
Received December 23, 2018, accepted January 5, 2019, date of publication January 31, 2019, date of current version February 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2895898

A New Architecture for Network Intrusion
Detection and Prevention
WALEED BUL’AJOUL 1,2, ANNE JAMES1, AND SIRAJ SHAIKH3
1Computing and Technology Department, New Hall, Nottingham Trent University, Clifton Campus, Nottingham NG11 8PT, U.K.
2Computing Department, School of Science, University of Omar Al-Mukhtar, Al Bayda’ 543, Libya
3Systems Security Group, Institute for Future Transport and Cities, Coventry University, Coventry CV1 5FB, U.K.

Corresponding author: Waleed Bul’ajoul (bulajoul@gmail.com)

This work was supported in part by the Nottingham Trent University, Nottingham, U.K., and in part by the University of Omar
Al-Mukhtar, Al-Bayda, Libya.

ABSTRACT This paper presents an investigation, involving experiments, which shows that current network
intrusion, detection, and prevention systems (NIDPSs) have several shortcomings in detecting or preventing
rising unwanted traffic and have several threats in high-speed environments. It shows that the NIDPS
performance can be weak in the face of high-speed and high-load malicious traffic in terms of packet
drops, outstanding packets without analysis, and failing to detect/prevent unwanted traffic. A novel quality of
service (QoS) architecture has been designed to increase the intrusion detection and prevention performance.
Our research has proposed and evaluated a solution using a novel QoS configuration in amulti-layer switch to
organize packets/traffic and parallel techniques to increase the packet processing speed. The new architecture
was tested under different traffic speeds, types, and tasks. The experimental results show that the architecture
improves the network and security performance which is can cover up to 8 Gb/s with 0 packets dropped. This
paper also shows that this number (8Gb/s) can be improved, but it depends on the system capacity which is
always limited.

INDEX TERMS Computer security, computer networks, intrusion detection system, intrusion prevention
system, network architecture, network security, open source, quality of service, security, switch
configuration.

I. INTRODUCTION
Information technology (IT) influences almost every aspect
of modern life. Today, various devices are available to meet
users’ requirements such as high machine processor speed,
and fast networks. Alongside our increasing dependence on
IT, there has unfortunately been a rise in security incidents.
Threats and attacks may range from stealing personal infor-
mation from a laptop or network server to stealing the most
top-secret information stored on a Security Intelligence Ser-
vice (SIS). Furthermore, hackers can snoop on users’ online
purchases by eavesdropping on their credit card details, or,
even more alarmingly, safety-critical systems can be com-
promised. Multi-faceted attacks and threats have made the
implementation of security systems more challenging. Hack-
ers have evolved along with the sophistication of the IT
industry. For example, hackers exploit the developments in
computer processors and network speeds to increase the
volume and speed of malicious traffic that might constitute

The associate editor coordinating the review of this manuscript and
approving it for publication was Ali Kashif Bashir.

a Denial of Service (DoS) or Distributed Denial of Ser-
vice (DDoS) attack [1]–[3]. Network security is therefore
extremely important and has developed into an industry
aimed at improving applications and hardware platforms to
identify and stop network threats.

One of the most established concepts in information secu-
rity is a defense-in-depth approach which utilizes a multi-
layered structural design, in which firewalls, vulnerability
assessment tools (anti-viruses and worms), and IDPS (Intru-
sion Detection and Prevention Systems) are employed to pre-
vent any hostile endeavours on network systems and servers.
The Network Intrusion Detection and Prevention System
(NIDPS) has been designed to serve as the last point of
defense in the network architecture. NIDPSmonitor the trans-
portation of network traffic for any malicious and uncomfort-
able activities and create alerts when operating in detection
mode or block packet alerts when operating in prevention
node [4], [5].

The detection and prevention mechanisms of the NIDPS
are grounded in observing the comparison of ingress packets
(traffic) to any known attack through patterns (signature

18558
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-4927-9500


W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

TABLE 1. Snort-NIDP reaction to detect malicious packets.

NIDPS mechanism) or identifying unknown malicious pat-
terns from ingress traffic (anomaly NIDPS mechanism).
NIDPS are important in that they:
• counter intrusions or malicious attempts to access net-
works and systems;

• analyze network traffic and identify hackers’ targets and
techniques; and

• detect or prevent unwanted and malicious traffic.

Open source is the most common category of NIDPS soft-
ware configured platforms [6]; however, its performance in
high- speed networks communication remains a major issue.
Irrelevant alerts (false positive alerts) occur, thus creating a
more difficult job for system security managers. Moreover,
despite claims of increased capabilities and efficient perfor-
mances by several NIDPS dealers, research has shown that
systems lack the required capabilities to monitor and analyze
high-speed network traffic [7]–[9].

Innovators have created hardware IDPS to process millions
of packets at the same time [10], [11], but there are limitations
in the capability to perform particular software tasks. In addi-
tion, limited memory size is a problem for hardware-based
NIDPS solutions. Furthermore, hardware-based NIDPS offer
a high range of processing speeds but are very costly. Soft-
ware solutions are popular because they are cheaper and offer
more flexibility than hardware solutions. This paper focuses
on open-source software solutions.

Computer network and internet security face increasing
challenges and many companies rely on NIDPS to secure
their data sources and systems. The need to ensure that
the NIDPS can keep up with the increasing demands as a
result of increased network usage, higher speed networks and
increased malicious activity, makes this an interesting area of
research and motivated this study.

The paper is organized as follows. Our investigation
testbed is described in section II. Section III presents our
proposed solution and section IV its evaluation. A discussion
and comparison to related research is provided in section
V. Finally, section VI gives a conclusion and recommenda-
tions for future work.

II. INVESTIGATION TESTBED
To investigate the problem, two experiments were carried out.
The Snort NIDPS has been configured to NIDPS detection

(NID-mode) and prevention (NIP-mode) modes. The exper-
iments were conducted to test Snort NID and NIP modes
performance in detecting and preventing malicious packets
under high-speed traffic.

The experimental testbed also incorporated generator traf-
fic tools, such as NetScanPro, Packets Generator, Win-
Pcap, capture tool, Packets Traceroute, TCP reply and
Packets flooder. The experiments used performance met-
rics such as number of packets analysed, number of mali-
cious packets detected or prevented, and number of packets
dropped. In this section the two experimental setups are
described.

A. DETECTING MALICIOUS PACKETS
In this experiment, WinPcap, Flooder packet and TCPreplay
tools were used to send flood traffic with signed (known)
malicious UDP packets (255 threads per 1mSec) to a phys-
ical system at different speeds (see Table 1). The UDP
malicious packets were interspersed among other packets
transmitted at varying speeds. The following rule has been
designed to require Snort to detect (alert and log) any
UDP threads or malicious packets that contain the variables
‘ab.H′..OK..cdef’ and time to live (TTL) 132 that comes
from any source and port address and goes to any destination
address and ports:

Alert udp any any -> any any (msg: ‘‘Detect Malicious
UDP Packets’’; ttl: 132; content:|’ 61 62 C2 48 60 AE 97 4F
4B C3 63 64 65 66’|; Sid: 100004;).

Flood traffic TCP/IP was sent in different bandwidths
(Bps) with 255 malicious UDP packets (threads) in interval
packets with a delay of 1 microsecond (1 mSec). The NIDS
rule was set up to check the pattern inside the packets and
then detect only the malicious UDP threads when the two
conditions of (TTL and content) are matched.

As shown in Table 1 and Figure 1, Snort NIDS initially
analysed every packet that reached the wire. When 255 mali-
cious UDP packets were sent at a speed of 1 mSec with
TCP/IP flood traffic at 16 bytes per second (16Bps), Snort
alerted and logged more than 99% of the total UDP packets
that it analysed. As the flood traffic (speed) was increased
to 200, 1200, 4800 and 60000 bytes per second (Bps), Snort
alerted and logged packets to a decreasing degree, respec-
tively, at 98.84, 97.17, 49.40 and 35.75% of the total mali-
cious packets analysed (see Table 1). Figure 1 shows that the

VOLUME 7, 2019 18559



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

FIGURE 1. Malicious packets detection.

TABLE 2. Snort-NIDPS reaction to prevent malicious packets.

number of missed malicious packet alerts increased when the
speed increased. The experiment shows that, when the speed
was 60000 Bps, Snort detected less than 36% of the malicious
packets analysed (see Table 1).

B. PREVENTING MALICIOUS PACKETS
In this experiment, TCP/IP flood traffic was sent at differ-
ing speeds (see Table 2) with 255 malicious UDP packets
(threads) also sent at 1 microsecond (1 mSec) intervals. Snort
was set to prevent UDP threads by using two rule conditions
(TTL and content) as follows:

reject udp any any ->any any (msg: ‘‘Prevent Malicious
UDP Packets’’; ttl: 120; content:|’ C2 48 60 AE 97 4F 4B C3
’|; Sid: 100007;).

Use of these options will prevent any UDP malicious
packet that is matched with the TTL value equal to 120 and
a data pattern inside the malicious packet with content
‘‘.H‘..OK.’’. The hexadecimal number (‘C2, 48, 60, AE, 97,
4F, 4B, C3’), which the rule contained, is equal to the ASCII
characters (‘., H′,,.,., O, K,.’).
As shown in Table 2 Figure 2, When 255 malicious

UDP packets were sent at a speed of 1 mSec and TCP/IP
flood traffic at 100 bytes per second (Bps), Snort pre-
vented 100% of the total UDP packets that it analysed.
As the flood traffic (speed) was increased to 10000 bytes
per second (10000Bps), Snort prevented less than 51%

of the total malicious packets analysed (see Table 2).
Figure 2 shows that the number of missed malicious
packets increased when the speed increased. The experiment
shows that, when the speed was 60000 Bps, Snort only
prevented less than 18% of 100% of the malicious packets
analysed (see Table 2).

III. PROPOSED SOLUTION
The results of the experiments described above in section (II)
show that the NIDPS’s performance decreases when faced
with heavy and high-speed attacks. This section analyses
the problem and then outlines a novel solution to increase
NIDPS performance in the analysis, detection, and prevention
of malicious attacks.

A. NOVEL NIDPS ARCHITECTURE
Critical analyses were done for the experiments presented in
sections II(A) and II(B) (see Figures 1 and 2, respectively).
The figures show that performance of NIDPS throughput
is affected when NIDPS is exposed to a high-volume and
speed of traffic; more packets will be dropped and left out-
standing as the speed of traffic increases. Figure 1 shows
that the NIDPS’s detection performance decreased when the
traffic speed increased. There were more missed alerts and
missed logs for packets as the speed of traffic increased.

18560 VOLUME 7, 2019



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

FIGURE 2. Prevent malicious packets.

Figure 2 shows that the NIDPS prevention performance
decreased when traffic speed increased.

When traffic moves through the network interface card
(NIC) to the NIDPS node, the packets are stored in the buffer
until the other relevant packets have completed transmission
to processing nodes. In the event of high-speed and heavy
traffic in multiple directions, the buffer will fill up. Then
packets may be dropped or left outstanding [13]–[15]. In this
case, there is no security concern about the packets dropped;
the packets are dropped outside the system. The existence
of outstanding packets that are waiting or have not been
processed by a security system (i.e. NIDPS node) affects the
system efficiency however.

Packets can also be lost in a host-based IDPS. Most
software tools use a computer program such as the kernel,
whichmanages input/output (I/O) requests from software and
decodes the requests into instructions to direct the CPU’s
data processing. When traffic moves from the interface (NIC)
through the kernel’s buffer to the processor space, where most
of processing nodes are executed, the packets will be held in
the kernel buffer before being processed by the CPU. When
some nodes experience a high-volume of data, the buffer will
fill up and packets may be dropped.

There are therefore three (3) places where packets could
be dropped: in the network, in the host or in the processor,
because all of them are dependent on buffer size and process-
ing speed. If the arrival packet speed rate (λ) is greater than
the network or host buffer speed rate (β), dropped packets
(λd) may occur (see Figure 3), and even increasing the buffer
speed can affect processor speed and cause packet drop.

For network-based packet loss, the NIDPS node fails to
analyze this traffic (packets) because the network drops pack-
ets and the node cannot see them. Packet loss has no negative
impact on the node’s ability to detect or prevent received
malicious packets, but it does have an impact on the receiving
system in that useful packets would not be delivered. In host-
based and processor-based packet loss, the NIDPS node has
analysed this traffic because these packets have reached the

FIGURE 3. General model of buffer packets drops.

host system but the NIDPS node has not been able to process
them. Therefore, useful packets can be lost. In order to solve
the problem of lost packets in NIDPS, our study investigated
the use of a QoS configuration in layer 3 switches with paral-
lel NIDPS technology to organize and improve the processing
performance. Our study develops a novel QoS architecture
(see Figure 4) based on a layer 3 network switch.

A layer 3 switch enables a network to get the best perfor-
mance effort from a network traffic delivery system. Through
it, packets of various priorities can be delivered on a network
in a timely manner. When networks experience high-speed
and heavy traffic, each packet has a similar chance of being
dropped or modified.

Implementing QoS methods, such as queueing, memory
reservation, congestion-management, and congestion-
avoidance techniques, can yield preferential treatment to
priority traffic according to its relative importance. Further-
more, QoS technology ensures that network performance
is more predictable, and that bandwidth utilization is more
effective. QoS is used to improve performance in high speed
network events [16]–[18]. QoS can be configured on physical
interfaces such as ports and switch virtual interfaces (SVI)
[16, pp. 294–299], [19], [20], [21, p. 826].

VOLUME 7, 2019 18561



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

FIGURE 4. Novel NIDPS architecture.

In our study, QoS has been used to configure a novel archi-
tecture in order to improve overall network traffic and secu-
rity performance. As shown in Figure 4, the system (switch)
interface has been configured to have two input queues and
four output queues. The queues’ parameters were configured
to allow queues to process traffic as a group of bytes. These
load a set of packets equally among the queues and divide
traffic into parallel streams in order to increase the rate of
packet processing. The system then uses parallel NIDPS
nodes to increase the NIDPS throughput performance and
analyses each egress queue separately to determine whether
it is free of malicious codes.

A class map and a policy map were made for each input
queue. The class map recognizes and classifies a certain type
of traffic for each input queue, while the policy map controls
and organizes the speed limit for each input queue and applies
the limit to all interfaces. The bandwidth, threshold, buffer,
memory reservation, and priority (queue and traffic) were
configured for all ingress and egress queues to treat and
control traffic in order to help prevent congestion or complete
failure through overload.

One queue was configured as an expedited queue.
It received prioritized QoS services and other queues were
not serviced until the bandwidth of prioritized queue reached
its limit. A memory buffer reservation technique was imple-
mented on our novel QoS architecture for each queue to
guarantee that each queue’s buffer could attain more space
once it reached its limit. This was achieved by reserving space

from an available queue buffer, from the SVI, or port interface
memory buffers, or by switching to a common memory pool
buffer.

ICMP, TCP, and UDP packets as well as malicious packets
have different characteristics and require different process-
ing. The Shaped or Share Round Robin (SRR), threshold, and
priority methods for each output queue offer opportunities to
manage differently various packet types and behaviors. For
example, when all input and output queue buffers are flooded
with traffic, priority queue and threshold map values can deny
buffer overflow [19], [20].

The main idea of our novel QoS architecture is to manage
and allocate a specific traffic weight, or set of bytes, into
each input queue and process each output queue individually
in parallel, thereby increasing NIDPS processor speed and
reducing traffic congestion, even if the traffic is high-load
and high-speed. The next section (B) gives more detailed
information about our QoS configuring methods, i.e., class
and policy map, ingress and egress queues, SRR, bandwidth,
threshold, buffer, queue memory reservation and priority.

B. THEORETICAL AND TECHNICAL BACKGROUND OF
NOVEL ARCHITECTURE
NIDPSs process packets which are carried by IP protocols,
e.g. UDP, TCP and ICMP. The IP protocols are checked by
NIDPS rules based on a signature database (known signa-
ture/attacks). However, to get the best NIDPS performance,
the NIDPS should be implemented in a system which can
manage the layer 3 network protocol (IP layer). In our study,
a layer 3 switch has been used to support and improve NIDPS
performance. The switch supports QoS configuration as well
as Differentiated services (DiffServ) architecture.

1) MAPPING TO LAYER 3
Most of the switches work in layer 2, which is the data link
layer. The switches use the class of services (CoS) value (see
Figure 5), which enables differentiation of the packets [16],
[21, pp. 827–828]. However, layer 2 provides insufficient
methods to support switch features such as QoS features,
dynamic access control lists (ACLs), VLAN features, static
IP routing, and policy-based routing (PBR) [5], [21], [22].

Other mechanisms operate at OSI (Open Systems Inter-
connection) model layer 3 where DiffServ architecture can
implemented (see Figure 5). For example, DiffServ allows
different types of services to be offered depending on a
code [18]. DiffServ allows a policy that gives priority to a
certain type of package [16], [21, pp. 827–828]. DiffServ
architecture is the basis for the QoS implementation in this
research. It assigns each packet a classification upon entry
that states its priority and its likelihood of being delivered
into a network before packets are distributed. It adjusts each
packet for different traffic speeds to ensure timely delivery.

Figure 5 illustrates the relative layers at which CoS
and Differentiated Services Code Point (DSCP) operate.
It also illustrates the relevant models (i.e., TCP/IP, Proto-

18562 VOLUME 7, 2019



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

FIGURE 5. Positioning of CoS and DSCP values.

cols, QoS, and Data Unit) based on OSI layers [16, p. 191],
[21, pp. 827 and 830–833].

Setting the type of service (ToS) field in the IP header can
be used to achieve a simple classificationwhich can be carried
with the packet across the network [16:p32,21:p830-833].
In layer 2, 802.1Q and 802.1p frames use 3 bits (see Figure 5)
for the IP ToS field; in layer 3 IPV4 packets use 6 bits (see
Figure 5) for DSCP in the ToS field to carry the classification
information. Regardless of a network’s capability to identify
and classify IP packets, hops can offer each IP packet a QoS
service.

In the configuration method utilized by this research,
the first action changes the switch frame from layer 2 to
layer 3 by mapping values from CoS to DSCP.We considered
DSCP to be the best choice for the intended usage because
differentiated services technology can offer more precise han-
dling of traffic on the network, can classify each packet upon
entry into the network interfaces, and allows adjustments to
be made for different traffic speeds and loads. The mapping
action between values determines the delay priority of the
packets. CoS has 8 values and DSCP has 64 values. Thus,
the DSCP values allow for a higher degree of differentia-
tion [5], [16].

2) QOS CLASSIFICATION AND POLICY METHODS
Classification is the process of identifying the data packets
to a class or group in order to manage the packet appro-
priately [16]. QoS features such as a policy map and class
map can be used to achieve this. The class information can
be assigned by switch, router, or end host. Policing involves
creating a policy that defines a group weight (the number of
bytes to be processed together) for the traffic and applies it to
the interface. Policing can be applied to a packet per direction
and can occur on the ingress and egress interfaces. Different
types of traffic can be recognized in terms of type, and ports
and differentiated policies can be set accordingly.

Network QoS technology enables the implementation of
a new logical and throughput-traffic-forwarding plan in the
switch. For the purpose of this research, a physical inter-
face was configured to two input queues and four output
queues (see Figure 4). This configuration helps to prevent
congestion traffic (which would cause buffer overflow) and
helps to improve buffer throughput performance. A buffer
was set for each queue and a memory reservation method
using a dynamic memory reservation technology was imple-
mented in order to manage higher traffic loads. After packets
were placed into input queues, class and policy maps were
implemented to handle packets based on their QoS require-
ments. Appropriate services were then provided, including
bandwidth guarantees, thresholds, queue setting, and priority
servicing through an intelligent ingress and egress queueing
mechanism.

The class map information is assigned along the path of
a switch and can be used to limit the volume of incoming
packets distributed to each traffic class. The default behavior
in layer 3 switches using the DiffServ architecture is the ‘‘per-
hop’’ method [16, pp. 6 and 940–941], [21, p. 828]. If a switch
along the path does not provide a consistent behavior per hop,
QoS provides a conceptual and constructed solution, such
as an end-to-end queue solution. The solution is based on a
configurable policy map that allows the system to examine
packet information closer to the edge of the network, which
prevents the core switch from experiencing overload. The
output queues are processed individually where parallel Snort
NIDPS nodes are implemented. Each output queue has own
NIDPS node (see Figure 4).

3) PARALLEL TE CHNOLOGY WITH QOS.
Parallel NIDPS is a form of computation where many NIDPS
nodes work simultaneously, operating on the principle that
the large incoming data can be divided into smaller sets,
which are processed at the same time. Parallelism of NIDPS

VOLUME 7, 2019 18563



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

FIGURE 6. High level parallel process for one interface.

can occur at three general levels: the high-level processing
node (entire system), the component level (specific tasks are
isolated and parallelized) and the sub-component level paral-
lelism (function within a specific task) [23]. The handling of
data can also be parallelized with traffic being split into sepa-
rate streams to be processed by parallel nodes or components.
This is data parallelism which can occur in various ways with
the three general levels of parallelization. In our architecture,
parallel management of traffic was implemented through the
use of queues (2 input queues and 4 output queues) on an
SVI where component level parallelism of NIDPS nodes was
implemented (see Figure 4 and Figure 6).

The parallelization of data (traffic) that was distributed
through ingress and egress queues into critical and non-
critical is viewed as multiple traffic parallelism (MTP). Criti-
cal pre-processing of traffic is performed on queues to create
particular groups of packets (threads) before the traffic is
examined by an ingress queue algorithm. Non-critical pre-
processing occurred after the packets had been matched to
ingress and egress queues policies. The NIDPS node com-
ponent can be parallelized in an either non-functional or
functional manner. Component level parallelism is defined
as function parallelism of the NIDPS processing node. Indi-
vidual components of NIDPS were isolated, and each output
queue was given its own processing element (see Figure 4 and
Figure 6). The NIDPS node was configured from a single-
node NIDPS to a multi-node NIDPS. Each node was config-
ured to check for a certain type of packet (e.g. UDP, TCP and
ICMP) and was able to access discrete parts of a centralized,
common rule base to order to carry out its task. The kernel
buffer parameters for each NIDPS node was configured as
each output queue rate.

4) QOS CLASSIFICATION, POLICING AND MARKING FOR
INGRESS AND EGRESS INTERFACES (QUEUES).
Queues, class, and policy technologies can use access con-
trol lists (ACLs) to allow the processing management of
different types and patterns of incoming and outgoing

FIGURE 7. Packets classification and marking.

packets [22, p. 1]. The novel configuration proposed in this
paper uses an ACL technology with a class map and SVI
queues, as well as a policy map that specifies each type of
IP traffic (e.g., ICMP, TCP and UDP) to be processed by
implementing parallel output queues with associated parallel
NIDPS nodes.

When traffic arrives at the ingress interface of system,
packets will be classified through a class map (see Figure 7)
that will enable packets to be processed as a group of bytes
defined by a policy and ACLs that were matched with DSCP
values. A policy map (see Figure 8) was made to specify
required action for each class. The following procedures
constitute the method:
• Classify the traffic with a class map for SVI and ports.
Set ACLs rules depending on the kind of traffic/attacks
to be detected or prevented. In our experiment, we detect
and also prevent UDP malicious packets which came
with random high-speed flood traffic. We allowed UDP
traffic to be processed in a separate egress interface
(queue) and then analysed by a parallel NIDPS node.
The other traffic (e.g. TCP, ICMP, etc.) was processed
in the other egress queues.

• Organize a rate-limit for the system ingress interface
processing speed (Setting a set group of packets in bytes)
for the class traffic. The rate depends on the maximum
limit of SVI bandwidth includingmemory. In our system
we set ‘‘1.124million’’ bytes (nearly 1Gb of packets) for

18564 VOLUME 7, 2019



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

FIGURE 8. Packet policing and marking.

the set of classes because the maximum limit for each
interface in our system is 1Gbps.

• Each class of traffic matches to a DSCP value so packets
in that class are marked down to a new DSCP label.

After packets were classified and policed with a specific
bandwidth, some were dropped out of the profile (fabric).
Each policy can specify what actions should be carried
out [16], [21, p. 833], including dropping packets, allowing
dropped packets to be modified, allowing packets to pass
through without modification, and deciding on a packet-by-
packet basis whether a packet is in or outside the profile.
The novel QoS policy map architecture (see Figure 8) was
proposed as follows:

• Packets dropped were modified to be re-processed again
andmappedwith newDSCP values based on the original
QoS label. This modification helps for correcting and
reducing dropped packets inside the profile.

• When packets are reprocessed, theymay get out of order.
To prevent this, a policy was designed to allow packets
to be re-processed in the same queue as the original QoS
label.

• The system has the ability to mark up a limit speed (as a
set of bytes) for each input queue.

• If packets are not matched with DSCP values, packets
will be dropped. See Figure 8 for an illustration of the
architecture.

A hierarchical policy map was created and applied to the
traffic inside the ingress queues. The policy map targeted
SVIs and ports. Two types of QoS policy were created:
individual and aggregate. Individual QoS applies a separate

policy to specify a bandwidth limit for each traffic class.
Aggregate QoS specifies an aggregate policy with which to
apply a bandwidth limit to all matched traffic flows. The
individual policer only affects packets on a physical interface
(i.e., SVI/port). Furthermore, if more than one type of traffic
needs to be classified, it is possible to createmore ACLs, class
maps, and policy maps [16]. In our experiments, three types
of traffic (TCP, UDP, and ICMP) were classified using ACL,
class map, and policy map methods.

Switches receive each traffic frame in a token bucket
[16, p. 62], [21, p. 835], where an algorithm is used to check
leaks of data transmissions. The token bucket processing
speed is set at the same rate as the configured average packets
rate and conforms to defined limits on bandwidth to allow a
burst of traffic for short periods. Each time a token is added
to the bucket, the algorithm checks to see if sufficient room
is available in the bucket. If not, the packet will be marked as
non-conforming, and the specified policy actionwill be taken.
In our QoS architecture (see Figure 8), packets dropped out
of profile were marked down with new DSCP values and the
DSCP value was modified to generate a new QoS label.

5) QOS THRESHOLDS FOR INGRESS AND EGRESS
INTERFACES (QUEUES).
QoS stores packets in input and output queues according
to the QoS label, which has been defined and identified by
the DSCP values in the packets. Threshold map values can
be assigned to the queues [16, p. 260], [21, p. 838], [22].
Our architecture has employed weighted tail drop (WTD)
thresholds on ingress and egress queues to cope the band-
width length of each queue and deliver the drop precedence
for different classifications of packets. If the available space
on a destination queue is less than the volume of packets,
the threshold is exceeded for that QoS label and the switch
drops the packet. DSCP values (which are carried by packets)
were mapped to ingress and egress queues which all have a
located buffer space. WTD thresholds for input and output
queues were set (see Figure 9). Each queue has three drop
thresholds. This means that different thresholds can be set
for different types of packets. Each value of the threshold
represents a percentage of the queue’s total buffer.

In our configuration, each ingress queue was assigned
a various threshold value. One of the ingress queues was
assigned to be a high-priority queue with a maximum queue
threshold (the queue can hold up to its limit of frames at up
to 100% threshold). The other ingress queue was assigned
to be a lower-priority queue with a lower queue threshold
(threshold <100%). Higher priority packets were directed to
the high-priority queue.

6) QOS BUFFER RESERVATION FOR INGRESS EGRESS
INTERFACES (QUEUES).
Buffers are universal throughout the software and hardware
layers of any network computer system. They are valuable
in reducing the impact of traffic rate variability on the net-
work especially in the case of traffic rate points. By having

VOLUME 7, 2019 18565



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

FIGURE 9. Novel scheduling architecture for ingress and egress queues.

sufficiently large buffers to absorb traffic rate spike, high
latencies associated with retransmissions and lost data can be
avoided. They are also useful if there is a temporary differ-
ence in the rate at which traffic is produced and consumed.
However, increasing the buffer size cannot compensate for
packet processing that is perpetually slower than the packet
arrival rate. Systems (e.g., switches, routers, etc.) may have
different buffer configurations. The total rate of all buffers is
β; and each ingress and egress buffer of an interface is limited
to rate α. The same α applies to all interfaces. The rate of a
buffer is the speed at which packets move through it and this
depends on the underlying processing system.

The switch manages buffering across a number of inter-
faces. An ingress interface has ingress buffers connected to
common egress buffers. The switch algorithm is also respon-
sible for scheduling. At each event of scheduling, the switch
algorithm selects one of the ingress buffers. The packet at
the head of the selected buffer is then transmitted to the
inside at the switch and via the egress buffer to the target
system. There are some formulations that model the entire
switch rather than just one interface [24]. For example: a
switch consists of m ingress and n egress interfaces, where
each interface has buffer. Arrival events (packets) arrive at the
ingress interfaces (which have specified destination egress
interfaces). At the scheduling event, packets at the top end

FIGURE 10. QoS buffer reservation.

of the ingress interface buffers are sent to the egress interface
buffers. Here, the switch algorithm matches the packets in
the ingress and egress interfaces. According to this matching,
the packets in the ingress interfaces will be transmitted to
the corresponding egress interfaces. In this scheduling task,
there is also a buffer for each pair of ingress and egress
interfaces. Thus, there arises anther buffer management prob-
lem at scheduling phases. In the implementation of QoS
architecture proposed in this study, QoS DiffServ was used to
assign a value to each packet according to its importance and
then it decides the order of packets to be processed through
queues based on the value of packets. Additional buffers were
provided dynamically to the ingress and egress interfaces.
A QoS switch was used to control the input and output traffic.
A priority queue was implemented for one of the ingress
queues in the interface.

By default, the ingress buffer rate is the same as egress
buffer rate. However, when the arrival event of traffic rate
(λin) is more than total rate of egress buffers, or one of
n egress buffers already reached α, the packets would be
dropped (λd > 0). In the novel configuration, the sharing
policy was configured for each ingress-queue’s buffer which
corresponds to rate α

2 and the egress-queue’s buffer was to
rate α4 , where α is the maximum rate for the interface’s buffer.
All buffers were assumed to have the same maximum rate.

A buffer reservation technique (see Figure 10) has been
used to increase buffer size along with implemented paral-
lel nodes of buffers to increase buffer speed performance.
The total buffer memory space was provided by the system
main common memory pool with subdivisions for the SVI
pools and further for ingress queue pools and egress queue
pools (see Figure 10). A buffer distribution scheme was
implemented to reserve more space for each egress buffer.
Thus, all buffers cannot be consumed by one egress queue,
and the system can manage matching buffer space to queue
demand. The remaining free common pool interfaces were set
to reserve up to 50% of the available switch memory pool.

A switch identifies whether the target queue has consumed
less buffer space than its reserved volume (under-limit),
whether the target queue has consumed all of its reserved
amount (over-limit), and whether the system (switch) mem-
ory pool has free buffers. If the queue is not over-limit,
the switch can reserve a buffer space from the interface

18566 VOLUME 7, 2019



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

pool or from the switch main common memory pool. If no
more space is available on the common pool or if a queue is
over-limit, the switch drops the packet.

7) QOS SHAPED/SHARED ROUND ROBIN (SRR).
After traffic has been classified, marked, and policed in
two ingress queues, each packet is processed into four out-
put queues that implement parallel NIDPS nodes. QoS also
offers SRR technologies, which can vary the interface queue
bandwidth, and control the buffer rate at which packets are
sent [16, p. 260], [21, p. 840]. The Shaped function SRR can
guarantee each queue a bandwidth limit, but queues cannot
share with each other if one or more queues reach their
bandwidth limits. The Share function SRR can guarantee a
bandwidth limit for each queue, and the other queues can
share with each other if one or more queues reach their
bandwidth limits. This research utilized Share in the ingress
queues and Shaped in the first three egress queues. In the
fourth egress queue, the Share mode was set to allow the
queue to share traffic with other available output queues.

Queue technology is placed at specific points in a system
(e.g., Layer 3 switches) to help prevent congestion. The total
inbound bandwidth of all interfaces may exceed a ring space
of internal bandwidth. After packets are processed through
classification, policing, and marking, and before packets pass
into the system (switch) fabric, the system allocates them
to input queues. Because multiple input queue interfaces
can simultaneously send packets to output queue interfaces,
ingress packets exit to an internal ring, and outbound queues
are allocated from the internal ring. This avoids congestion.
The SRR ingress queue transmits packets to the internal ring,
while the SRR egress queue sends the packets to the output
link.

The novel configurable architecture has a large limit of
buffer space and a generous bandwidth allocation for each
queue. One of the ingress queues was set as a priority queue,
which allowed the system to priorities packets with particular
DSCP values and thereby allocate a large buffer. It also
allows buffer space to be used dynamically, and then adjusts
the thresholds for each queue so that packets with inferior
priorities are dropped when queues are full. This allows the
system to ensure that high priority traffic is not dropped.

When the traffic comes to the interface, the packets are
buffered in the priority ingress buffer (priority queue) and if
the priority buffer is getting full, the traffic will transmit to
the second ingress buffer. If all ingress buffers are getting full,
the packets will be dropped, or the switch can reserve another
ingress buffer with the same priority up to n, where n is the
maximum number of ingress buffers.

When the arrival packets pass through ingress buffers,
the traffic speed was re-controlled as an interface speed limit
(µ) (group of bytes per second) and the traffic is stored in
the SVI QoS-ring space, where packets were arranged and
managed to exit the interface through egress queues.µ should
be equal to the maximum bandwidth limit of each system
interface.

Every arrival packet needs to be sent out of an ingress
interface and then placed in egress buffers which permit an
interface to hold packets when there are more packets to be
transmitted than can physically be sent (experiencing conges-
tion). If the system (switch) cannot allocate sufficient buffers
to hold all incoming traffic, the packets will be dropped.
Availability of egress buffers determine if a packet is trans-
mitted or not. When it comes to reducing packet drop, the
system does not concern itself with packets. Rather, it is
concerned with the number of requested (reservation) buffers
to which unbuffered packets can be added. The volume of
egress buffering differs from platform to platform. Typically,
two (2) reservation pools are available for layer 3 network
switches. These pools are the SVI reserved pool and the
switch memory common pool (see Figure 10). The switch
memory common pool is used when the SVI reservation pool
has previously been consumed.

When packets (traffic) go through the output queues,
the switch reserves buffer from the SVI reservation pool
for all egress buffers and then if one egress buffer is fully
consumed, the consumed egress buffer can reserve buffer
space from the available buffers of other egress queues.When
the SVI reservation pool is consumed by all egress buffers,
it reserves more buffers from the switch common memory
pool. If all the switches’ buffers are consumed, the packets
will be dropped because no more space will be available.

All ingress and egress buffers above are collectively called
one node of the switch’s buffer (ηi). The common memory
switch pool is the ‘‘holdup’’ storage area, where packets
are held until they can be processed. If the holdup area is
full, more reservation buffer can be achieved by reserving
memory from another switch memory pool in the LAN (see
Figure 11) and even can be fromWLANs. However, all egress
buffers were controlled to limit rate βk (kernel buffer speed)
to prevent host based dropped packets. The kernel buffer rate
(speed) should be equal to output queue rate.

C. SUMMARY OF PROPOSED SOLUTION
NIDPSs are often unable to detect or prevent all unwanted
traffic or malicious activities when traffic comes in at high-
speeds and volumes. As a solution, this paper describes
a novel architecture. Layer 3 Cisco switch technology is
combined with parallel NIDPS nodes, to create queues with
specific buffer and bandwidth sizes.

The system thus increases queue buffer size automatically
up to a network limit. It also services buffer space from an
available queue buffer, port buffer, or switch pool memory
buffer to hold more packets. This allows the system to orga-
nize and increase the processing speed of arriving packets
(which have been reconfigured and reordered as groups of
bytes) by setting a number of parallel egress queues to be
processed by parallel NIDPS nodes. The number of parallel
processing NIDPS nodes needed in any particular system
depends on network arrival rates. Therefore, it was necessary
to operate with the class and QoS technologies within the
network switch.

VOLUME 7, 2019 18567



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

FIGURE 11. Reservation buffer from n node of switches.

An assumption is that there will be an underlying parallel
implementation of the target destination (NIDPS in this case)
and for each egress buffer commissioned there will be a
port to a parallel node of the target system. This enables
better performance and higher volumes of traffic to be pro-
cessed successfully. The difference between the previous
studies [5], [12] is that this study gives a clear picture of
how QoS architecture along with parallel technology can
improve NIDPS performance. The QoS configuration boosts
the NIDPS performance with regard to its congestion man-
agement and its congestion avoidance. Congestion manage-
ment creates balanced queuing by evaluating the internal
DSCP and determining in which of the four egress queues
to place the packets.

Other items related to queuing are also configured to
reduce dropped buffer packets in interfaces in order to
improve NIDPS performance, e.g., defining the priority
queue, defining a queue set, guaranteeing buffer availability,
limiting memory allocation, specifying buffer allocation, set-
ting drop thresholds, mapping the CoS to the DSCP value,
configuring SRR, and limiting the bandwidth on each of
the outbound queues. The congestion avoidance method also
helps with the performance of the NIDPS, by, e.g., setting
output queuing, and configuring WTD parameters for the
ingress and egress queues. The use of parallel NIDPS nodes
to match each of system egress queues enables NIDPS packet
checking to keep up with increased arrival rates typical of an
attack.

IV. EVALUATION OF THE PROPOSED SOLUTION
This section presents an evaluation of the proposed architec-
ture.

A. EVALUATION OF NOVEL NIDPS ARCHITECTURE
The experiments that were described in section II are
repeated, but here the novel architecture is implemented to
test performance in terms of throughput with the support of

the proposed solution (QoS and parallel technologies). Each
experiment tested Snort NIDPS throughput when analyzing
traffic such as TCP/IP headers and then detecting or prevent-
ing unwanted traffic (UDP malicious packets) arriving at a
high-speed.

As shown in Figure 1, when malicious UDP packets were
sent at a speed of 1 mSec with different TCP/IP flood traffic
at 16 to 60000 bytes per second (Bps), Snort NIDPS started
effectively but overall it missed detecting up to 65% of mali-
cious packets that system received (see Table 1). Further-
more, it was unable to prevent all unwanted packets. The
experiment shows that, when the speed was 60000 Bps, Snort
prevented less than 18% of the malicious packets analysed
(see Figure 2 and Table 2).WhenQoS architecture was imple-
mented, Snort NIDPS detected almost 100% of malicious
packets that system received (see Table 3 and Figure 12).
The experiment results show that Snort NIDPS performance
increased greatly whenQoS is used. It prevented almost100%
of malicious packets that it analysed (see Table 4 and
Figure 13).

B. EVALUATION AT HIGHER SPEED
In this section, two tests were carried out for NIDPS analytic
performance under various high-speed traffic. The first test
was for NIDPS with no novel architecture, and the second
test was for our novel NIDPS architecture. In this experiment,
TCP replay tool was used to generate traffic at different
speeds (Gbps) through the system. The same system (Cisco
Switch 3560) was used. As the results show in Figure 14,
when we tested NIDPS (no novel architecture), Snort NIDPS
processed every single packet that reached the wire. The
results show that when packets are sent at 1 Gbps, Snort
analyses nearly 100% of received packets, but when traffic
speed increases, NIDPS starts losing/dropping packets (see
Figure 14). Furthermore, when speed was 8Gbps NIDPS
analyses just 599818 of 10994568 packets which is less than
6% of total packets received (see Figure 14).

When we implemented our novel architecture, Snort pro-
cessed 100% of packets that were received while the traffic
speed was 8 Gbps (see Figure 15). When the traffic speed was
increased to 10 Gbps, Snort started to drop packets.

By using 2x 1Gb interfaces, the experiment results showed
that the Snort NIDPS processed up to 8Gbps with 0 packets
dropped, but without using our architecture, Snort dropped
more than 94% of total packets that it received (see Fig-
ure 14) whereas when using the novel architecture, NIDPS
dropped 0. However, successful processing of more than
8Gbps depends on the system capacity which always has
some limit and cost. The total capacity of our system’s main
memory buffer is 32 Gbps. The system used (Cisco switch
3560) can hold up to 32 queues. Each queue can has up to
1Gbps buffer.

V. DISCUSSION AND RELATED RESEARCH
This section discusses the proposed solution and compares it
to related research in parallelism in intrusion detection.

18568 VOLUME 7, 2019



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

FIGURE 12. Detecting malicious packets in high-speed traffic.

TABLE 3. Novel NIDPS architecture reaction to detect malicious packets.

FIGURE 13. Preventing malicious UDP packets in high-speed traffic.

Vasiliadis et al. [25] proposed a new model for a multi-
parallel IDS architecture (MIDeA) for high-performance pro-
cessing and stateful analysis of network traffic. Their solution
offers parallelism at a subcomponent level, with NICs, CPUs
and GPUs doing specialized tasks to improve scalability and
running time. They showed that processing speeds can reach
up to 5.2Gbps with zero packet loss in a multi-processor

system. Jiang et al. [26] proposed a parallel design for NIDS
on a TILERAGX36many-core processor. They explored data
and pipeline parallelism and optimized the architecture by
exploiting existing features of TILERAGX36 to break the
bottlenecks in the parallel design. They designed a system
for parallel network traffic processing by implementing a
NIDS on the TILERAGX36, which has a 36 core processor.

VOLUME 7, 2019 18569



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

TABLE 4. Novel NIDPS architecture reaction to prevent malicious packets.

FIGURE 14. NIDPS at >= 8Gbps traffic speed.

FIGURE 15. Novel NIDPS architecture at >= 8Gbps traffic speed.

The system was designed according to two strategies: first
a hybrid parallel architecture was used, combining data and
pipeline parallelism; and secondly a hybrid load-balancing
scheme was used. They took advantage of the parallelism
offered by combining data, pipeline parallelism and multiple
cores, using both rule-set and flow space partitioning. They
showed that processing speeds can handle and reach up to
13.5 Gbps for 512-bytes. Jamshed et al. [27] presented the
Kargus system which exploits high processing parallelism
by balancing the pattern matching workloads with multi-core

CPUs and heterogeneous GPUs. Kargus adapts its resource
usage depending on the input rate, to save power. The
research shows that Kargus handles up to 33 Gbps of normal
traffic and achieves 9 to 10 Gbps even when all packets con-
tain attack signatures. The two approaches described in this
paragraph are not directly comparable in terms of throughput
as different numbers of processors are used in each. However,
the experiments show that high gains can be made by paral-
lelizingNIDPSs in order to combat problems of higher speeds
and increasing traffic. Our research uses a multi-layer switch

18570 VOLUME 7, 2019



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

along with parallel technology to improve packets processing
performance which increases the ability to handle different
speeds and data volumes. Further enhancements occur when
queuing is combined with parallel processor technologies.
The approach of this study has shown how parallelism at a
higher level of granularity, which is simpler to implement, can
alsomake impressive improvements for security performance
in terms of throughput and the number of dropped packages.
By using 2 machines connected to two interfaces, our NIDPS
processed up to 8 Gbps with 0 drop for 1KB packets. This
number can be increased up to 32Gbps which is the full
system capacity forward bandwidth by implementing more
nodes of NIDPS.

Chen et al. [28] proposed an application-specific integrated
circuit (ASIC) design with parallel exact matching (PEM)
architecture to accelerate processor packets speed. The ASIC
hardware has been designed to operate at 435MHz to perform
up to 13.9 Gbps throughput to manage the requirements of
high-speed and high accuracy for IDS, which resolves the
issue of the information security limitation to manage data
received from the 10Gbps core network. They proposed SRA
(Snort Rule Accelerator) with parallel rules to increase the
performance of the IDS. The SRA is proposed with a stateless
parallel-matching scheme to perform high throughput packet
filtering as an accelerator of the Snort detection engine. The
ASIC is composed of five major modules, namely the Inspec-
tor, Counter, Parallel Matching, Conformity, and Compare
modules. The parallel matching scheme compares a packet’s
payloadwith the stored rule.When an entry packet is matched
with Snort rules, the ASIC is in an idle state and sends a
compare signal to the conformity module, which integrates
all signals and determines whether an abnormal payload is
presented. Here the authors designed a half mesh architecture
in the parallel matching rules module, which allows the traffic
to be compared with several rules. Our research addressed
performance in a different way. It embeds an open source
security software along with layer 3 switch technology (QoS,
memory and buffer dynamic reservation and parallel queue
technologies) to improve network forward-throughput-traffic
architecture and, hence, security performance. It configured
an interface into queues (interface-to-queues), which allows
packets to be processed through the component level parallel
NIDPS nodes. The approach is designed to deal with the
limitation of real networks speed and finds solutions to the
problems that caused the NIDPS performance. The approach
can deal with any incoming traffic-speed that may allow
malicious packets to enter the system and prevent NIDPS
from detecting or preventing them. It does this by imposing
advanced management of network packet traffic. The advan-
tage of the proposed approach is that every-day equipment
can be utilized in a new way to achieve improvements and it
is also more scalable than the proposal of Chen et al. [28].
In the context of big data and distributed systems,

Zhao et al. [29] have developed a security framework in
G-Hadoop. This work focuses on authentication and access
rather than intrusion detection but offers an interesting new

direction. The framework could be enhanced with intrusion
detection and protection functionality to create a more com-
plete solution. Our research has focused on standard business
infrastructure whereas the work of Zhao et al. has concen-
trated on single cluster across cloud data centers. Cross-
cluster security services in a high performance environment
such as that afforded by G-Hadoop is an area where attention
is welcome.

Vendor companies are aiming to develop security solu-
tions to protect the enterprise network. Equipment has been
designed to meet connectivity speed and load standards. The
improvements in the throughput of NIDPS shown in this
research are achieved by pairing the ASA (Adaptive Security
Appliance) Cisco equipment [10] with multiple implementa-
tions of Snort. The principles of the method proposed in this
research could be applied to other equipment combinations
where similar facilities are offered.

To summarize, our research differs from previous research
in terms of the architecture used. The research investigates
how QoS including DiffServ technology and parallelism can
have impact in high-speed and heavy traffic networks using
an industry standard switch and standard desktop processors.
This solution is a more accessible way of receiving good
results as it can be activated at a higher level, namely at the
level of configuring the CISCO switch software and replicat-
ing Snort on standard machines. Further improvements could
be made if higher performance equipment was used. Cost is
generally an important concern. The design proposed in this
research benefits the network security requirements at low
cost.

VI. CONCLUSION, RECOMMENDATIONS
FOR FUTURE WORK
This section summarizes the outcomes achieved in the paper
and then provides recommendations for future research.

A. CONCLUSION
A new architecture for NIDPS deployment was designed,
implemented and evaluated. There has recently been massive
development in computer networks regarding their ability
to handle different speeds and data volumes. As a result of
this rapid development, computer networks are now more
vulnerable than ever to high-speed attacks and threats. These
can cause considerable trouble to computer networks and sys-
tems. Network intrusions can be categorized at various levels.
Many high-speed attacks can be classified as being difficult
to detect or prevent. It will become ever more difficult to
analyze increasing volumes of traffic due to the rapid shifts
in technology that are increasing network speed.

Recently, various open-source tools have become available
to cover security requirements for network systems and users.
In this paper, the performance of an open source NIDPS
has been evaluated in the context of high-speed and volume
attacks. The purpose of the evaluation was to determine the
performance of the NIDPS under high-speed traffic when
restricted by off-the-shelf hardware, and then find ways to
improve it.

VOLUME 7, 2019 18571



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

This study focused on the weakness of such security sys-
tems, i.e. NIDPS in high-speed network connectivity. We
proposed a solution for reducing this weakness and presented
a novel architecture in NIDPS development that utilizes QoS
and parallel technologies to organize and improve network
management and traffic processing performance in order to
improve the performance of the NIDPS.

With our novel architecture, Snort’s performance improved
markedly, allowing more packets to be checked before they
were delivered into the network. The performance (analysis,
detection and prevention rate) of Snort NIDPS increased to
more than 99%. By using 2 machines (PCs) connected to two
1Gb interfaces, Snort NIDPS processed up to 8 Gbps with
0 drop. This number can be increased up to 32Gbps which is
the full system capacity forward bandwidth by implementing
more nodes of NIDPS.

The research focused on establishing a technical solution
with a theoretical foundation. This information generalizes
the problem and solution and thus enables the proposed
approach to be applied more easily to infrastructures that are
different to the testbed used in this research.

B. RECOMMENDATION AND FURTHER RESEARCH
NIDPSs are used to capture data and detect malicious packets
travelling on network media and match them to a database
of signatures. Signature-based NIDPS are able to detect
known attacks, but the major problem of the signature-based
approach is that every signature should have an entry in a
database in order to compare with the incoming packets.
New signatures arise constantly, and an issue is how to keep
track up with new signatures. Another problem is processing
time required to check all signatures. Knowledge sharing
may provide a solution. Cloud computing which provides
for massive processing distribution and sharing is a possible
future direction, but this also raises issues of trust. An avenue
of future investigation should aim to develop a trusted cloud
solution to NIDPS deployment such that if the threshold
monitoring tool indicates that traffic is increasing then extra
Snort nodes can be brought into play from the cloud. Future
work should investigate the use of specialized and trustworthy
security clouds e.g. a parallel node of NIDPS implemented on
a multi-core/multi-processing cloud environment which can
increase the NIDPS processing speed in order to improve its
performance.

Statistical based anomaly detection is designed to detect
deviations from a baseline model of network behaviour.
When the rate of ‘‘malicious’’ packet transmission is very
high, the attack will almost certainly be detected by a statisti-
cal anomaly detector. Therefore, statistical anomaly detection
can be used with the proposed novel architecture to redirect
traffic to a secured haven for processing when attacks are
detected. The secure haven can use the proposed architecture
to enable throughput of good traffic while bad traffic is
halted. We consider this area of development needs further
investigating.

In the testbed, we identified that there is limitation for the
number of packets processing which is 8.0 Gbps with 0%
packets dropped. The idea has been examined further in terms
of performance limitation above 8.0 Gbps, and therefore
modificationmay bemade for better response. As experiment
4 showed, packets started to be dropped when load-balancing
for traffic exceeding 8.0 Gbps. Analysis is still in develop-
ment and shall be covered in the future efforts.

Establishing a relationship between traffic size and number
of NIDPS cluster nodes for an efficient performance is also
an interesting research area. Defining parameters to identify
the number of nodes for a scalable response to network speed
type and will be a good addition.

REFERENCES
[1] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, ‘‘DDoS attack protection in the

era of cloud computing and software-defined networking,’’Comput. Netw.,
vol. 81, pp. 308–319, Mar. 2015.

[2] K. Chauhan and V. Prasad, ‘‘Distributed denial of service (DDoS) attack
techniques and prevention on cloud environment,’’ Int. J. Innov. Advance-
ment Comput. Sci., vol. 4, pp. 210–215, Sep. 2015.

[3] M. D. Samani, M. Karamta, J. Bhatia, and M. B. Potdar, ‘‘Intrusion
detection system forDoS attack in cloud,’’ International Journal of Applied
Information Systems (Foundation of Computer Science), vol. 10, no. 5.
New York, NY, USA: FCS, 2016.

[4] S. H. Vasudeo, P. Patil, and R. V. Kumar, ‘‘IMMIX-intrusion detection and
prevention system,’’ in Proc. Int. Conf. Smart Technol. Manage. Comput.,
Commun., Controls, Energy Mater. (ICSTM), May 2015, pp. 96–101.

[5] W. Bul’ajoul, A. James, and M. Pannu, ‘‘Improving network intrusion
detection system performance through quality of service configuration and
parallel technology,’’ J. Comput. Syst. Sci., vol. 81, no. 6, pp. 981–999,
2015.

[6] N. Akhtar, I. Matta, and Y.Wang, ‘‘Managing NFV using SDN and control
theory,’’ Dept. CS, Boston Univ., Boston, MA, USA, Tech. Rep. BUCS-
TR-2015-013, 2015.

[7] P. S. Kenkre, A. Pai, and L. Colaco, ‘‘Real time intrusion detection and
prevention system,’’ in Proc. 3rd Int. Conf. Frontiers Intell. Comput.,
Theory Appl. (FICTA). Bhubaneswar, India: Springer, 2015, pp. 405–411.

[8] M. Li, J. Deng, L. Liu, Y. Long, and Z. Shen, ‘‘Evacuation simulation
and evaluation of different scenarios based on traffic grid model and high
performance computing,’’ Int. Rev. Spatial Planning Sustain. Develop.,
vol. 3, no. 3, pp. 4–15, 2015.

[9] J.-M. Kim, A.-Y. Kim, J.-S. Yuk, and H.-K. Jung, ‘‘A study on wireless
intrusion prevention system based on snort,’’ Int. J. Softw. Eng. Appl.,
vol. 9, no. 2, pp. 1–12, 2015.

[10] Cisco. (2016). Cisco Interfaces and Modules, Cisco Security Mod-
ules for Security Appliances. Accessed: Feb. 30, 2018. [Online]. Avail-
able: http://www.cisco.com/c/en/us/support/interfaces-modules/security-
modules-security-appliances/tsd-products-support-series-home.html

[11] M. Trevisan, A. Finamore, M. Mellia, M. Munafò, and D. Rossi, ‘‘DPD-
KStat: 40Gbps statistical traffic analysis with off-the-shelf hardware,’’
Telecom, Paris, France, Tech. Rep. 318627, 2016.

[12] W. Bul’ajoul, A. James, S. Shaikh, and M. Pannu, ‘‘Using Cisco network
components to improve NIDPS performance,’’ Comput. Sci. Inf. Technol.,
pp. 137–157, Aug. 2016.

[13] K. R. Kishore, A. Hendel, andM. V. Kalkunte, ‘‘System, method and appa-
ratus for network congestionmanagement and network resource isolation,’’
U.S. Patent 9 762 497, Sep. 12, 2017.

[14] Y. Naouri, and R. Perlman, (2015). ‘‘Network congestion management by
packet circulation,’’ U.S. Patent 8 989 017B2, Mar. 24, 2015.

[15] Y. Zhu et al., ‘‘Packet-level telemetry in large datacenter networks,’’ in
Proc. ACM Conf. Special Interest Group Data Commun. New York, NY,
USA: ACM, 2015, pp. 479–491.

[16] T. Szigeti, C. Hattingh, R. Barton, and K. Briley, Jr., End-to-End QoS
Network Design: Quality of Service for Rich-Media & Cloud Networks.
London, U.K.: Pearson Education, 2013.

[17] M. K. Testicioglu and S. K. Keith, ‘‘Method for prioritizing network
packets at high bandwidth speeds,’’ U.S. Patent 15 804 940, Nov. 6, 2017.

18572 VOLUME 7, 2019



W. Bul’ajoul et al.: New Architecture for Network Intrusion Detection and Prevention

[18] T. Szigeti, J. Henry, and F. Baker, Mapping Diffserv to IEEE 802.11 Yes,
Tatil, document RFC 8325, 2018.

[19] D. Melman, I. Mayer-Wolf, C. Arad, and R. Zemach, ‘‘Egress flow mir-
roring in a network device,’’ U.S. Patent 15 599 199, May 18, 2017.

[20] K. K. Kulkarni, and R. O. Nambiar, ‘‘Distributed application framework
for prioritizing network traffic using application priority awareness,’’
U.S. Patent 15 792 635, Oct. 24, 2017.

[21] Cisco, ‘‘Catalyst 3560 switch software configuration guide. Cisco IOS
release 15.0(2),’’ SE and Later Edn., Cisco, San Jose, CA, USA, White
Paper OL-26641-03, 2016, Accessed: May 31, 2016. [Online]. Available:
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3560/software/
release/15-0_2_se/configuration/guide/scg3560.pdf

[22] Cisco (2014) Security Configuration Guide: Access Control Lists, Cisco
IOS Release 15SY. Accessed: Mar. 20, 2018. [Online]. Available:
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_data_acl/
configuration/15-sy/sec-data-acl-15-sy-book.pdf

[23] P. Wheeler and E. Fulp, ‘‘A taxonomy of parallel techniques for intrusion
detection,’’ in Proc. 45th Annu. Southeast Regional Conf. New York, NY,
USA: ACM, Mar. 2007, pp. 278–282.

[24] J. Kawahara, K. M. Kobayashi, and T. Maeda, ‘‘Tight analysis of pri-
ority queuing for egress traffic,’’ Comput. Netw., vol. 91, pp. 614–624,
Nov. 2015.

[25] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, ‘‘MIDeA: A multi-
parallel intrusion detection architecture,’’ in Proc. 18th ACM Conf. Com-
put. Commun. Secur. New York, NY, USA: ACM, 2011, pp. 297–308.

[26] H. Jiang, G. Zhang, G. Xie, K. Salamatian, and L. Mathy, ‘‘Scalable
high-performance parallel design for network intrusion detection systems
on many-core processors,’’ in Proc. 9th ACM/IEEE Symp. Archit. Netw.
Commun. Syst. Piscataway, NJ, USA: IEEE Press, 2013, pp. 137–146.

[27] M. A. Jamshed et al., ‘‘Kargus: A highly-scalable software-based intru-
sion detection system,’’ in Proc. ACM Conf. Comput. Commun. Secur.
New York, NY, USA: ACM, 2012, pp. 317–328.

[28] M.-J. Chen, Y.-M. Hsiao, H.-K. Su, and Y.-S. Chu, ‘‘High-throughput
ASIC design for e-mail and web intrusion detection,’’ IEICE Electron.
Express, vol. 12, no. 3, pp. 1–6, Jan. 2015.

[29] J. Zhao et al., ‘‘A security framework in G-Hadoop for big data computing
across distributed Cloud data centres,’’ J. Comput. Syst. Sci., vol. 80, no. 5,
pp. 994–1007, 2014.

WALEED BUL’AJOUL received the M.Sc. and
Ph.D. degrees, specializing in computer network-
ing and cybersecurity, from Coventry University,
U.K. He joined as a Program Developer and a
Lecturer with the Computer Science Department,
OmarAl-Mukhtar University, Libya. From 2012 to
2017, he was a Researcher with Coventry Uni-
versity. He is currently a Lecturer/Senior Lecturer
with Nottingham Trent University, U.K., and a
Researcher in Industry 4.0 and Cyberphysical Sys-

tem with the Computing and Technology Department. His first research
project was done during his undergraduate at the university. The project was
supported by educations training at Libyan high education institutions. The
project achieved the Highest Achievement Award in the University, in 2002.
In 2010, he embarked on another project privacy in mobile computing.
His research interests include the general area of computer networks and
cybersecurity performance, including wireless and network communica-
tions, modeling, and simulation. An innovative contribution of his work
is the establishment of design a new architecture to improve security and
privacy. Most recently, his research focused on network architecture and
security. His research was about improving security performance for high-
speed environments based on intrusion detection and prevention systems,
QoS, and parallel technologies; new security architecture was designed and
evaluated. His research acquired four achievements award from different
institutions and from external and internal events.

ANNE JAMES received the B.Sc. degree from
Aston University, U.K., and the Ph.D. degree, spe-
cializing in data processing, from the University
of Wolverhampton, U.K. She was a Professor of
data systems architecture with Coventry Univer-
sity. Her work involves ensuring that excellent
teaching, which covers the latest developments in
the field, is delivered at undergraduate and post-
graduate levels. She promotes research within the
department encouraging investigation into innova-

tive systems that advance and support society. She is currently a Professor
and the Head of the Department of Computing and Technology. Exam-
ples of her current projects are the development of enhanced methods for
the detection of biometric identity fraud, the construction of new methods
for cloud forensics, the use of block chain technology, and natural language
processing for document content analysis. She has successfully supervised
over 30 research degree students and has published about 200 papers in peer-
reviewed journals or conferences. Her research interests include the general
area of creating distributed and intelligent systems to meet new challenges,
particularly in the area of cyber security.

SIRAJ SHAIKH was seconded to the Knowledge
Transfer Network (KTN), which is the innovation
network in Britain, from 2015 to 2016. He served
as a Cyber Security Lead for the KTN coordinating
activities across academia, industry, and national
policy. From 2015 to 2016, he was also seconded
to HORIBA MIRA, as part of the Royal Academy
of Engineering’s Industrial Secondment Scheme.
In 2016, he co-founded CyberOwl, which is a VC-
backed commercial venture involved in develop-

ing early warning system for cyber threats, cyber-physical platform health,
and prognostics; CyberOwl has been a part of the U.K.’s first GCHQ Cyber
Accelerator, in 2017. He is currently a Professor of systems security with
the Future Transport and Cities Research Institute, Coventry University,
where he leads the Systems Security Group. He is currently involved in the
EPSRC-Funded project ECSEPA, jointly with University College London,
investigating evidence-based policy-making for cyber security, working with
policy partners including UK’s GCHQ/NCSC. He has been involved in the
research, development, and evaluation of large-scale distributed secure sys-
tems for nearly 20 years. His Doctoral and Postdoctoral Research involved
the design and verification of security and safety-critical systems. From
2015 to 2017, he was involved in an EPSRC-Funded research project ACiD,
investigating collusion attacks on smart phone platforms, in collaboration
with City University and with Swansea University, U.K., and Intel Security
as an industrial partner.

VOLUME 7, 2019 18573


	INTRODUCTION
	INVESTIGATION TESTBED
	DETECTING MALICIOUS PACKETS
	PREVENTING MALICIOUS PACKETS

	PROPOSED SOLUTION
	NOVEL NIDPS ARCHITECTURE
	THEORETICAL AND TECHNICAL BACKGROUND OF NOVEL ARCHITECTURE
	MAPPING TO LAYER 3
	QOS CLASSIFICATION AND POLICY METHODS
	PARALLEL TE CHNOLOGY WITH QOS.
	QOS CLASSIFICATION, POLICING AND MARKING FOR INGRESS AND EGRESS INTERFACES (QUEUES).
	QOS THRESHOLDS FOR INGRESS AND EGRESS INTERFACES (QUEUES).
	QOS BUFFER RESERVATION FOR INGRESS EGRESS INTERFACES (QUEUES).
	QOS SHAPED/SHARED ROUND ROBIN (SRR).

	SUMMARY OF PROPOSED SOLUTION

	EVALUATION OF THE PROPOSED SOLUTION
	EVALUATION OF NOVEL NIDPS ARCHITECTURE
	EVALUATION AT HIGHER SPEED

	DISCUSSION AND RELATED RESEARCH
	CONCLUSION, RECOMMENDATIONS FOR FUTURE WORK
	CONCLUSION
	RECOMMENDATION AND FURTHER RESEARCH

	REFERENCES
	Biographies
	WALEED BUL'AJOUL
	ANNE JAMES
	SIRAJ SHAIKH


