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ABSTRACT This paper presents the control design method for the transmission projective synchroniza-
tion (TPS) of the Multiple Non-identical Coupled Chaotic systems using sliding mode. A total of four
different cases of chaotic systems are studied which are: 1) systems with known parameters without fault;
2) systems with known parameters with a fault; 3) systems with unknown parameters without fault; and
4) systems with unknown parameters and fault occurrence. In first and third cases, the controllers are
designed using sliding mode, and adaptive integral sliding mode (AISM) is used to design controllers for
the second and fourth cases. To employ AISM, the error dynamics is broken into a structure comprising
a nominal and some unknown part, which are adaptively computed. The error dynamics are stabilized by
AISM control which consists of a nominal and a compensator control. To avoid the chattering phenomenon,
smooth continuous compensator control is used instead of the traditional discontinuous control. The stability
of adaptive law and compensator is derived using a Lyapunov function which becomes strictly negative.
Finally, the simulations of a numerical example verify the TPS behavior.

INDEX TERMS Multiple coupled chaotic system, transmission projective synchronization, adaptive integral
sliding mode control, and Lyapunov function.

I. INTRODUCTION
There is a growing interest of scientists from various
fields in chaos synchronization since the seminal work of
Pecora and Carroll [1]. Due to broad range of applica-
tions, chaos synchronizing of multiple coupled chaotic sys-
tems (MCCS) has attracted interest in nonlinear research.
Presently, two kinds of synchronization modes are being
used. One, the conventional mode, in which multiple systems
connect with one drive system, and two, the ring transmission
synchronization—both have successful but complex appli-
cations in mathematics, physics, engineering sciences, etc.
Some new schemes for MCCS have also been exten-
sively investigated [2]–[6]. They have advantages over
previous synchronization schemes in application domains
such as communication, information science, etc. Therefore,
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an effective synchronization of MCCS is now an interesting
area of research.

An improvement over conventional schemes in MCCS has
been proposed in a scheme named transmission synchroniza-
tion [7]. In this scheme, each system acts both as a drive
system and a response system, while synchronization among
MCCS is completed through a stepwise process. An occur-
rence of a synchronizing fault between two such systems in
real world problems is unavoidable. With previous models,
a fault can disrupt the synchronization process. This short-
coming hinders the efficacy of the system, hence needs to
be addressed. To this end, we introduce a synchronization
model that can avoid performance degradation of remaining
systems. The aim of this work is to design an effective con-
troller that increases the synchronization reliability in MCCS
in the presence of faults to realize a transmission projective
synchronization (TPS).

Recently, the synchronization of MCCS has attained a
considerable attention from research community due to its
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wide range of potential applications such as multilateral
communications, secret signaling etc. An adaptive synchro-
nization of MCCS is studied using integral sliding surfaces,
which can successfully stabilize the error systems against
different disturbances and parameter variations [8]. However,
the adaptive laws may suffer from parameter drift problem.
Hybrid synchronization is investigated for coupled chaotic
systems with a ring connection [9], [10]. The control strategy
is based on adaptive integral sliding mode to achieve anti-
synchronization and complete synchronization. The role of
restorative coupling on synchronization of coupled identical
systems in electrical networks is identified [11]. A class of
impulsive synchronization problems can be addressed using
(non)delayed couplings [12]. The controller is designed to
synchronize a complex network to an isolate chaotic system.
The synchronization problems of identical coupled chaotic
systems is also analyzed and based on stability conditions,
the appropriate control laws were designed to realize the
TPS [13]. This paper extends the work [12], [13] in two
aspects by proposing a technique. First, a proper TPS prob-
lem is discussed for Multiple Non-identical Coupled Chaotic
(MNCC) systems, and then its error system is transformed
into a nonlinear system with a special anti-symmetric struc-
ture. Second, sufficient asymptotic stability conditions are
derived so that TPS behavior of multiple chaotic systems
is realized. The results confirm the effectiveness of our
proposed technique.

Consider a multiple coupled chaotic dynamic system for
chaos synchronization. Such a system has been studied for
a known parameter [13]. We extend this work under the
assumption that all systems in the network have all param-
eters unknown. To reach TPS in this system, an adaptive
integral sliding mode is used.

Sliding mode control (SMC) is a nonlinear control
method [14]–[19]. It aims to drive the system states to a
certain surface, known as the sliding manifold. Once the
surface is reached, the system is forced to stay there. The
closed loop dynamics of the system in SMC depends only on
the design parameters of the switching sliding manifold. The
main disadvantage of SMC is discontinuity across the sliding
manifolds, which results in chattering and may cause harmful
effects in real life systems. On the advantages side, it offers
real time response, simplicity, and robustness against param-
eter variations and external disturbances. A variant of SMC,
integral SMC (ISMC), guarantees the robustness in the whole
state space because of elimination of the reaching phase [20].
The ISMC combines the nominal and discontinuous controls
to stabilize the nominal system and reject the uncertainty,
respectively.

Remaining paper is arranged as follows. System descrip-
tion and some preliminaries are introduced in section 2. The
proposed control strategies for the general case of hybrid syn-
chronization are discussed in Section 3. Application exam-
ples are presented in Section 4. In Section 5, simulation
results are discussed. Finally, concluding remarks are made
in Section 6.

II. SYSTEM DESCRIPTION AND PRELIMINARIES
The MCCS are generally expressed as

ẋ1 = f1 (x1)+ F1 (x1) θ1 + D1 (xN − x1)
ẋ2 = f2 (x2)+ F2 (x2) θ2 + D2 (x1 − x2)

...

ẋN = fN (xN )+ FN (xN ) θN + DN (xN−1 − xN ),

(1)

where x1, x2, . . . , xN are the state vectors and xi =

(xi1, xi2, . . . , xin)T , fi:Rn
→ Rn, i = 1, 2, . . . ,N are the

continuous nonlinear functions and θi ∈ Rpi are real vectors
of parameters. Fi (xi) ∈ Rn×pi are real matrices, Di =
diag {di1, di2, . . . , diN }, i = 1, 2, . . . ,N are n dimensional
diagonal matrices and dij ≥ 0 represent the coupled param-
eters of the diagonal matrices. If fi (·) 6= fj (·) , i, j ==
1, 2, . . . ,N or Fi (·) 6= Fj (·.) , i, j = 1, 2, . . . ,N , then (1)
is an array of non-identical chaotic dynamic systems.

Applying the above coupling mode, the following TPS
control problem is formulated:
ẋ1 = f1 (x1)+ F1 (x1) θ1 + D1 (xN − x1)+ u1
ẋ2 = f2 (x2)+ F2 (x2) θ2 + D2 (x1 − x2)+ u2

...

ẋN = fN (xN )+ FN (xN ) θN + DN (xN−1 − xN )+ uN ,

(2)

The TPS can be defined as follows.
Definition: If there is no fault in N coupled chaotic non-

identical systems, given in (2), we say they are in TPS if
the controllers ui (t) , i = 1, 2, . . . ,N exist with trajec-
tories x1 (t) , x2 (t) , . . . , xN (t) in (2) and initial conditions
(x1 (0) , x2 (0) , . . . , xN (0)) satisfy

lim
t→∞
‖ei‖ = lim

t→∞
‖xi+1 (t)− qixi (t)‖ = 0, (3)

where i = 1, 2, ....,N , ei = (ei1, ei2, ....., ein)T and the
scaling parameters qi, i = 1, 2, ....,N are chosen such that∏N

i=1 qi 6= 1. If there is a fault then the scaling parameters
qi, i = 1, 2, ....,N are chosen such that

∏N
i=1 qi = 1.

III. TRANSMISSION PROJECTIVE SYNCHRONIZATION
OF MNCC SYSTEMS
The TPS control problem is now selection of a proper con-
troller, ui to converge error vector ei = (ei1, ei2, . . . , ein)T ,
i = 1, 2, . . . ,N to zero asymptotically. For the TPS without
fault, the errors are defined as

e1 = x2 − q1x1
e2 = x3 − q2x2

...

eN−1 = xN − qXN−1
eN = x1 − qnxn,

where
∏n

i=1 qi 6= 1. Therefore the error dynamics are (4), as
shown at the top of the next page and can be written as (5),
shown at the top of the next page.

17848 VOLUME 7, 2019



M. R. Mufti et al.: TPS of MNCC Systems using SMC

ė1 = ẋ2 − q1ẋ1 = f2 (x2)+ F2 (x2) θ2 + D2 (x1 − x2)+ u2 − q1 {f1 (x1) + F1 (x1) θ1 + D1 (xN − x1)} − q1u1
ė2 = ẋ3 − q2ẋ2 = f3 (x3)+ F3 (x3) θ3 + D3 (x2 − x3)+ u3 − q2 {f2 (x2) + F2 (x2) θ2 + D2 (x1 − x2)} − q2u2

...

ėN−1 = ẋN − qN−1ẋN−1
= fN (xN )+ FN (xN ) θN + DN (xN−1 − xN )+ uN − qN−1 {fN−1(xN−1) + FN−1 (xN−1) θN−1 + DN−1(xN−2 − xN−1)}

− qN−1uN−1
= fN (xN )+ FN (xN ) θN + DN (xN−1 − xN )+ uN − qN−1 {fN−1(xN−1) + FN−1 (xN−1) θN−1 + DN−1(xN−2 − xN−1)}

− qN−1uN−1
ėN = ẋ1 − qN ẋN−1 = f1 (x1)+ F1 (x1) θ1 + D1 (xN − x1)+ u1 − qN {fN (xN ) + FN (xN ) θN + DN (xN−1 − xN )} − qNuN

(4)
ė1
ė2
...

ėN−1
ėN

 =


f2 (x2)+ F2(x2)θ2 + D2 (x1 − x2)− q1 {f1 (x1)+ F1(x1)θ1 + D1 (xN − x1)}
f3 (x3)+ F3(x3)θ3 + D3 (x2 − x3)− q2 {f2 (x2)+ F2(x2)θ2 + D2 (x1 − x2)}

...

fN (xN )+ FN (xN )θN + DN (xN−1 − xN )− qN−1 {fN−1 (xN−1)+ FN−1(xN−1)θN−1 + DN−1(xN−2 − xN−1)}
f1 (x1)+ F1(x1)θ1 + D1 (xN − x1)− qN {fN (xN )+ FN (xN )θN + DN (xN−1 − xN )}



+


−q1 1 0 . . . 0
0 −q2 1 . . . 0
...

...
...

...
...

0 1 −qN−1 . . . 1
1 0 0 . . . −qN




u1
u2
...

uN−1
uN

 (5)



ė1
ė2
...

ėN−1
ėN

 =


−q1 1 0 . . . 0
0 −q2 1 . . . 0
...

...
...

...
...

0 1 −qN−1 . . . 1
1 0 . . . 0 −qN



−1

×


−



f2(x2)+ F2(x2)θ2 + D2 (x1 − x2)− q1 {f1(x1)+ F1(x1)θ1 + D1 (xN − x1)}
f3(x3)+ F3(x3)θ3 + D3 (x2 − x3)− q2 {f2(x2)+ F2(x2)θ2 + D2 (x1 − x2)}

...

fN (xN )+ FN (xN )θN + DN (xN−1 − xN )
−qN−1 {fN−1 (xN−1)+ FN−1 (xN−1) θN−1 + DN−1 (xN−2 − xN−1)}

f1(x1)+ F1(x1)θ1 + D1 (xN − x1)− qN {fN (xN )+ FN (xN )θN + DN (xN−1 − xN )}


+


ee1
ee2
...

eeN−1
eeN




(6)

Case 1 (Known System Parameters): Choosing (6), as
shown at the top of this page, where ee =

[
e2 e3 . . . eN v

]T
and v =

[
v1 v2 . . . vn

]T is a new input vector, we have



ė1 = e2

ė2 = e3
...

ėN−1 = eN
ėN = v.

(7)

Define Hurwitz sliding surface as

S =
(
1+

d
dt

)N−1
e1 = Ce,

S = e1 + C1e2+, . . . ,+CN−2eN−1 + eN ,

where C = diag {In,C1, . . . ,CN−2, In}, In is n × n identity
matrix, Ci = diag {1 ci1 . . . cin−21} , i = 1, 2, . . . ,N −
2, e = [e1 e2 . . . eN ]T and S = [s1 s2 . . . sN ]T . Now
ṡi = ei2 + c1ei3 + c2ei4 + · · · + cn−2ein + vi. Choosing
v = −e2 − C1e3 − C2e4 − · · · − CN−2eN − kS, k > 0,
we have Ṡ = −kS ⇒ e1, e2, ....eN → 0.
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
ė1
ė2
...

ėN−1
ėN

 =



f2 (x2)+ F2 (x2) θ̂2 + F2 (x2) θ̃2D2 (x1 − x2)− q1
{
f1 (x1)+ F1 (x1) θ̂1 + F1 (x1) θ̃1 + D1 (xN − x1)

}
f3 (x3)+ F3 (x3) θ̂3 + F3 (x3) θ̃3+D3 (x2 − x3)− q2

{
f2 (x2)+ F2 (x2) θ̂2 + F2 (x2) θ̃2 + D2 (x1 − x2)

}
...

fN (xN )+ FN (xN ) θ̂N + FN (xN ) θ̃N + DN (xN−1 − xN )

−qN−1
{
fN−1 (xN−1)+ FN−1 (xN−1) θ̂N−1 + FN−1 (xN−1) θ̃N−1 + DN−1 (xN−2 − xN−1)

}
f1(x1)+ F1(x1)θ̂1 + F1(x1)θ̃1 + D1(xN − x1)− qN

{
fN (xN )+ FN (xN )θ̂N + FN (xN )θ̃N + DN (xN−1 − xN )

}



+


−q1 1 0 . . . 0
0 −q2 1 . . . 0
...

...
...

...
...

0 1 −qN−1 . . . 1
1 0 . . . 0 −qN




u1
u2
...

uN−1
uN

 (8)


u1
u2
...

uN−1
uN

 =

−q1 1 0 . . . 0
0 −q2 1 . . . 0
...

...
...

...
...

0 1 . . . −qN−1 1
1 0 . . . 0 −qN


−1

×


−



f2 (x2)+ F2 (x2) θ̂2 + D2 (x1 − x2)− q1
{
f1 (x1)+ F1 (x1) θ̂1 + D1 (xN − x1)

}
f3 (x3)+ F3 (x3) θ̂3 + D3 (x2 − x3)− q2

{
f2 (x2)+ F2 (x2) θ̂2 + D2 (x1 − x2)

}
...

fN (xN )+ FN (xN ) θ̂N + DN (xN−1 − xN )− qN−1{
fN−1 (xN−1)+ FN−1 (xN−1) θ̂N−1 + DN−1 (xN−2 − xN−1)

}
f1 (x1)+ F1 (x1) θ̂1 + D1 (xN − x1)− qN

{
fN (xN )+ FN (xN ) θ̂N + DN (xN−1 − xN )

}


+


e2
e3
...

eN
v




(9)

Case 2 (Unknown System Parameters): For i =

1, 2, . . . ,N , let θ̂i be the estimate vector of θi and θ̃i,= θi− θ̂i
be the estimation errors in θi, then error system (5) can be
written as (8), shown at the top of this page, where v is new
input vector. Choosing (9), as shown at the top of this page,
we have



ė1

ė2

...

ėN−1

ėN


=



e2

e3

...

eN
v



+


F2 (x2) θ̃2 − q1F1 (x1) θ̃1
F3 (x3) θ̃3 − q2F2 (x2) θ̃2

...

FN (xN ) θ̃N − qN−1FN−1 (xN−1) θ̃N−1
F1 (x1) θ̃1 − qNFN (xN ) θ̃N


(10)

or

ė1 = e2 + F2 (x2) θ̃2 − q1F1 (x1) θ̃1
ė2 = e3 + F3 (x3) θ̃3 − q2F2 (x2) θ̃2
ė3 = e4 + F4 (x4) θ̃4 − q3F3 (x3) θ̃3

...

ėN−2 = eN−1 + FN−1 (xN−1) θ̃N−1 − qN−2
×FN−2 (xN−2) θ̃N−2

ėN−1 = eN + FN (xN ) θ̃N − qN−1FN−1 (xN−1) θ̃N−1
ėN = v+ F1 (x1) θ̃1 − qNFN (xN ) θ̃N .

(11)

To employ the ISMC, choose nominal system for (11) as

ė1 = e2
ė2 = e3
ė3 = e4
...

ėN−1 = eN
ėN = v0.

(12)
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Define Hurwitz sliding surface vector for nominal
systems (12) as:

S0 =
(
1+

d
dt

)N−1
e1 or

S0 = e1 + C1e2 + · · · + CN−2eN−1 + eN = Ce,

then

Ṡ0 = Cė = e2 + C1e3 + C2e4 + · · · + CN−2eN + v0.

By choosing

v0 = −e2 + C1e3 + C2e4 + · · · + CN−2eN − ks0, k > 0,

we have Ṡ0 = −kS0, therefore S0 → 0, and (12) is stable
asymptotically. Sliding surface vector for the (11) is chosen
as S = S0+Z = Ce+Z , where Z is an integral term computed
later. Reaching phase is avoided by choosing Z (0) such that
S (0) = 0. Choose v = v0+vs, where v0 is nominal input and
vs is compensator term computed later, to get

Ṡ = Ṡ0 + Ż = ė1 + C1ė2 + · · ·CN−2ėN−1 + ėN ,

Ṡ = e2 + F2 (x2) θ̃2 − q1F1 (x1) θ̃1 + C1e3 + C1F3 (x3) θ̃3
− q2C1F2(x2)θ̃2 + C2e4 + C2F4(x4)θ̃4 − q3C2F3(x3)θ̃3
+ · · ·+CN−3eN−1 + CN−3FN−1 (xN−1) θ̃N−1
− qN−2CN−3FN−2 (xN−2) θ̃N−2+CN−2eN
+CN−2FN (xN ) θ̃N − qN−1CN−2FN−1 (xN−1) θ̃N−1
+ v0 + vs + F1 (x1) θ̃1 − qNFN (xN ) θ̃N + Ż ,

Ṡ = e2 + C1e3 + C2e4 + · · · + CN−3eN−1 + CN−2eN + v0
+ vs + Ż + {F1 (x1)− q1F1 (x1)} θ̃1
+{F2 (x2)− q2C1F2 (x2)} θ̃2
+{C1F3 (x3)− q3C2F3 (x3)} θ̃3 + · · · +

{
CN−3FN−1

× (xN−1)− qN−1CN−2FN−1 (xN−1)
}
θ̃N−1

+
{
CN−2FN (xN )− qNFN (xN )

}
θ̃N . (13)

By choosing a Lyapunov function (14), adaptive laws are
designed for θ̃i, θ̂i, i = 1, 2, ....,N and vs computed such that
V̇ < 0,

V =
1
2

{
ST S + θ̃T1 θ̃1 + θ̃

T
2 θ̃2 + θ̃

T
3 θ̃3 + · · · + θ̃

T
N θ̃N

}
(14)

Theorem: Consider a Lyapunov function

V =
1
2
{ST S + θ̃T1 θ̃1 + θ̃

T
2 θ̃2 + θ̃

T
3 θ̃3 + · · · + θ̃

T
N θ̃N },

then V̇ < 0 if the adaptive laws for θ̃i, θ̂i, i = 1, 2, . . . ,N and
the value of vs are chosen as

Ż = −e2 − C1e3 − C2e4 − . . .− CN−2eN − v0,

vs = −kS,
˙̃
θ1 = − (1− q1)FT1 (x1) S − k1θ̃1,

˙̂
θ1 = −

˙̃
θ1,

˙̃
θ2 = −{F2 (x2)− q2C1F2 (x2)}T S−k2θ̃2,

˙̂
θ2 = −

˙̃
θ2,

˙̃
θ3 = −{C1F3(x3)−q3C2F3(x3)}T S−k3θ̃3,

˙̂
θ3 = −

˙̃
θ3,

...

˙̃
θN−1 = −

{
CN−3FN−1(xN−1)− qN−1CN−2FN−1(xN−1)

}T
× S−kN−1θ̃N−1,

˙̂
θN−1 = −

˙̃
θN−1,

˙̃
θN = −{CN−2FN (xN )− qNCN−1FN (xN )}

T S−kN θ̃N ,
˙̂
θN = −

˙̃
θN . (15)

Proof: Since

V̇ = {ST Ṡ + θ̃T1
˙̃
θ1 + θ̃

T
2
˙̃
θ2 + θ̃

T
3
˙̃
θ3 + · · · + θ̃

T
N
˙̃
θN },

V̇ = ST {e2 + C1e3 + C2e4 + · · · + CN−2eN + v0 + vs + Z

+
{
F1(x1)− q1F1(x1)

}
θ̃1 + {F2(x2)− q2C1F2(x2)}θ̃2

+{C1F3 (x3)− q3C2F3 (x3)}θ̃3 + · · · + {CN−3FN−1
× (xN−1)− qN−1CN−2FN−1 (xN−1)}θ̃N−1

+{CN−2FN (xN )− qNCN−1FN (xN )}θ̃N } + θ̃
T
1
˙̃
θ1

+ θ̃T2
˙̃
θ2 + θ̃

T
3
˙̃
3θ + · · · + θ̃

T
N−1
˙̃
θN−1 + θ̃

T
N
˙̃
θN ,

V̇ = ST {e2 + C1e3 + C2e4 + · · · + CN−3eN−1 + CN−2eN

+ v0 + vs + Ż + θ̃T1
{
˙̃
θ1 + (1− q1)FT1 (x1) S

}
+ θ̃T2

{
˙̃
θ2 + {F2 (x2)− q2C1F2 (x2)}

}T
S}

+ θ̃
T
3

{
˙̃
θ3 + {F3 (x3)− q3C2F3 (x3)}

}T
S

+ · · · + θ̃TN−1

{
˙̃
θN−1 + {CN−3FN−1 (xN−1)− qN−1

×CN−2FN−1 (xN−1)}
}T

S}

+ θ̃TN

{
˙̃
θN + {CN−2FN (xN )− qNFN (xN )}

}T
S}.

By choosing

Ż = −e2 − C1e3 − C2e4 − · · · − CN−2eN − v0,

vs = −kS,
˙̃
θ1 = − (1− q1)FT1 (x1) S − k1θ̃1,
˙̂
θ1 = −

˙̃
θ1,

˙̃
θ2 = −{F2 (x2)− q2C1F2 (x2)}T S−k2θ̃2,
˙̂
θ2 = −

˙̃
θ2,

˙̃
θ3 = −{C1F3 (x3)− q3C2F3 (x3)}T S−k3θ̃3,
˙̂
θ3 = −

˙̃
θ3,

...
˙̃
θN−1 = −

{
CN−3FN−1(xN−1)− qN−1CN−2FN−1(xN−1)

}T
× S−kN−1θ̃N−1,

˙̂
θN−1 = −

˙̃
θN−1,

˙̃
θN = −

{
CN−2FN (xN )− qNCN−1FN (xN )

}T S−kN θ̃N ,
˙̂
θN = −

˙̃
θN .

We have

V̇ = −kST S −
N∑
i=1

kiθ̃Ti θ̃ i.
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From this we conclude that S, θ̃i→ 0, i = 1, . . . ,N .
Since S → 0, therefore ei→ 0, i = 1, .....,N .

IV. NUMERICAL EXAMPLE
As an application of the derived behavior, numerical exam-
ples of three non-identical coupled chaotic systems show
the effectiveness of method. These are Chen system, Lorenz
system and Lu system and described as follows:
ẋ11 = a1x11 + a2x12 + d11 (x31 − x11)+ u11
ẋ12 = a3x11 + a4x12 + x11x13 + d12 (x32 − x12)+ u12
ẋ13 = a5x13 + x11x12 + d13 (x33 − x13)+ u13,

(16)

where a1 = −35, a2 = 35, a3 = −7, a4 = 28, a5 = −3.
ẋ21 = b1x21 + b2x22 + d21 (x11 − x21)+ u21
ẋ22 = b3x22 − x21x23 + d22 (x12 − x22)+ u22
ẋ23 = b4x23 + x21x22 + d23 (x13 − x23)+ u23,

(17)

where b1 = −36, b2 = 36, b3 = 20, b4 = −3.
ẋ31 = c1x31 + c2x32 + d31 (x21 − x31)+ u31
ẋ32 = c3x31 − x32 − x31x33 + d32(x22 − x32)+ u32
ẋ33 = c4x33 + x31x32 + d33 (x23 − x33)+ u33,

(18)

where c1 = −10, c2 = 10, c3 = 28, c4 = − 8
3 .

Define

x1 =

 x11x12
x13

, x2 =

 x21x22
x23

, x3 =
 x31x32
x33

,
u1 =

 u11u12
u13

, u2 =

 u21u22
u23

, u3 =
 u31u32
u33

,

θ1 =


a1
a2
a3
a4
a5

, θ2 =


b1
b2
b3
b4

, θ3 =

c1
c2
c3
c4

.
The equations (16) – (18) are written as a vector

ẋ1 = f1 (x1)+ F1 (x1) θ1 + u1
ẋ2 = f2 (x2)+ F2 (x2) θ2 + u2
ẋ3 = f3 (x3)+ F3 (x3) θ3 + u3,

(19)

where

f1 (x1) =

 d11 (x31−x11)
−x11x13 + d12 (x32−x12)
x11x12 + d13 (x33−x13)

,
F1 (x1) =

 x11 x12 0 0 0
0 0 x11 x12 0
0 0 0 0 x13

,
f2 (x2) =

 d21 (x11−x21)
−x21x23 + d22 (x12−x22)
x21x22 + d23 (x13−x23)

,

F2 (x2) =

 x21 x22 0 0
0 0 x22 0
0 0 0 x23

,
f3 (x3) =

 d31 (x21−x31)
−x32 − x31x33 + d32 (x22−x32)

x31x32 + d33 (x23−x33)

,
F3 (x3) =

 x31 x32 0 0
0 0 x31 0
0 0 0 x33

.
Case I (Known System Parameters With No Fault): For

TPS, the errors

e1 =

 e11e12
e13

, e2 =

 e21e22
e23

 and e3 =

 e31e32
e33


are e1 = x2−q1x1, e2 = x3−q2x2 and e3 = x1−q3x3, where
q1q2q3 6= 1.
Therefore

ė1 = ẋ2 − q1ẋ1
ė2 = ẋ3 − q2ẋ2
ė1 = ẋ1 − q3ẋ3,

which can also be written as (20), shown at the top of the next
page. By choosing (21), as shown at the top of the next page,
with v =

[
v1 v2 v3

]T as the new input vector, we write
ė1 = e2
ė2 = e3
ė3 = v.

(22)

Define the Hurwitz sliding surface as

S = e1 + 2e2 + e3,

where S =

 s1s2
s3

 =
 e11 + 2e21 + e31
e12 + 2e22 + e32
e13 + 2e23 + e33

.
Now Ṡ = ė1 + 2ė2 + ė3 = e2 + 2e3 + v.
By choosing

v = −e2 − 2e3 − ks, k > 0,

we have Ṡ = −kS, therefore S → 0 which gives
e1, e2, e3→ 0.
Case II (Known System Parameters With a Fault):Assume

that there exists a fault between the systems (16) and (18),
then the TPS errors

e1 =

 e11e12
e13

, e2 =

 e21e22
e23

 and e3 =

 e31e32
e33


are e1 = x2−q1x1, e2 = x3−q2x2 and e3 = x1−q3x3, where
q1q2q3 = 1. We set u1 = 0 in e3 so that

ė1 = ẋ2 − q1ẋ1
ė2 = ẋ3 − q2ẋ2
ė3 = ẋ1 − q3ẋ3.

(23)
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 ė1ė2
ė3

 =
 f2 (x2)+ F2 (x2) θ2 − q1{f1 (x1)+ F1 (x1) θ1}f3 (x3)+ F3 (x3) θ3 − q2{f2 (x2)+ F2 (x2) θ2}
f1 (x1)+ F1 (x1) θ1 − q3{f3 (x3)+ F3 (x3) θ3}

+
−q1 1 0

0 −q2 1
1 0 −q3

 u1u2
u3

 (20)

 u1u2
u3

 =
−q1 1 0

0 −q2 1
1 0 −q3

−1−
 f2 (x2)+ F2 (x2) θ2 − q1{f1 (x1)+ F1 (x1) θ1}f3 (x3)+ F3 (x3) θ3 − q2{f2 (x2)+ F2 (x2) θ2}
f1 (x1)+ F1 (x1) θ1 − q3{f3 (x3)+ F3 (x3) θ3}

+
 e2e3
v

 (21)

 ė1ė2
ė3

 =
 f2 (x2)+ F2 (x2) θ2 − q1 {f1 (x1)+ F1 (x1) θ1}f3 (x3)+ F3 (x3) θ3 − q2 {f2 (x2)+ F2 (x2) θ2}
f1 (x1)+ F1 (x1) θ1 − q3 {f3 (x3)+ F3 (x3) θ3}

+
−q1 1 0

0 −q2 1
1 0 −q3

 u1u2
u3

 (24)

 u1u2
u3

 =
−q1 1 0

0 −q2 1
1 0 −q3

−1−
 f2 (x2)+ F2 (x2) θ2 − q1{f1 (x1)+ F1 (x1) θ1}f3 (x3)+ F3 (x3) θ3 − q2{f2 (x2)+ F2 (x2) θ2}
f1 (x1)+ F1 (x1) θ1 − q3{f3 (x3)+ F3 (x3) θ3}

+
 e2e3
v

 (25)

It can be represented as (24), shown at the top of this page.
By choosing (25), as shown at the top of this page, with
v =

[
v1 v2 v3

]T as the new input vector, we write
ė1 = e2
ė2 = e3
ė3 = v.

(26)

Define the Hurwitz sliding surface as

S = e1 + 2e2 + e3,

where S =

 s1s2
s3

 =

e11 + 2e21 + e31

e12 + 2e22 + e32

e13 + 2e23 + e33

, then Ṡ = ė1 +

2ė2 + ė3 = e2 + 2e3 + v.
By choosing v = −e2−2e3−ks, k > 0, we have Ṡ = −kS,

therefore S → 0, which gives e1, e2, e3→ 0.
Case III (Unknown System Parameters With No Fault): For

i = 1, 2, 3, let θ̂i be the estimates and θ̃i = θi − θ̂i be the
estimation error of θi Vector form of (16) – (18) can now be
written as

ẋ1 = f1 (x1)+ F1 (x1) θ̂1 + F1 (x1) θ̃1 + u1

ẋ2 = f2 (x2)+ F2 (x2) θ̂2 + F2 (x2) θ̃2 + u2

ẋ3 = f3 (x3)+ F3 (x3) θ̂3 + F3 (x3) θ̃3 + u3,

(27)

where

θ̂1 =


â1
â2
â3
â4
â5

, θ̃1 =


ã1
ã2
ã3
ã4
ã5

, θ̂2 =

b̂1
b̂2
b̂3
b̂4

, θ̃2 =

b̃1
b̃2
b̃3
b̃4

,

θ̂3 = ĉ


ĉ1
ĉ2
ĉ3
ĉ4

 and θ̃3 =


c̃1
c̃2
c̃3
c̃4

.

For TPS, errors are e1 = x2 − q1x1, e2 = x3 − q2x2 and
e3 = x1 − q3x3, where q1q2q3 6= 1.
Therefore 

ė1 = ẋ2 − q1ẋ1
ė2 = ẋ3 − q2ẋ2
ė1 = ẋ1 − q3ẋ3,

(28)

which can be written as (29), shown at the bottom of the next
page. By choosing (30), as shown at the bottom of the next
page, with v as the new input vector, we write

ė1 = e2 + F2 (x2) θ̃2 − q1F1 (x1) θ̃1
ė2 = e3 + F3 (x3) θ̃3 − q2F2 (x2) θ̃2
ė3 = v+ F1 (x1) θ̃1 − q3F3 (x3) θ̃3,

(31)

To employ the integral sliding mode, choose the nominal
system for (31) as 

ė1 = e2
ė2 = e3
ė3 = v0,

(32)

where v0 is the nominal input vector.
Define the Hurwitz sliding surface for nominal system (32)

as

S0 = e1 + 2e2 + e3,

where S0 =

 s01s02
s03

 =
 e11 + 2e21 + e31
e12 + 2e22 + e32
e13 + 2e23 + e33

, then Ṡ0 = ė1+

2ė2 + ė3 = e2 + 2e3 + v.
By choosing

v = −e2 − 2e3 − kS0, k > 0,

we have Ṡ0 = −kS0, therefore S0 → 0, which shows that
(32) is asymptotically stable. The sliding manifold for (31) is
chosen as

S = S0 + Z = e1 + 2e2 + e3 + Z ,
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FIGURE 1. Time history of errors when there is no fault, where (a) shows error between the systems (1) and
(2), (b) shows error between the systems (2) and (3) and (c) shows error between the systems (1) and (3).

where Z =
[
z1 z3 z3

]T is an integral term. To eliminate
the reaching phase, choose Z (0) such that S (0) = 0. Set
v = v0 + vs, where v0 =

[
v01 v02 v03

]T is an input and
vs =

[
vs1 vs2 vs3

]T is a compensator which is computed
later, so that

Ṡ = Ṡ0 + Ż = ė1 + 2ė2 + ė3 + Ż ,

Ṡ = e2 + F2(x2)θ̃2 − q1F1(x1)θ̃1 + 2e3 + 2F3(x3)θ̃3
− q22F2(x2)θ̃2 + v0+vs + F1(x1)θ̃1−q3F3(x3)θ̃3 + Ż ,

Ṡ = e2 + 2e3 + v0 + vs + Ż + {F1 (x1) θ̃1 − q1F1 (x1)}θ̃1

+

{
F2 (x2) θ̃2 − q22F2 (x2)

}
θ̃2

+{2F3 (x3) θ̃3 − q3F3 (x3)}θ̃3. (33)

 ė1ė2
ė3

 =
 f2 (x2)+ F2 (x2) θ2 − q1 {f1 (x1)+ F1 (x1) θ1}f3 (x3)+ F3 (x3) θ3 − q2 {f2 (x2)+ F2 (x2) θ2}
f1 (x1)+ F1 (x1) θ1 − q3 {f3 (x3)+ F3 (x3) θ3}

+
−q1 1 0

0 −q2 1
1 0 −q3

 u1u2
u3

+
F2(x2)θ̃2 − q1F1(x1)θ̃1F3(x3)θ̃3 − q2F2(x2)θ̃2
F1(x1)θ̃1 − q3F3(x3)θ̃3


(29)

 u1u2
u3

 =
−q1 1 0

0 −q2 1
1 0 −q3

−1−
 f2 (x2)+ F2 (x2) θ̂2 − q1{f1 (x1)+ F1 (x1) θ̂1}f3 (x3)+ F3 (x3) θ̂3 − q2{f2 (x2)+ F2 (x2) θ̂2}
f1 (x1)+ F1 (x1) θ̂1 − q3{f3 (x3)+ F3 (x3) θ̂3}

+
 e2e3
v

 (30)
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FIGURE 2. Time history of errors when there is a fault, where (a) shows error between the systems (1)
and (2), (b) shows error between the systems (2) and (3) and (c) shows error between the
systems (1) and (3).

By choosing a Lyapunov function

V =
1
2
{ST S + θ̃T1 θ̃1 + θ̃

T
2 θ̃2 + θ̃

T
3 θ̃3,

the following adaptive laws for θ̃i, θ̂i,i = 1, 2, 3 and vs gives
V̇ < 0:
Ż = −e2 − 2e3 − v0, vs = −kS
˙̃
θ1 = −(F1 (x1)− q1F1 (x1))T S − k1θ̃1,

˙̂
θ1 = −

˙̃
θ1

˙̃
θ2 = −(F2 (x2)− q22F2 (x2))T S − k2θ̃2,

˙̂
θ2 = −

˙̃
θ2

˙̃
θ3 = −(2F3 (x3)− q3F3 (x3))T S − k3θ̃3,

˙̂
θ3 = −

˙̃
θ3.

(34)

Since

V̇ = ST Ṡ + θ̃T1
˙̃
θ1 + θ̃

T
2
˙̃
θ2 + θ̃

T
3
˙̃
θ3,

V̇ = ST [e2 + 2e3 + v0 + vs + Ż + {F1 (x1)− q1F1 (x1)} θ̃1
+{F2 (x2)− q22F2 (x2)} θ̃2

+{2F3 (x3)− q3F3 (x3)} θ̃3]+ θ̃T1
˙̃
θ1 + θ̃

T
2
˙̃
θ2 + θ̃

T
3
˙̃
θ3,

V̇ = ST [e2 + 2e3 + v0 + vs + Ż ]

+ θ̃T1 {
˙̃
θ1 + (F1 (x1)− q1F1 (x1))

T
S}

+ θ̃T2 {
˙̃
θ2 + (F2 (x2)− q22F2 (x2))

T
S}

+ θ̃T3 {
˙̃
θ3 + (2F3 (x3)− q3F3 (x3))

T
S}.

Using (34)

˙̇
θ̃1 = − (F1 (x1)− q1F1 (x1))T S − K1θ̃1,

˙̂
θ1 =

˙̃
θ1

⇒
˙̃
θ1 = (q1 − 1)FT1 (x1) S − K1θ̃1,

˙̂
θ1 =

˙̃
θ1,
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FIGURE 3. Time history of errors and identification of parameters when there is no fault, where (a) shows
error between the systems (1) and (2), (b) shows error between the systems (2) and (3), (c) shows error
between the systems (1) and (3) and (d)-(f) show estimated parameters.
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FIGURE 3. (Continued) Time history of errors and identification of parameters when there is no fault,
where (a) shows error between the systems (1) and (2), (b) shows error between the systems (2) and (3), (c)
shows error between the systems (1) and (3) and (d)-(f) show estimated parameters.

gives



˙̃a1
˙̃a2
˙̃a3
˙̃a4
˙̃a5


=



s1(q1−1)x11

s1(q1−1)x12

s2(q1−1)x11

s2(q1−1)x12

s3(q1−1)x13


−



k1ã1

k1ã2

k1ã3

k1ã4

k1ã5


,



˙̂
θ1

˙̂
θ2

˙̂
θ3

˙̂
θ4

˙̂
θ5


=−


˙̃a1
˙̃a2
˙̃a3
˙̃a4
˙̃a5

.

Further

⇒
˙̃
θ2 =

(
2q2 − 1

)
FT2 (x2) S − K2θ̃2,

˙̂
θ2 =

˙̃
θ2,

gives

˙̃b1
˙̃b2
˙̃b3
˙̃b4

 =

(
2q2 − 1

)
x21s1(

2q2 − 1
)
x22s1(

2q2 − 1
)
x22s2(

2q2 − 1
)
x23s3

−

k2ã1

k2ã2

k2ã3

k2ã4

,

˙̂b1
˙̂b2
˙̂b3
˙̂b4

 = −

˙̃b1
˙̃b2
˙̃b3
˙̃b4

.

 ė1ė2
ė3

 =
 f2 (x2)+ F2 (x2) θ̂2 − q1{f1 (x1)+ F1 (x1) θ̂1}f3 (x3)+ F3 (x3) θ̂3 − q2{f2 (x2)+ F2 (x2) θ̂2}
f1 (x1)+ F1 (x1) θ̂1 − q3{f3 (x3)+ F3 (x3) θ̂3}

+
−q1 1 0

0 −q2 1
0 0 −q3

 u1u2
u3

+
F2(x2)θ̃2 − q1F1(x1)θ̃1F3(x3)θ̃3 − q2F2(x2)θ̃2
F1(x1)θ̃1 − q3F3(x3)θ̃3


(36)

 u1u2
u3

 =
−q1 1 0

0 −q2 1
1 0 −q3

−1−
 f2 (x2)+ F2 (x2) θ̂2 − q1{f1 (x1)+ F1 (x1) θ̂1}f3 (x3)+ F3 (x3) θ̂3 − q2{f2 (x2)+ F2 (x2) θ̂2}
f1 (x1)+ F1 (x1) θ̂1 − q3{f3 (x3)+ F3 (x3) θ̂3}

+
 e2e3
v

 (37)
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FIGURE 4. Time history of errors and identification of parameters when there is a fault, where (a) shows
error between the systems (1) and (2), (b) shows error between the systems (2) and (3), (c) shows error
between the systems (1) and (3) and (d)-(f) show estimated parameters.
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FIGURE 4. (Continued) Time history of errors and identification of parameters when there is a fault,
where (a) shows error between the systems (1) and (2), (b) shows error between the systems (2) and (3),
(c) shows error between the systems (1) and (3) and (d)-(f) show estimated parameters.

˙̇
θ̃3 = − (2F3 (x3)− q3F3 (x3))T S − K3θ̃3,

˙̂
θ3 =

˙̃
θ3

⇒
˙̃
θ3 = (q3 − 2)FT3 (x3) S − K3θ̃3,

˙̂
θ3 =

˙̃
θ3,

gives 
˙̃c1
˙̃c2
˙̃c3
˙̃c4

 =

(q3 − 2) x31s1
(q3 − 2) x32s1
(q3 − 2) x31s2
(q3 − 2) x33s3

−

k3c̃1
k3c̃2
k3c̃3
k3c̃4

,

˙̂c1
˙̂c2
ċ3
˙̂c4

 = −

˙̃c1
˙̃c2
˙̃c3
˙̃c4

.
Case IV (Unknown System Parameters With a Fault):

Assume, there is a fault occurring between systems (16) and
(18), then TPS errors are
e1 = x2− q1x1, e2 = x3− q2x2 and e3 = x1− q3x3, where

q1q2q3 = 1 and u1 = 0 in e3. Therefore
ė1 = ẋ2 − q1ẋ1
ė2 = ẋ3 − q2ẋ2
ė3 = ẋ1 − q3ẋ3,

(35)

which can also be represented as (36), shown at the bottom
of the 11 page. Setting (37), as shown at the bottom of

the 11 page, with v as the new input vector, we have (38).
Remaining procedure is similar to Case III.

ė1 = e2 + F2 (x2) θ̃2 − q1F1 (x1) θ̃1
ė2 = e3 + F3 (x3) θ̃3 − q2F2 (x2) θ̃2
ė3 = v+ F1 (x1) θ̃1 − q3F3 (x3) θ̃3.

(38)

V. NUMERICAL SIMULATIONS
Initial conditions for simulation are chosen as

(x11 (0) , x12 (0) , x13 (0)) = (10, 20, 30),

(x21 (0) , x22 (0) , x23 (0)) = (−5.8, 8, 30) and

(x31 (0) , x32 (0) , x33 (0)) = (11, 25, 26).

We choose d11 = d21 = d13 = d23 = d31 = d33 = 0,
d12 = 10, d22 = 11 and d32 = 1.
For Case I, when systems parameters are known and there

is no fault, we choose q1 = 2, q2 = 3, q3 = 2. The
synchronization errors between the systems (1) and (2), sys-
tems (2) and (3), and systems (1) and (3) are shown in
Figures 1(a), 1(b) and 1(c), respectively.

For Case II, when system parameters are known and there
is a fault, we choose q1 = 2, q2 = 3, q3 = 1

6 . The
synchronization errors between the systems (1) and (2), sys-
tems (2) and (3), and systems (1) and (3) are shown in
Figures 2(a), 2(b) and 2(c), respectively.
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FromFigures 1 and 2, it is quite clear that the error state tra-
jectories converge to zero asymptotically for controllers (21)
and (25).

For Case III, when system parameters are unknown and
there is no fault, we choose q1 = 2, q2 = 3, q3 = 4 and true
values of the parameters are chosen as

a1 = −35, a2 = 35, a3 = −7, a4 = 28, a5 = −3,

b1 = −35, b2 = 36, b3 = 20, b4 = −3, and

c1 = −10, c2 = 10, c3 = 28, c4 = −
8
3
.

The synchronization errors are depicted in Figure 3.
For Case IV, when system parameters are unknown with

a fault, we choose q1 = 2, q2 = 2, q3 = 0.25. The
synchronization errors between the systems (1) and (2), sys-
tems (2) and (3) and systems (1) and (3) are shown in
Figures 4(a), 4(b) and 4(c), respectively.

It is clear fromFigures 3 and 4, that the error state trajectory
reaches to zero asymptotically and the estimates reach their
true values, i.e.,

â1 = a1, â2 = a2, â3 = a3, â4 = a4, â5 = a5,

b̂1 = b1, b̂2 = b2, b̂3 = b3, b̂4 = b4,

ĉ1 = c1, ĉ2 = c2, ĉ3 = c3, ĉ4 = c4.

Hence, the TPS is realized.

VI. CONCLUSION
In this work, the behavior of transmission projective syn-
chronization is investigated for multiple coupled chaotic sys-
tems. Based on sliding mode approach, the controllers are
developed. Four cases of chaotic systems are considered.
Case I: Known system parameters with no fault, Case II:
Known system parameters with a fault, Case III: Unknown
system parameters with no fault, and Case IV: Unknown
system parameters with a fault. In Cases I and III, controllers
are designed using sliding mode control, and in Cases II
and IV, controllers are proposed using an adaptive integral
sliding mode. The control laws for anti-synchronization and
complete synchronization are also designed based on stability
theory such that the uncertain parameters can effectively be
identified. Numerical simulations results verify the theoreti-
cal analysis.
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