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ABSTRACT As 4-sensor line scan camera technology has matured, red (R), green (G), blue (B), and
near-infrared (RGB-NIR) datasets have begun to appear in large numbers. The RGB-NIR data contain the
rich color features of the RGB image and the sharp edge features of the NIR image. At present, in many
studies, the RGB-NIR data are input directly into the processing algorithms for calculation of the 4D data;
in these cases, redundant information is included, and the high correlation between the bands results in an
inability to fully exploit the characteristics of the RGB-NIR data. In this paper, we propose a double-channel
convolutional neural network (CNN) algorithm that takes into account the strong correlation between the
R, G, and B bands in aerial images and the weaker correlation between the NIR band and the R, G, and B
bands. First, the features of the RGB and NIR bands are calculated in two different CNN networks, and
subsequently, feature fusion is performed in the fully connected layer. This is followed by the classification.
By combining the two neural networks of RGB-CNN and NIR-CNN, the respective characteristics of the
RGB-NIR data are fully exploited.

INDEX TERMS Multi-spectral, CNN, RGB-NIR, double-channel CNN.

I. INTRODUCTION
In multi-spectral red, green, blue, near-infrared (RGB-NIR)
images, the visible (RGB) and near-infrared (NIR) spectral
bands are captured simultaneously by a 4-sensor line scan
camera [1]. The RGB spectral bands are in the visible range
(400-700 nm), whereas the NIR spectral band is beyond
the visible range (700-1100 nm). As a result, a scene cap-
tured with an RGB-NIR image exhibits a wide range of
characteristics [2]. The combination of RGB and NIR data
provides rich image features for image recognition and clas-
sification (e.g., [3]–[5]). As a result of the emergence of
RGB-NIR datasets in various fields, multi-spectral RGB-NIR
image classification has been widely used in video surveil-
lance, medical imaging, satellite remote sensing, vegetation
mapping, and other fields [6]–[8].

In recent years, many researchers have investigated
multi-spectral image recognition and classification from
different aspects. Brown and Süsstrunk proposed the
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MSIFT algorithm, a multispectral scale-invariant feature
transform (SIFT) descriptor that, when combined with a
kernel-based classifier, exceeded the performance of state-
of-the-art scene recognition techniques (e.g., GIST) and their
multispectral extensions [9]. Salamati et al. proposed to use
visible and NIR images as input to a classifier in the form
of feature vectors to classify the materials in the image. The
relation between the visible and NIR information provided
an improvement in the image-based machine classification.
The materials were more accurately classified when the NIR
information was present [10]. Miyamoto et al. concluded that
the availability of high-resolution (HR) training data such
as balloon-based image mosaics was useful for the classi-
fication of NIR color video images and it was found that
the combination of the nadir and off-nadir video images was
effective for the classification of wetland vegetation [11].
Han et al. proposed a convolutional neural network (CNN)-
based super-resolution (SR) algorithm for up-scaling NIR
images under low-light conditions using the correspond-
ing visible images. The high-frequency (HF) components
were extracted from the up-scaled low- resolution (LR) NIR
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image and the corresponding HR visible image and were
then used as multiple inputs into the CNN [12]. Researchers
also have developed different types of CNN algorithms to
use RGB and NIR data as input layers for remote sens-
ing image classification, such as Alex-Net, deep CNN, and
VGG [13]–[16]. Through the use of CNN algorithms, the
multi-spectral RGB-NIR image recognition rate is greatly
improved.

This paper presents a double-channel CNN algorithm to
improve the classification accuracy of RGB images and NIR
images. Because the R, G, and B bands are strongly cor-
related, whereas the NIR band is not strongly correlated to
the information in the R, G, and B bands, the direct use
of the RGB and NIR images as input layers into a CNN
network does not provide the full advantages of the different
features in the RGB-NIR images. Redundant information is
included and mutual interference between the features will
also occur. Considering that the color information is richer in
the RGB image, whereas the NIR image provides more edge
information, we developed a double-channel CNN algorithm
to capture the different features of the RGB images and NIR
images. First, different source image features are convolved
using two independent CNN networks and are then pooled;
subsequently, the two networks are fused based on features in
the fully connected layer. Finally, the loss value is calculated,
followed by target identification and classification.

FIGURE 1. Examples of the RGB-NIR dataset and the SAT-4 and
SAT-6 dataset. (a) SAT-4 and SAT-dataset. (b) RGB-NIR dataset.

II. MULTI-SPECTRAL RGB-NIR
IMAGE FEATURE ANALYSIS
The RGB image consists of the three color channels of
R, G, and B. The NIR band is located in the electromag-
netic spectrum between the visible and mid-infrared bands;
it has a wide wavelength range and provides clear image
information, even in low light conditions. With the advent
of the 4-sensor RGB-NIR camera, we can capture RGB-NIR
data simultaneously. Figure 1(a) shows an RGB-NIR remote
sensing dataset (SAT-4 and SAT-6 dataset); Fig.1(b) shows
simultaneously acquired RGB and NIR data captured by an
RGB-NIR camera (RGB-NIR dataset). It is observed that the
RGB and NIR images reflect different characteristics of the
same target.

The literature [9], [17] suggests that the correlation
between the NIR and the R, G, and B bands is significantly
lower than the correlation between the individual bands.
In this study, we use the mutual information in the bands to
determine the correlation between the RGB and NIR data.
The mutual information is a measure of the statistical correla-
tion between two random variables. It can also be interpreted
as the correlation between the two types of images. The
expression is as follows:

I (X ,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log(
p(x, y)
p(x)p(y)

) (1)

We used 100 random RGB-NIR images to determine the
mutual information (correlation) between the G, R, B, and
NIR bands. Figure 2(a), (b), and (c) show the correlations
between the G, R, and B bands. Fig. 2(d), (e), and (f) show
the correlations between the G, R, B, and NIR bands. It is
observed that most of the values in the R-G, R-B, and G-B
relationships are concentrated in the range of 0-20. The dis-
tributions of R_NIR, B_, and G_NIR are quite scattered and
the correlation is very weak.

FIGURE 2. Correlation between the R, G, B, and NIR bands; the pixels are
sampled from 100 images.

The results in Fig. 2 indicate that if the RGB-NIR data are
input directly to the CNN, the amount of information from the
features is increased, thereby improving the recognition rate.
At the same time, it also causes mutual interference between
features and the image information of the R, G, B, and NIR
bands cannot be fully utilized.

III. DOUBLE-CHANNEL CNN MODEL
The double-channel CNN Model is an improvement of the
traditional CNN model. Currently, this method is being
applied to image comparisons, such as fingerprint analysis,
medical image analysis, facial recognition, etc. [18], [19].
Bromley et al. [20] proposed a two-branch network based
on the Siamese network for signature authentication. Differ-
ent from SIFT, the two-branch network allows patch1 and
patch2 to extract feature vectors through two networks;
subsequently, a similarity loss function is applied to the
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two feature vectors in the last layer and the network
training is combined, thereby improving the precision.
Zagoruyko and Komodakis [21] and Hamester et al. [18]
improved the two-channel network based on the Siamese
network and the spatial pyramid pooling (SPP) proposed by
He et al. [22] for a similarity comparison of large images. The
method achieved good results.

In this paper, the double-channel CNN represents an
improvement based on the two-branch network. The features
are fused in the fully connected layer of the CNN, which
is a different approach from the feature comparison of the
2-branch network. The double-channel CNN is used for target
recognition and classification of the multi-spectral image.
In the double-channel CNN, the two neural networks are
completely independent. The weights of the convolutional
layer and the pooling layer are also independent. In the fully
connected layer, the features aremerged and the classification
loss function derived based on the joint features of the RGB
images and NIR images. The flowchart of the process is
shown in Fig. 3.

FIGURE 3. Double-channel CNN model.

In the double-channel CNN, the RGB image is represented
as x ∈ Rm×m and the NIR Image is defined as n ∈ RN×N . The
convolutional layer is expressed as:

The feature maps of the upper layer are convolvedwith a
learnable convolution kernel and then an output function map
is obtained by an activation function f . Each output map is
the value of a combined convolution of multiple input maps,
as shown in Equation (2):

conv(x lj ) = f (
∑
i∈Mj

wlij × x
l−1
i + blj)

conv(nlj) = f (
∑
i∈Nj

ωlij × n
l−1
i + δlj )

(2)

where l represents the current layer, Mj and Nj represent the
set of selected input maps; each output map has an extra

offset b and weight w. For a particular output map, the con-
volution kernel that convolves each input map is different.

Each convolution layer l is connected to a pooling layer
l + 1. For the sub-sampling layer, there are N input maps
and there are N output maps but each output map is smaller,
as shown in Equation (3):{

x l+1j = lrn(β l+1j down(x lj )+ b
l+1
j )

nl+1j = lrn(ϕl+1j down(nlj)+ δ
l+1
j )

(3)

where down() represents a downsampling function. A typical
operation generally consists of summing all the pixels of a
different n × n block of the input image. In this manner,
the output image is reduced by n times in both dimensions.
Each output map corresponds to its own multiplicative bias β
and an additive bias b. The lrn() function (local response
normalization) is a method to improve the accuracy during
deep learning. The principle of the local response normal-
ization is to mimic the inhibition of the adjacent neurons by
biologically active neurons.

The fully connected layer converts all two-dimensional
(2D) feature maps into inputs for a fully connected one-
dimensional (1D) network. When entering the final 2D fea-
ture maps into a 1D network, a very convenient method is
to join all the output feature maps into a long input vector,
as shown in Equation (4).{

x l → [X1,X2,X3, ...,Xi]
nl → [N1,N2,N3, ...,Ni]

(4)

The fusion [X1,X2,X3, ...,Xi] and [N1,N2,N3, ...,Ni] are
expressed as Equation (5):

(X ,Y )→


X1,N1
X2,N2
X3,N3
... , ...

Xi, Ni


or

(X ,Y )→ [X1,X2,X3, ...Xi,N1,N2,N3, ...,NI ]T (5)

Based on the fully connected layer, we calculate the final
output of a num_classes_sized vector as [Y1,Y2,Y3, ...,Yt ].
Subsequently, a softmax classification is performed based
on the output and the prediction result is as shown in
Equation (6).

soft max(Yt ) =
exp(Yt )∑
exp(Yt )

(6)

Finally, the error function between the predicted and actual
values of the model is determined. Through neural network
back-propagation, each neuron is continuously trained to
update the network weights and offset values so that the error
gradient is reduced and the error is reduced; the model is
continuously optimized, as defined in Equation (7):

loss(Hy′ (y)) = mean(−
∑
t

y′t log(yt )) (7)
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FIGURE 4. Tensorboard visualization of the double-channel CNN.

where y′t refers to the value of the actual t label; yt is the
actual t element in the output vector [Y1,Y2,Y3, ...,Yt ] of
softmax; mean() is the one to be averaged over the vector.

IV. DATA SOURCE
The experimental data consisted of the RGB-NIR dataset [9]
and the SAT-4 and SAT-6 airborne dataset [23].

The RGB-NIR dataset consisted of 477 images in 9 cate-
gories captured in RGB and NIR. The images were captured
using separate exposures from modified SLR cameras using
visible and NIR filters. The original size of the images in the
RGB-NIR dataset is 1024 x 680 or 512 x 768 window size.
For more info on the NIR photography, please see the refer-
ences below. The scene categories are country, field, forest,
indoor, mountain, old building, street, urban, and water.

The SAT-4 and SAT-6 images were extracted from
the National Agriculture Imagery Program (NAIP) dataset,
which consists of 330,000 scenes spanning the Continental
United States (CONUS); it covers different landscapes such
as rural areas, urban areas, densely forested regions, moun-
tainous terrain, small to large water bodies, agricultural areas,
etc. The images consist of 4 bands, i.e., R, G, B, and NIR;
a 28 x 28 window size was used to obtain images with varied
information.

The RGB-NIR dataset is available at http://ivrg- www.
epfl.ch/supplementary_material/cvpr11/nirscene1.zip

The SAT-4 and SAT-6 dataset is available at https://drive.
google.com/uc?id=0B0Fef71_vt3PUkZ4YVZ5WWNvZWs
&export=download.

V. EXPERIMENTAL RESULTS AND DISCUSSION
The experiment was conducted by using the Python 3.6 and
TensorFlow platforms and the double-channel CNN model.
The validity of the double-channel CNN model is verified
by calculating the classification accuracy, the loss function,
and the degree of overfitting. The performance of the double-
channel CNN model algorithm is determined by comparing
the recognition rate with the single-channel CNN model for
the same length and the same parameter settings. We also
compared the results with that of the classification algorithms
used by other researchers for the same datasets.

Because the RGB-NIR dataset consists of raw image data
with different images sizes of 1024× 680 or 512× 768 win-
dow size, the data required preprocessing. Reference [9]
tested different compressed dimensions of RGB-NIR raw
images and compared the recognition rates. The experimental
results demonstrated that an image size of 128 x 128 resulted
in good performance. Therefore, in this study, the images
were compressed to a uniform 128 x 128 size using the
Tensorflow bilinear interpolation algorithm without loss of
image quality. We used the TFrecord method integrated into
the TensorFlow software to classify the RGB-NIR dataset
images data into nine categories. The data was randomly
extracted using the shuffle_batch method and was used as
input into the double-channel CNN model for calculation.
The SAT-4 and SAT-6 airborne datasets are standardized and
there was no need to preprocess the data. The training and test
data were directly input into the mat data and used as input
for the model for calculation.

Prior to the fully connected layer, the double- channel CNN
model consisted of two LeNet-5 [24]. The parameters used
for the convolution and pooling in the double channel CNN
architecture are the same as the parameters of the LeNet-5.
Figure 4 shows the TensorBoard visualization in TensorFlow
of the processing flow of the RGB-NIR dataset using the
double-channel CNN model. In the RGB bands, the convo-
lution layers use a 5x5 convolution kernel. The activation
function is the ‘ReLu’. The pooling layers utilize 4x4 regions
for pooling and the step lengths are 4x4; the data are normal-
ized using local response normalization. In the NIR band, the
convolution layers use a 3x3 convolution kernel. After the
convolution is completed, the ‘ReLu’ activation function is
selected. The pooling layer uses 4x4 regions for pooling and
the step lengths are 4x4; the data are then normalized using
local response normalization. A smaller convolution kernel
is used for the NIR band than the RGB band to improve
the edge information of the NIR image. Finally, the fully
connected layer vector feature is fused into a 1D vector
using the TensorFlow concat function and then the image
is classified. The fully connected layer uses the net dropout
method to randomly discard 60% of the neurons to avoid
overfitting.
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FIGURE 5. Accuracy and Loss of the RGB-NIR dataset and the SAT-4 and
SAT-6 airborne dataset. (a) SAT-4 and SAT-6 airborne dataset. (b) RGB-NIR
dataset.

Figure 5 shows the statistical results of the accuracy and
loss of the RGB-NIR dataset and the SAT-4 and SAT-6
airborne dataset using the double-channel CNN model.
Figure 5(a) shows the accuracy and loss of the SAT-4 and
SAT-6 airborne dataset. The SAT-4 and SAT-6 images have a
window size of only 28x28; therefore, a smaller convolution
kernel and pooling regions are used. In the RGB and NIR
bands, a 3x3 convolution kernel is used, the pooling layer
uses 2x2 regions for pooling, and the step lengths are 2x2.
The other parameters are the same as shown in Fig. 4. In the
model, the batch size is 100, 2,000 iterations are performed,
and the loss and accuracy values of the model are recorded
every 20 times. Figure 5(b) shows the accuracy and loss of the
RGB-NIR dataset. The model batch size is 50, 500 iterations
are performed, and the loss and accuracy values of the model
are recorded every 10 iterations. The results demonstrate that
the loss gradually decreases and the accuracy rate increases as
the number of iterations increases, indicating that the double-
channel CNN model exhibits good performance and is valid.

Figure 6 shows the net dropout test results of the two
datasets; the objective is to determine test whether the model
is over-fitted. Figure 6(a) shows that, after 1000 iterations and
at a batch size of 100, the SAT-6 accuracy is about 95% with-
out net dropout and the net dropout accuracy is about 93%.
We extracted 100 SAT-6 test data and imported them into the
model for testing; without net dropout, the accuracy was 92%

FIGURE 6. Net dropout test results of the RGB-NIR dataset and the
SAT-4 and SAT-6 airborne dataset. (a) SAT-6 airborne dataset. (b) RGB-NIR
dataset.

and with dropout, the accuracy was 93%. The experiments
indicated that there was a small degree of over-fitting in the
SAT-6 data set when there was no net dropout. Figure 6(b)
shows the overfitting test results for the RGB-NIR dataset.
There were only 477 images in the RGB-NIR dataset. There-
fore, after 230 random extractions of the data without net
dropout, the recognition rate was 100%. The model com-
pletely identified all internal data and over-fitting has been
happened. The recognition rate with the net dropout was
about 75%, which represents the ambiguity of the data. The
test results show that the double-channel CNN effectively
avoids the overfitting of the model by using the net dropout,
as shown in Fig. 6.

The double-channel CNN model consists of two inde-
pendent single-channel CNNs. To evaluate the difference
between the double-channel CNN model and the single-
channel CNN model, we determined the recognition rates
of both methods. The lengths and parameter settings of the
single-channel CNN model are basically the same as those
of the double-channel CNN model. We used the RGB-NIR
data as the input layer for the single-channel CNN calculation
(Table 1). It was found that for the same number of iterations,
the recognition rate was significantly higher for the double-
channel CNN model than the single-channel CNN model.

We compared the classification results of the double-
channel CNN model with those of some recent classifi-
cation algorithms, as shown in Fig. 7. Figure 7(a) shows
the comparison of the classification accuracy for the SAT-4
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TABLE 1. Recognition rates of the single-channel CNN and
double-channel CNN.

FIGURE 7. Recognition rates for different algorithms. (a) SAT-4 and
SAT-6 dataset classification. (b) RGB-NIR dataset classification.

and SAT-6 dataset; the algorithms include the RSI-CB of
Li et al. [13], the hybrid aggregation (pooling) approach
by Han and Chen [14], and the agile CNN architecture by
Zhong et al. [16]. The results show that the accuracies of the
double-channel CNNmodel and those of the other algorithms
are very close. Figure 7(b) is a comparison of the double-
channel CNN model classification results of the RGB-NIR
dataset and those of other researchers, including the MSIFT
by Brown and Süsstrunk [9], the sensing framework by
Karam et al. [25], and the MCCT by Rahman et al. [26]. The
results indicate that the classification accuracy of the double-
channel CNN model is significantly higher than that of the
other algorithms.

VI. CONCLUSIONS
The 4-sensor RGB-NIR line scan camera is widely used in
video surveillance, medical imaging, satellite remote sensing,
and other fields and the simultaneous acquisition of RGB and
NIR image data has become a topic of broad and current
interest. Based on the correlation between the G, R, B, and
NIR bands, we developed the double-channel CNN model
to classify the RGB-NIR image data. The double-channel
CNN model consists of two independent CNN networks,
which describe the RGB and NIR image features. Feature
fusion is performed in the fully connected layer and the last
layer performs the classification; this configuration makes
good use of the different features of the RGB-NIR images.
The experimental results show that the double-channel CNN
algorithm is better able to exploit the features of the RGB
and NIR images than the single-channel CNN algorithm.
In addition, the algorithm has certain advantages over other
similar algorithms.
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