innovations
in the system include (i) the use of real time data from
multiple built-in sensors to accurately detect multiple types of
learner physical activities, (ii) the use of the detected physical
activities to infer learner’s engagement states, and (iii) the
aggregation of the activity and engagement information to
provide novel interventions to learners. Finally, we carried
out the system evaluation in the classroom environment with
both qualitative and quantitative approaches.

The rest of the paper is organized as follows: Section II
introduces the related work. Section III depicts the system
design. In section IV, we describe the evaluation design,
along with the empirical evaluation results in section V. The
discussion is given in section VI, and we finally conclude in
section VIL

Il. RELATED WORK

A. STUDENT ENGAGEMENT AND ICAP FRAMEWORK
Drawing on Bloom’s taxonomy of educational objec-
tives [14], student engagement has enjoyed considerable
attentions from academia and educators [5], [15], [16].
In general, it can be defined as “‘the quality of effort stu-
dents themselves devote to educationally purposeful activi-
ties that contribute directly to desired outcomes™ [1], or as
“the extent to which students are engaging in activities
that higher education research has shown to be linked
with high-quality learning outcomes” [17]. Following these
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definitions, a sound body of literature has established the pos-
itive correlations between student engagement and learning
outcomes [4], [18]. Meanwhile, researchers identify sev-
eral dimensions of the student engagement, typically includ-
ing behavioural engagement, emotional engagement and
cognitive engagement, where cognitive engagement is the
key dimension influencing learning outcomes [19]. Simply
speaking, cognitive engagement refers to the student cog-
nitively investing in their learning, seeking to go beyond
requirements and relishing challenges [20].

Researchers [8] recently proposed the so-called ICAP
framework (denoting Interactive, Constructive, Active, and
Fassive), and it reveals that the amount of cognitive engage-
ment can be assessed by observation of the fine-grained
learning behaviors. In other words, the ICAP framework
shows that different overt student activities can reveal their
different engagement levels. As explained by the authors [8],
““although far from perfect, overt behaviors are a good proxy
to reflect different modes of engagement,” and accordingly
the ICAP framework proposes four modes to categorized
student overt activities and the corresponding engagement
levels.

1) Passive Mode: learners are oriented toward and
receive information from the instructional materials
without doing anything else. For example, a student
passively listening to the lecture without any other
actions.

2) Active Mode: learners undertake some form of overt
motoric action or physical manipulation. For example,
a student quickly taking down lecture notes.

3) Constructive Mode: learners generate or produce
additional externalized outputs or products beyond
what was provided in the learning materials. For exam-
ple, a student in class raising hand to ask or answer
questions.

4) Interactive Mode: learners interact with partners and
meet two criteria: a) both partners’ utterances must be
primarily constructive; b) a sufficient degree of turn
taking must occur. For example, a student conducting
a stimulating group discussion.

The above four modes, from passive to active to con-
structive to interactive, describe the student engagement lev-
els from low to high. Moreover, the ICAP framework also
shows that the corresponding cognitive outcomes increase
as the engagement level increases, which elicits different
knowledge-change and learning process. The ICAP frame-
work has been widely adopted for the student engagement
assessment [21], [22]. In this work, we also adopt this estab-
lished framework to link student activities to student engage-
ment status.

B. WEARABLE TECHNOLOGY FOR EDUCATION

Wearable device usually refers to electronic equipment that
can be directly worn on user’s body, typically includ-
ing wrist-worn smart watches. They have been intro-
duced and applied for education context and learning
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analytics [23]-[25]. Gua et al. [26] utilized wearable devices
data to assist in language learning for young children.
Ngai et al. [27] deployed a wearable computing platform
for computing education. In addition, Muller ef al. [28]
employed wearable sensors to enable reflective learning for
employees. Compared with traditional vision-based systems
and technology, wearable devices do not need any fixed
infrastructure, which incurs a high maintenance cost over
time and suffers from low performance in natural lighting
conditions [13].

On the other hand, high-tech companies such as Apple
and Google have launched a variety of commodity smart
wearable devices with desired functionalities [9], [11], typ-
ically including sleep monitoring and fitness tracking. For
example, Adidas has produced a wrist-worn device for school
children to track their fitness [29]. Such commodity wearable
devices usually equip with a high sensing and computational
capability, and thus they can be an ideal platform to collect
the information from the learner side and conduct analytics
for the educational purposes.

C. SENSOR-BASED ACTIVITY RECOGNITION

Rapid advancements have been made in sensor-based activity
recognition [30], [31]: recent studies have utilized versatile
built-in sensors on wearable devices, such as the three-axis
accelerometer and gyroscope, to understand shopping ges-
tures [32], eating activities [33] and social context [34]. From
the perspective of data science, the latest data processing
and machine learning techniques [35] have been employed
to identify distinct human activities. In this work, we adopt
the similar techniques, but innovate in recognizing learning
activities for the purpose of engagement capture.

Among the previous studies, the most relevant to our work
in terms of data type and activity recognition is [36]: it iden-
tifies teacher’s physical actions, such as explanation and
questioning, using multiple wearable sensors (eye-tracking,
electroencephalogram, accelerometer, audio, and video) dur-
ing classroom enactment. However, our work mainly focuses
on the student side and utilizes commodity wearable devices
in tandem with the established framework to capture and
understand learner engagement.

lIl. SYSTEM DESIGN
Continuously and concurrently collecting student engage-
ment information in class at the individual level is signifi-
cantly useful but also critical: the engagement information
would not only help to understand the amount of effort that
each student invests, but also help teachers to provide the
necessary interventions and feedback. It is difficult to be
conducted by using a teacher’s personal observation or using
a vision-based system with cameras, which suffers from low
detection accuracy and high maintenance cost. Hence, in this
paper, the system design mainly targets on providing an
effective solution to tackle this problem.

The block diagram of the proposed system is illustrated
in Figure 1, and its hierarchical architecture consists of three

VOLUME 7, 2019

FIGURE 1. Block Diagram of the System.

modules, from the bottom to the top, namely sensor data col-
lection module, activity recognition module and engagement
inference module.

A. SENSOR DATA COLLECTION MODULE

Running at the bottom of the system, the sensor data col-
lection module mainly conducts the raw sensor data collec-
tion from the commodity wearable device hardware, such
as wrist-worn devices. These commodity wearable devices
are usually equipped with multiple built-in sensors. Taking
wrist-worn devices as an example, on-device sensors typ-
ically include accelerometer sensor (measuring the linear
acceleration along three-axis), gyroscope sensor (measur-
ing the rotational accelerations along the three-axis), and
magnetic sensor (measuring the direction and strength of
the magnetic field along the three-axis). In addition to the
above-described sensors, other sensors such as heart rate
sensors and temperature sensors are also often embedded in
the latest commodity wearable devices.

We currently choose the wrist-worn device among differ-
ent commodity wearable devices available on the market,
as this work mainly focuses on the student behavior and
engagement in classroom, where the wrist-related physical
actions are crucial (e.g., writing notes, hand-up and hand-
down). In practice, we adopt one type of smartwatch called
Ticwatch [37], which is equipped with the desired sensors,
including accelerometer, gyroscope, and magnetic sensors.
Moreover, it is also equipped with a heart rate sensor, loca-
tion sensor (GPS), and powerful communication interfaces
(e.g., cellular 3G/4G modules). Ticwatch is currently running
android operating system, and provides the open SDK [38]
for developers. Figure 2 shows the hardware of the selected
Ticwatch smartwatch, whose price is less than US$200 each.

In short, this module is mainly responsible for collecting
the rich but raw sensor data from multiple on-device sensors,
and then sends them to the upper activity recognition module.
Note that collecting the raw sensor data needs permission
from the learner side, even the data would not be used for
any commercial purpose.
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FIGURE 2. Hardware of the System Device.

B. ACTIVITY RECOGNITION MODULE

This module gathers the raw sensor data from the sensor
data collection module, and then performs the learner activity
recognition tasks. Briefly speaking, it first extracts the key
features from the pre-processed sensor data on both the time
domain and frequency domain. Using the extracted features,
it adopts the specifically designed machine learning models
to identify student overt learning activities (e.g., student rais-
ing a hand or writing notes in class). The identified student
overt activities are sent to the upper engagement inference
module in real time.

1) FEATURE EXTRACTION

Once the raw sensor data collection is triggered, multiple
types of sensors, such as accelerometer, gyroscope, and mag-
netic sensors, are activated. The system would first apply a
low-pass filter to the raw sensor measurements to remove
the jitters and noises from the raw sensor data. After such a
sensor data preprocessing step, the system segments the data
into non-overlapping fixed-size frames, and computes the
features. They typically include both time-domain features
(e.g., mean and variance), and frequency-domain features
(e.g., spectral energy and entropy). Once the desired features
are extracted successfully, the system enables the upper clas-
sification task for activity recognition.

2) ACTIVITY RECOGNITION

To conduct the fine-grained activity recognition, one or mul-
tiple specific classification models need to be implemented.
The model can be selected from the existing machine learning
models, typically including decision tree, naive bayes or arti-
ficial neural network. The classifier usually has different
output options, such as writing or hand-up-down. These out-
put options are used to label each non-overlapping short-
duration time window (e.g., 2s). For different use cases and
learning environment, the system may adopt different models
and options. Moreover, the model building usually requires a
so-called training process to properly select the model type
and model parameters. The training process needs to collect
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the training data, which are also the sensor data but labeled
with the activity information.

For the classroom learning environment, the system cur-
rently detects five typical student overt activities as follows.

1) Stationary: hand is placed in one place and stays rela-
tively stable, which indicates a student in a motionless
state.

2) Writing: hand is continuously moving on a horizontal
plane, which indicates a student taking notes in class.

3) Hand-Up-Down: hand is quickly raised or lowered,
which indicates a student notifying the teacher that they
wish to pose or answer questions.

4) Head-Scratching: hand is raised and keeps touching
head, which indicates a student pondering or puzzling
over something.

5) Other-Moving: hand keeps changing its positions in
other ways, which reflects a student taking other phys-
ical actions (excluding the above ones).

The system mainly employs the accelerometer data to
conduct the activity recognition for the above five types
of activities, where the magnetic sensor and gyroscope
sensor data are used to transform the accelerometer data
from device coordinates to earth coordinates [39]. The sys-
tem adopts both time-domain features (i.e., mean, variance,
correlation and interquartile range), and frequency-domain
features (i.e, spectral energy, entropy and wavelet magni-
tude). The feature space consists of 19 features in total.
We then collected the training data from multiple partici-
pants to build the activity classification model. Among mul-
tiple supervised learning models, including decision tree,
naive bayes, and artificial neural networks, we adopted
the decision tree C4.5 for the classification model. This
is mainly because the tree-type model can be easily inter-
preted and meanwhile achieve a satisfactory classification
accuracy.

In the practical operation, the inputs of the activity classifi-
cation model are the latest three-axis transformed accelerom-
eter data, and outputs of the model are one physical activity to
label the current time window. For example, the built model
outputs writing to label the current time window, meaning it
detects that the student is taking down notes during this time
period. The time window size for this activity recognition
model needs to be relatively small, as a large window may
cover a long period that a student may perform multiple
activities, which would decrease the model accuracy. Finally,
the sequence of the detected student activities would be sent
to the engagement inference module to further process.

C. ENGAGEMENT INFERENCE MODULE

By leveraging on the recognized overt activities together
with the established theories for engagement, this module
mainly ascertains the student engagement state, which can
be used to provide the engagement-based services. As men-
tioned earlier, we introduce the ICAP framework to link the
student overt activities to different engagement level. Accord-
ingly, we adopt the heuristic approach to design a practical
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algorithm, called the engagement state analysis (ESA) algo-
rithm, to infer distinct student engagement levels.

The basic idea of the ESA algorithm is simple: according
to the ICAP framework, different activities reflects differ-
ent modes of engagement. For example, stationary, writ-
ing and hand-up-down can be categorized into the passive
mode, active mode and constructive mode of engagement,
respectively. Furthermore, we simply regard both active mode
and constructive mode as high engagement mode, and the
passive mode as low engagement mode. Given any time
period, the ESA algorithm would categorize a student into
the so-called high engagement state, when the student always
exhibits overt activities in the high engagement mode; sim-
ilarly, the ESA algorithm would categorize a student into
the so-called low engagement state, when the student always
exhibits overt activities in the /ow engagement mode. For
other cases, the ESA algorithm would categorize a stu-
dent into the normal engagement state. For all the above
three engagement states inference, the other-moving duration
should not occupy too long, otherwise the algorithm would
simply categorize a student into the unclear state. As the
inputs of the ESA algorithm, assuming Ny, Ny, Ni, N, and N,
are the number of the detected stationary, writing, hand-up-
down, head-scratching and other-moving activities, respec-
tively. The complete algorithm is shown in Algorithm 1.

Algorithm 1 Engagement State Analysis (ESA) Algorithm
Input: Ns, Ny, Np, N, N,, classification window length /,
thresholds 6y, 6; and 6,,.
Output: Student engagement state for the current time
period T.
: Thigh = Ny * I+ Ny x 1+ N) % [
: Tiow = Ny % 1

¢ Tunclegr = No * 1;
_ Lhigh .
fe = Tiow ’
r, = Tunclear .
. u Thigh+TIow+Tunclear ’
. if r, > 6, and r, < 6, then

Infer high engagement state for the time period T;

: elseif r, < 6; and r, < 0, then

Infer low engagement state for the time period T;

. elseif 6, > r., > 6; and r, < 6, then

Infer normal engagement state for the time period T.
. else

Infer unclear state for the time period T.

R A

—_ = = =
w N = O

The given ESA algorithm mainly consists of three steps:
firstly, it calculates the time duration of the three student
engagement states, using the number of the detected activi-
ties multiplying the window length [, which is the window
size used by the activity classification model and normally
a small value (e.g., 1 s). Hence, the high engagement state
duration Tpe is the total lasting time of hand-up-down,
writing and head-scratching activities; the low engagement
state duration T}, is the lasting time of stationary activity.
The unclear state duration Tyucleqr 1S the lasting time of
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other-moving activity. After that, the ESA algorithm calcu-
lates the so-called engagement ratio, denoted as r,, namely
the duration of high engagement mode divided by the duration
of low engagement mode. Similar logic applies to calculating
the so-called unclear ratio, denoted as r,. Finally, the ESA
algorithm infers the student in a high engagement state using
the conditions that the engagement ratio r, is greater than
the threshold values 6, and meanwhile the unclear ratio r;, is
lower than the threshold 6,. Similar logic applies to inferring
the student is in a low engagement state and normal engage-
ment state. For any other situations, the ESA algorithm infers
the student is in an unclear state.

To aggregate the information for the ESA algorithm,
the system needs to buffer all the recognized student activities
during the current time period 7', which is set as a fixed-size
moving time window in the practical implementation. Com-
pared with the activity classification, engagement inference
may require a relatively long-term time window (e.g., 5 min to
60 min) to collect enough learner activities and information.
The inferred engagement state information can be transferred
in a timely manner to the external services via the wireless
communication interfaces, or used directly by the services on
local wearable devices.

The inferred student engagement states can be used to
support and build upper interventions and services. For exam-
ple, we implement the near-real-time intervention on the
smartwatch devices: during the class time, when the con-
secutive low engagement states are detected and their total
duration T}, is significantly long, this indicates that it is
highly probable that the student is not in a normal learning
state. In that case, the device would automatically vibrate to
send the student an explicit alert. Compared with the teacher
directly warning the student in class, the intervention in such
a private way can help to avoid embarrassing the students
in public. Figure 3a shows a class where the students are
wearing the smartwatch, and Figure 3b shows the smartwatch
vibrating with the colored screen colored to remind a stu-
dent in a private way. Similarly, a variety of interventions
and services can be designed and implemented using the
derived student engagement states and the recognized student
activities.

(a) (®)

FIGURE 3. System Deployment and Implemented Service. (a) Students
with the Smartwatch. (b) Smartwatch Vibrating.
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In short, the three modules described above work coop-
eratively and automatically, and the entire process does
not require any configuration or input from the learner
side. Therefore, the designed system is a hassle-free and
non-intrusive solution for learner activity recognition and
engagement inference.

IV. SYSTEM EVALUATION

We conducted the evaluations on the proposed system, which
mainly focused on the validation of the captured students’
learning activities and their engagement levels. As defined
earlier, the student active and constructive learning activi-
ties, including writing, hand-up-down and head-scratching,
belong to high engagement mode (HEM), while the student
passive learning activities, such as stationary, belong to low
engagement mode (LEM). The system firstly recognizes
both HEM and LEM modes of activities and then use the
proposed ESA algorithm to infer the engagement levels.

A. EVALUATION PROCEDURE AND PARTICIPANTS

The evaluation process mainly consisted of three parts: the
first part mainly built the activity recognition model and eval-
uated the model’s accuracy. The second part applied the pro-
posed ESA algorithm to divide the participating students into
three groups according to their engagement levels, namely
low engagement group, normal engagement group and high
engagement group. The third part of the evaluation validated
the three groups’s engagement state by using the engagement
assessment questionnaire. Moreover, we also conducted a
post-evaluation semi-structured interview with the participat-
ing students and teachers, where they could openly express
their perceptions towards the use of the system. Their feed-
back was audio-taped and transcribed by the interviewers.

The participating students ranged in age of from 11 years
to 13 years (MEAN = 11.98, SD = 0.46) studying in year
7 and 8 of two local schools. A total of 71 students (35 Male,
36 Female) were invited to participate the evaluation, which
reflected the current composition of the general student body
in their schools.

In the first part of the evaluation, we collected the students’
activity data using our system during a two-week period
as the model training data. The students mainly use their
dominant hand to wear the smartwatch during the data col-
lection process. After the data collection, we adopt multiple
models, including decision tree, neural networks and naive
bayes, to construct the classification model for the activity
recognition.

In the second part of the evaluation, all the participating
students were required to wear our smartwatch for their data
collection and engagement analytics during multiple lessons,
which mainly consisted of teacher’s instruction and the
question-answer interactions during the 40-minute class time.
The proposed ESA algorithm was performed to classify the
students into GROUP-1 (low engagement state), GROUP-2
(normal engagement state) and GROUP-3 (high engagement
state). Note that some students are possibly classified into
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the unclear state rather than none of the above three groups
by the ESA algorithm, as their unclear ratio r, is too high
(i.e., bigger than the threshold 6,,) in the ESA algorithm.

In the third part of the evaluation, we adopt a
well-recognized student course engagement questionnaire
(SCEQ) [40], which consists of 23 items and converges with
the national survey of student engagement (NSSE) [41]. The
items used a six-point Likert scale (i.e., from 6 = strongly
agree to 1 = not at all agree). The questionnaire results are
used to validate the inferred student engagement levels.

B. EVALUATION METHODOLOGY

For the activity recognition task, F1 score is a common metric
to evaluate the accuracy of the classification model, which
usually ranges from O to 1. Normally, a classification model
with a F1 score above 0.8 can be regarded as a good model,
as the F1 score considers both precision (namely the number
of correct positive results divided by the number of all posi-
tive results) and recall (namely the number of correct positive
results divided by the number of positive results that should
have been returned).

For the engagement level validation, we mainly adopt
one-way ANOVA test [42], as more than 2 groups are
involved in the evaluation. Moreover, we also compute the
effective size (ES) using Cohen’s f, namely ES = /F/n,
where F is the F-statistic in ANOVA test and n is the number
of subjects in each group.

V. EVALUATION RESULTS

A. PART I: STUDENT ACTIVITY RECOGNITION

To build the activity recognition model, we firstly collected
the training data from the participating students during a
two-week period. The training data means the sensor data
labeled with the learning activity name, and they are mainly
marked by an independent observer. Among multiple mod-
els, the decision tree C4.5 is finally adopted to construct the
model, as it achieves the highest performance and can be
easily implemented. Table 1 summarizes the built model’s
accuracy: the F1 scores of all the activities are above 0.8, indi-
cating that the built classification model can well distinguish
the five types of student activities, although the F1 score of

TABLE 1. Activity recognition evaluation results.

Precision  Recall F1 Score
Hand-Up-Down | 0.890 0.814 0.850
Stationary 0.905 0.952 0.928
Writing 0.878 0.859 0.869
Head-Scratching| 0.888 0.829 0.858
Other-Moving 0.866 0.918 0.891
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hand-up-down and head-scratching are slightly lower than
others. The overall classification accuracy is 88.1% with
a 10-fold cross-validation, which ensures the feasibility to use
the detected student activities for student engagement ana-
lytics. The sampling frequency for accelerometer, gyroscope
and magnetic sensors are set to S0 Hz, and the time window
length was set to 1 second.

B. PART II: ENGAGEMENT INFERENCE AND GROUPING
We ran the designed ESA algorithm on the recognized stu-
dent activity data collected from all the participating stu-
dents. The algorithm automatically classifies the students
into three groups, namely GROUP-1 (low engagement state),
GROUP-2 (normal engagement state) and GROUP-3 (high
engagement state). The threshold ratios 6, 6; and 6, are
set to 2.0, 0.5 and 0.3 respectively in the ESA algorithm,
which can be further fine-tuned and adjusted. The time
period T is set to the duration of a lesson, namely 40 minutes
(i.e., 2400 seconds).

FIGURE 4. Boxplot of Action Durations in HEM.

Figure 4 gives the boxplot of the HEM activity durations
for all the three groups at 2 different lessons. We see that
for both lessons, the HEM activity durations of GROUP-3
are longer than GROUP-2, and the corresponding dura-
tions of GROUP-2 are longer than GROUP-1. Specifically,
the HEM activities in GROUP-3 took around 1400 seconds
and 1320 seconds on average in Lesson 1 and Lesson 2
respectively, which means GROUP-3 students spent more
than 50% time on the HEM activities during the class
(e.g., writing notes and raising hand).

Figure 5 gives the boxplot of the LEM activity durations
for all the three groups at the same 2 lessons. We see that
for both lessons, the LEM activity durations of GROUP-1
are longer than GROUP-2, and the corresponding dura-
tions of GROUP-2 are longer than GROUP-3. Specifically,
the LEM activities in GROUP-1 took around 1600 seconds
and 1430 seconds on average in Lesson 1 and Lesson 2
respectively, which means GROUP-1 students spent more
than 60% time on the LEM activities during the class.
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FIGURE 5. Boxplot of Action Durations in LEM.

C. PART IlI: ENGAGEMENT LEVEL VALIDATION

We randomly choose 21 students from each group to com-
plete the SCEQ questionnaire, and thus a total of 63 students’
data are collected for the engagement level validation. The
typical questions in SCEQ questionnaire include “You are
often listening carefully in class” , and *“You are often finding
ways to make the course interesting to yourself”’. We then
compute the average scores of the students in each of the three
groups.

TABLE 2. ANOVA test result for engagement level.

Source of Sum of Mean

Variation Squares Squares P-value
Between Groups 34.59 2 17.29 109.32  9.84E-21
Within Groups 9.49 60 0.16
Total 44.08 62

The aggregated results show that the average engage-
ment level of GROUP-3 students is higher than GROUP-2
(MEAN = 5.27 > 4.41), and GROUP-2 is higher than
GROUP-1 (MEAN = 4.41 > 3.46). Table 2 shows the
ANOVA test results, which indicate the significant difference
among the three groups (F = 109.32, P = 9.84E-21 < 0.05,
ES = 2.28). We further conduct the post-hoc test, where
the two-tailed t-test shows the significant difference between
GROUP-3 and GROUP-2 (P = 1.37E-10 < 0.05), and
the significant difference between GROUP-2 and GROUP-1
(P = 3.88E-8 < 0.05).

In short, all the above analytics results validate the feasibil-
ity and effectiveness of using the proposed system to capture
the student engagement.

D. INTERVIEW

On the student side, all the participates were interviewed
and overall satisfied with the use of the system (MN =
4.83, SD = 0.81), and wearing the smartwatch did not inter-
fere their learning process in class (MN = 4.54, SD =
0.97). Regarding the implemented intervention service on the
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device, the positive comments include “It is cool to remind
me using the smartwatch when I almost fall asleep in class”,
“This watch seems know my head in the clouds like my
teacher”, and ‘I like the watch rather than the teacher to
warn my distraction during class”. However, some students
felt that “It is not comfortable to always wear a heavy watch
on the wrist” and “‘no interesting stuff and only a few func-
tions on the watch”. These encourage us to further improve
both hardware and software of the system, and meanwhile
introduce more functionalities by leveraging on the captured
activity and engagement information.

On the teacher side, 11 teachers were involved in our
interview: they overall agreed that the system is helpful for
teachers (MN = 4.82, SD = 0.87) and the importance to
automatically recognizing student activity and engagement
information at the individual level (MN = 4.91, SD = 0.83).
Some important comments include “‘develop a specific APP
for teachers to properly visualize the collected student activ-
ity and engagement information” and “‘simplify the teacher
configuration process and provide a user-friendly interface™.
We are currently working on resolving the issues raised by
the teachers.

VI. CURRENT LIMITATIONS AND FUTURE SCOPE

While the ICAP framework reveals the strong connections
between student learning activities and the engagement level,
how to more effectively and continuously capture the student
engagement is still an open and interesting research problem.
For example, the evaluation results show that the students
in both high engagement group and low engagement group
exhibit a significant duration of stationary in class, while the
same stationary activity may indicate different cognitive sta-
tus of the learners. We believe that a deeper understanding of
human cognitive mechanism and learner activities would help
to further explain the engagement concept, and eventually
in turn to establish a way of simplifying and optimizing the
current engagement capture process.

On the other side, the current system mainly focuses
on recognizing the overt student activities and engagement
information in the classroom context, which can be further
extended to the school and home environment. Accordingly,
more types of student activities, including both curricular and
extracurricular ones, need to be captured and translated using
the ICAP framework or other theories. Meanwhile, more
types of sensors and wearable devices may need to be adopted
to capture the implicit student activities (e.g., using wearable
devices to detect learner’s eye blinking frequency and heart
rate variance).

VII. CONCLUSION

To effectively capture the student engagement and activity
information, we have proposed and implemented a novel
and practical system by harnessing commodity wearable
devices. The system firstly utilizes the built-in sensors on
the commodity wearable devices, together with the latest
activity recognition techniques, to detect the fine-grained
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student activities. After that, the established ICAP frame-
work 1is introduced to link the overt student activities to
their engagement levels. The evaluation results show that
the designed system can accurately recognize the desired
typical student activities in class, and meanwhile validate the
feasibility and effectiveness of using the proposed system to
capture the student engagement level in class.

While our system design is novel and the design objectives
are achieved, we believe that the main impact of this work
is to illustrate the broader possibility of creating a practical
solution to capture student engagement and learning status,
based on a combination of the commodity wearable prod-
ucts, pervasive computing techniques, and the theories from
learning science. We are currently working with the industry
partners to deploy the system in more than 60 local schools.
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