
Received November 8, 2018, accepted December 23, 2018, date of publication February 1, 2019, date of current version February 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2891692

Challenging the Boundaries of Unsupervised
Learning for Semantic Similarity
ATISH PAWAR AND VIJAY MAGO
Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada

Corresponding author: Atish Pawar (apawar1@lakeheadu.ca)

This work was supported by the Ontario Council on Articulation and Transfer (ONCAT) under Project 2017-17-LU.

ABSTRACT The semantic analysis field has a crucial role to play in the research related to text analytics.
Calculating the semantic similarity between sentences is a long-standing problem in the area of natural
language processing, and it differs significantly as the domain of operation differs. In this paper, we present
a methodology that can be applied across multiple domains by incorporating corpora-based statistics into
a standardized semantic similarity algorithm. To calculate the semantic similarity between words and
sentences, the proposed method follows an edge-based approach using a lexical database. When tested on
both benchmark standards and mean human similarity dataset, the methodology achieves a high correlation
value for both word (r = 0.8753) and sentence similarity (r = 0.8793) concerning Rubenstein and
Goodenough standard and the SICK dataset (r = 0.83241) outperforming other unsupervised models.

INDEX TERMS Corpus, lexical database, natural language processing, semantic analysis, sentence
similarity, word similarity.

I. INTRODUCTION
In general, semantic similarity is a measure of the conceptual
distance between two objects, based on the correspondence of
their meanings [1]. Semantic similarity between sentences in
natural language processing (NLP) is considered a complex
task, as the meaning of words changes significantly when
the context is changed. As Jiang quotes, ‘‘In many cases,
humans have little difficulty in determining the intended
meaning of an ambiguous word, while it is extremely difficult
to replicate this process computationally’’ [2]. Determination
of semantic similarity in NLP has a wide range of appli-
cations. In internet-related applications, the uses of seman-
tic similarity include estimating relatedness between search
engine queries [3] and generating keywords for advertising on
the web [4]. In biomedical applications, semantic similarity
has become a valuable tool for analyzing results in gene
clustering, gene expression and disease gene prioritization
[5]–[7]. In addition to this, semantic similarity is also ben-
eficial in information retrieval on web [8], text summariza-
tion [9] and text categorization [10]. Hence, such applications
need to have a robust algorithm to estimate the semantic
similarity which can be used across variety of domains.

Methodologies used to calculate semantic similarity are

1Eliminating the outliers which constitutes to 3.75% of 4927 statement
pairs

highly varied across multiple domains and the databases and
algorithms used in one specific domain do not translate well
onto other domains. Since the concept of calculating semantic
similarities has a common underlying conceptual foundation
regardless of domain, a methodology with a robust algo-
rithm that can accurately estimate semantic similarity while
incorporating a variety of domain specific predefined stan-
dard language measures is desirable. To improve the existing
algorithms that determine the closeness of implications of
the objects under comparison, it is clear that a domain spe-
cific predefined standardmeasure which readily describes the
relatedness of the meanings in context is necessary. If we use
natural language to compare the natural language sentences,
then it would be a recursive problem with no stopping condi-
tion. Hence, it is essential to have some predefined measures.

This research aims to improve on existing algorithms and
increase robustness through the integration of interchange-
able domain specific corpora and through the use of lexical
databases. Lexical databases have fixed vocabulary structures
and the edge-based word structure that supports the determi-
nation of semantic similarity [11]. Many approaches utilizing
lexical databases have been developed and proven to be very
useful in the area of semantic analysis [2], [6], [12]–[15].

The main contribution of this research is a robust
unsupervised semantic similarity algorithm which requires
low computational resources and outperforms existing

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

16291

https://orcid.org/0000-0003-4857-4057

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

algorithms relative to the Rubenstein andGoodenough(R&G)
benchmark standard [16] and achieves a good correlation
with respect to the SICK dataset [17].

The following section contains a review of related works.
Section 3 provides a systematic review of our methodology.
Section 4 explains the idea of traversal in a lexical database
along with detailed visual diagrams and the computation
with an illustrative example. Section 5 contains the result of
our algorithm for the 65 noun word pairs from R&G [16]
and sentence similarity for the sentence pairs in pilot data
set [18] and and sentence similarity for the sentence pairs
in SICK dataset [17]. Section 6 discusses the results and
performance of the algorithm in relation to previous method-
ologies. Finally, section 7 briefly outlines the outcomes of this
research with conclusions.

II. RELATED WORK
Recent work in the area of natural language processing has
contributed valuable solutions to calculate the semantic sim-
ilarity between words and sentences. This section reviews
some related work to investigate the strengths and limitations
of previous methods and to identify the particular difficulties
in computing semantic similarity. Related works can roughly
be classified into following major categories:
• Word co-occurrence methods
• Similarity based on a lexical database
• Method based on web search engine results
• Methods based on word vectors using recursive neural
networks and deep neural networks

Word co-occurrence methods are commonly used in Informa-
tion Retrieval (IR) systems [19]. This method has word list of
meaningful words and every query is considered as a docu-
ment. A vector is formed for the query and for documents.
The relevant documents are retrieved based on the similarity
between query vector and document vector [9]. This method
has obvious drawbacks such as:
• It ignores the word order of the sentence.
• It does not take into account the meaning of the word in
the context of the sentence.

But it has following advantages:
• It matches documents regardless the size of documents
• It successfully extracts keywords from documents [20]

Using the lexical database methodology, similarity is com-
puted using a predefined word hierarchy which has words,
meanings, and relationships with other words compiled in a
tree-like structure [15]. While comparing two words, it takes
into account the path distance between the words as well as
the depth of the subsumer in the hierarchy. The subsumer
refers to the relative root node concerning the two words
being compared. It also uses a word corpus to calculate the
‘information content’of the word which influences the final
similarity. This methodology has the following limitations:
• The appropriate meaning of the word is not considered
while calculating the similarity, rather it takes the best
matching pair even if the meaning of the word is totally
different in two distinct sentences.

• The information content of a word from one corpus
differs from another.

The third methodology computes relatedness based on
web search engine results utilizing the number of search
results [21]. This technique does not necessarily give the sim-
ilarity between words as words with opposite meanings fre-
quently occur together on the web pages which influences the
final similarity index.We have implemented themethodology
to calcuate the Google Similarity Distance2 [22]. The search
engines that we used for this study are Google and Bing. The
results obtained from this method are not encouraging.

Recently, the models based on neural networks have
produced significant improvements in the results related
to semantic similarity [23]–[27]. One revolutionary model
proposed by Tai et al. (2015) [25] uses Glove vectors
and subsequently Tree-LSTM. Tree-LSTMs generalize the
order-sensitive chain-structure of standard LSTMs to tree-
structured network topologies. A siamese adaptation of
LSTM proposed by Mueller and Thyagarajan (2016) [24]
outperforms the abovementioned neural networks based state
of the art models. The authors explain the dependency of
their model on a simple Manhattan metric. Their method
forms a highly structured space whose geometry reflects
complex semantic relationships. Performance evaluations for
all aforementioned neural network models are trained on the
SICK dataset [17] and tested on the same dataset. Despite
improvements, these models perform poorly when tested on
sentences which do not follow the grammar and structure of
SICK sentences.

Overall, above-mentioned methods compute the seman-
tic similarity without considering the context of the word
according to the sentence. The algorithm proposed in this
paper addresses aforementioned issues by disambiguating the
words in sentences and forming semantic vectors dynami-
cally for comparing sentences and words.

III. THE PROPOSED METHODOLOGY
Themethod3 to calculate the semantic similarity between two
sentences is divided into two modules:

Pass 1: Maximize the similarity
Pass 2: Bound the similarity

A. PASS 1: MAXIMIZE THE SIMILARITY
The proposed methodology considers the text as a sequence
of words and deals with all the words in sentences separately
according to their semantic and syntactic structure. The infor-
mation content of the word is related to the frequency of
the meaning of the word in a lexical database or a corpus.
Figure 1 depicts the procedure to calculate the similarity
between two sentences. Unlike other existing methods that
use the fixed structure of vocabulary, the proposed method
uses a lexical database to compare the appropriate meaning
of the word. A semantic vector is formed for each sentence

2Interested readers can contact the authors for code and results.
3Algorithm is deployed at: http://www.loaga.science/algorithm

16292 VOLUME 7, 2019

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

FIGURE 1. Proposed sentence similarity methodology. Tokenize: POS tagging of words
Disambiguate: Identify appropriate synset Word Similarity: Word similarity between two
words Semantic vector: Word similarities for words in sentences Word Order Vector:
Occurences of words with respect to other sentence Sentence Similarity: Intermediate
sentence similarity and pass 2.

which contains the weight assigned to each word for every
other word from the second sentence in comparison. This
step also takes into account the information content of the
word, for instance, word frequency from a standard corpus.
Semantic similarity is calculated based on two semantic vec-
tors. An order vector is formed for each sentence which
considers the syntactic similarity between the sentences.
Finally, semantic similarity is calculated based on seman-
tic vectors and order vectors. Pass 1 is divided into three
parts:
• Word similarity
• Sentence similarity
• Word order similarity

The following section further describes each of the steps in
more details.

1) WORD SIMILARITY
To compute the word similarity, the proposed method uses
the sizeable lexical database for the English language,
WordNet [28], from the Princeton University.

a: IDENTIFYING WORDS FOR COMPARISON
Before calculating the semantic similarity between words,
it is essential to determine the words for comparison. We
use word tokenizer and ‘parts of speech tagging tech-
nique’ as implemented in natural language processing toolkit,
NLTK [29]. This step filters the input sentence and tags
the words into their ‘part of speech’(POS) and labels them
accordingly. WordNet has path relationships between noun-
noun and verb-verb only. Such relationships are absent in

VOLUME 7, 2019 16293

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

WordNet for the other parts of speech. Hence, it is not possi-
ble to get a numerical value that represents the link between
other parts of speech except nouns and verbs. We deal with
other parts of speech in pass 2 of the algorithm.

Example: ‘A voyage is a long journey on a ship or in a
spacecraft’

TABLE 1. Parts of speeches.

Table 1 represents the words and the corresponding parts
of speeches. The parts of speeches are as per the Penn
Treebank [30].

b: ASSOCIATING WORD WITH A SENSE
The primary structure of WordNet is based on synonymy.
Every word has synsets according to the meaning of the word
in the context of a statement. The distance between synsets in
comparison varies as we change the meaning of the word.

Consider an example where we calculate the shortest path
distance between words ‘river’ and ‘bank.’ WordNet has only
one synset for the word ‘river’. We calculate the path distance
between synset of ‘river’ and three synsets of word ‘bank’.
Table 2 represents the synsets and corresponding definitions
for the words ‘bank’ and ‘river’.

TABLE 2. Synsets and corresponding definitions from WordNet for words
bank and river.

Shortest distances for the Synset pairs are represented
in Table 3. When comparing two sentences, we have many
such word pairs which have multiple synsets. Therefore, not
considering the proper synset in context of the sentence, could
introduce errors at the early stage of similarity calculation.

TABLE 3. Synsets and corresponding shortest path distances from
WordNet.

Hence, sense of the word has a significant effect on the overall
similarity measure. Identifying the sense of the word is an
area of research called ‘word sense disambiguation’. We use
‘max similarity’ algorithm, Eq. 1, to perform word sense
disambiguation [31] as implemented in Pywsd, an NLTK
based Python library [32]. In Eq. 1, a is a query word and
i represents all the words in context.

argmaxsynset(a) = (
n∑
i

maxsynset(i)(sim(i, a)) (1)

c: SHORTEST PATH DISTANCE BETWEEN SYNSETS
Shortest path distance between synsets is the number of con-
necting edges between them in the lexical database,WordNet.
The following example explains, in detail, the method used
to calculate the shortest path distance. Referring to Figure 2,
consider two words, viz.:
w1 = motorcycle and w2 = car
We are referring to Synset(‘motorcycle.n.01’) for ‘motor-

cycle’ and (‘car.n.01’) for ‘car’.

FIGURE 2. Hierarchical structure from WordNet.

The traversal path is: motorcycle → motor vehicle → car.
Hence, the shortest path distance between motorcycle and car
is 2. In WordNet, the gap between words increases as simi-
larity decreases. Utilizing this property, we use the previously
established monotonically decreasing function [15]:

f (l) = e−αl (2)

where l is the shortest path distance and α is a constant. The
selection of exponential function is to ensure that the value of
f(l) lies between 0 to 1.

16294 VOLUME 7, 2019

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

d: HIERARCHICAL DISTRIBUTION OF WORDS
In WordNet, the primary relationship between the synsets
is the super-subordinate relation, also called hyperonymy,
hyponymy or ISA relation [28]. This relationship connects
the general concept synsets to the synsets that have specific
characteristics. For example, Table 4 represents the word
‘vehicle’ and its hyponyms.

TABLE 4. Synset and corresponding hyponyms from WordNet.

The hyponyms of ‘vehicle’ have more specific proper-
ties and represent the particular set, whereas ‘vehicle’ has
more general properties. Hence, words at the upper layer of
the hierarchy have more general features and less semantic
information, as compared to words at the lower layer of the
hierarchy [15].

Hierarchical distance plays an important role when the
path distances between word pairs are the same. For instance,
referring to Figure 2, consider the following word pairs:
car - motorcycle and bicycle - self_propelled_vehicle.
The shortest path distance between both the pairs is 2,

but the pair car - motorcycle has more semantic information
and specific properties than bicycle - self_propelled_vehicle.
Hence, we need to scale up the similarity measure if the
word pair subsume words at the lower level of the hierarchy
and scale down if they subsume words at the upper level of
the hierarchy. To include this behavior, we use a previously
established function [15]:

g(h) =
eβh − e−βh

eβh + e−βh
(3)

For WordNet, the optimal values of α and β are 0.2 and
0.45 respectively as reported previously [8].

2) INFORMATION CONTENT OF THE WORD
The meaning of the word differs as we change the domain
of operation. We can use this behavior of natural language
to make the similarity measure domain-specific. It is used to
influence the similarity measure if the domain operation is
predetermined. To illustrate the Information Content of the
word in action, consider the word: bank. The most frequent
meaning of the word bank in the context of Potamology (the
study of rivers) is sloping land (especially the slope beside a
body of water). The most frequent meaning of the word bank
in the context of Economics would be a financial institution
that accepts deposits and channels the money into lending
activities.

FIGURE 3. Method to calculate the frequency of a synset in a corpus.
Corpus: An external corpus Disambiguate: Function to identify
appropriate synset for every word in the corpus and write it in the corpus
statistics file Corpus Statistics: An external file with corpus features
Maximum frequnecy sense calculation: A function to determine the
sysnet with maximum frequency for every word Final corpus statistics: An
external file containing records from previous function

When applying the Word Disambiguation Approach
described in section III-A.1.b, the final similarity of the word
would be different for every corpus. The corpus, belonging
to particular domain, works as supervised learning data for
the algorithm. We first disambiguate the whole corpus to get
the sense of the word and further calculate the frequency
of the particular sense. These statistics for the corpus work
as the knowledge base for the algorithm. Figure 3 represents
the steps involved in the analysis of corpus statistics.

3) SENTENCES’ SEMANTIC SIMILARITY
As Li et al. [15] states, the meaning of the sentence is
reflected by the words in the sentence. Hence, we can use the
semantic information from section III-A.1 and section III-A.2
to calculate the final similarity measure. Previously estab-
lished methods to estimate the semantic similarity between
sentences, use the static approaches like using a precompiled
list of words and phrases. The problem with this technique
is the precompiled list of words and phrases which doesn’t
necessarily reflect the correct semantic information in the
context of compared sentences.

The dynamic approach includes the formation of a joint
word vector which compiles words from sentences and uses

VOLUME 7, 2019 16295

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

it as a baseline to form individual vectors. This method
introduces inaccuracies in similarity calculations, particularly
for the long sentences and the paragraphs containing multiple
sentences.

Unlike these methods, our method forms the semantic
value vectors for the sentences and aims to keep the size of the
semantic value vector to theminimum. Formation of semantic
vector begins after the section III-A.1.b. This approach avoids
the overhead involved to form semantic vectors separately
unlike done in previously discussed methods. Also, in this
stage, we eliminate prepositions, conjunctions and interjec-
tions. Hence, these connectives are automatically eliminated
from the semantic vector. We determine the size of the vector,
based on the number of tokens from section III-A.1.b. Every
unit of the semantic vector is initialized to null to void the
foundational effect. Initializing the semantic vector to a unit
positive value discards the negative/null effects, and overall
semantic similarity will be a reflection of most similar words
in the sentences. Let’s see an example.
S1= ‘‘A jewel is a precious stone used to decorate valuable

things that you wear, such as rings or necklaces.’’
S2 = ‘‘A gem is a jewel or stone that is used in jewellery.’’
List of tagged words for S1:
[(‘jewel’, Synset(‘jewel.n.01’)), Synset(‘jewel.n.02’)],
[(‘stone’, Synset(‘stone.n.02’)), Synset(‘stone.n.13’)],
[(‘used’, Synset(‘use.v.03’)), Synset(‘use.v.06’)],
[(‘decorate’, Synset(‘decorate.v.01’)),

Synset(‘dress.v.09’)],
[(‘valuable’, Synset(‘valuable.a.01’)),

Synset(‘valuable.s.02’)],
[(‘things’, Synset(‘thing.n.04’)), Synset(‘thing.n.12’)],
[(‘wear’, Synset(‘wear.v.01’)), Synset(‘wear.v.09’)],
[(‘rings’, Synset(‘ring.n.08’)), Synset(‘band.n.12’)],
[(‘necklaces’, Synset(‘necklace.n.01’)),

Synset(‘necklace.n.01’)]
Length of the list of tagged words for S1 is 9
List of tagged words for S2:
[(‘gem’, Synset(‘jewel.n.01’)), Synset(‘jewel.n.01’)],
[(‘jewel’, Synset(‘jewel.n.01’)), Synset(‘jewel.n.02’)],
[(‘stone’, Synset(‘gem.n.02’)), Synset(‘stone.n.13’)],
[(‘used’, Synset(‘use.v.03’)), Synset(‘use.v.06’)]
[(‘jewellery’, Synset(‘jewelry.n.01’)),

Synset(‘jewelry.n.01’)]
Length of the list of tagged words for S2 is 5
We eliminate words like a, is, to, that, you, such, as, or;

hence further reducing the computing overhead. The formed
semantic vectors contain semantic information concerning all
the words from both the sentences. For example, the semantic
vector for S1 is:
V1 = [0.99742103, 0.90118787, 0.42189901, 0.0, 0.0,

0.40630945, 0.0, 0.59202, 0.81750916]
Vector V1 has semantic information from S1 as well

as from S2. Similarly, vector V2 also has semantic infor-
mation from S1 and S2. To establish a similarity value
using two vectors, we use the magnitude of the normalized

vectors.

S = ||V1||.||V2|| (4)

We make this method adaptable to longer sentences by intro-
ducing a variable(ζ) which is calculated dynamically at run-
time. With the utilization of ζ , this method can also be used
to compare paragraphs with multiple sentences.

a: DETERMINATION OF ζ
The words with maximum similarity have more impact on
the magnitude of the vector. Using this property, we estab-
lish ζ for the sentences in comparison. According to R&G,
the benchmark synonymy value of two words is 0.8025 [16].
Using this value as a determination standard, we calculate all
the cells from V1 and V2 with the value greater than 0.8025.
ζ is given by:

ζ = sum(C1,C2)/γ (5)

where C1 is count of valid elements in V1 and C2 is count of
valid elements inV2. γ is set to 1.8, determined by grid search
over the correlation with R&G [16] and SICK dataset [17].
Now, using Eq. 4 and Eq. 7, we establish similarity as:

δ = S/ζ (6)

b: DETERMINATION OF ζ
The words with maximum similarity have more impact on
the magnitude of the vector. Using this property, we estab-
lish ζ for the sentences in comparison. According to R&G,
the benchmark synonymy value of two words is 0.8025 [16].
Using this value as a determination standard, we calculate all
the cells from V1 and V2 with the value greater than 0.8025.
ζ is given by:

ζ = sum(C1,C2)/γ (7)

where C1 is count of valid elements in V1 and C2 is count
of valid elements in V2. γ is set to 1.8, determined by grid
search over the correlation with R&G. Now, using Eq. 4 and
Eq. 7, we establish similarity as:

δ = S/ζ (8)

Algorithm 1 renders the explained procedure.

4) WORD ORDER SIMILARITY
Along with the semantic nature of the sentences, we need to
consider the word order in the sentences. The word order sim-
ilarity, simply put, is the aggregation of comparisons of word
indices in two sentences. The semantic similarity approach
based on words and the lexical database doesn’t take into
account the grammar of the sentence. Li et al. [15] assigns
a number to each word in the sentence and forms a word
order vector according to their occurrence and similarity.
They also consider the semantic similarity value of words to
decide the word order vector. If a word from sentence 1 is
not present in sentence 2, the number assigned to the index

16296 VOLUME 7, 2019

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

Algorithm 1 Semantic Similarity Between Sentences
1: procedure Sentence_similarity
2: S1− listoftaggedtokens← disambiguate
3: S2− listoftaggedtokens← disambiguate
4: vector_length← max(length(S1), length(S2))
5: V1,V2← vector_length(null)
6: V1,V2← vector_length(word_similarity(S1, S2))
7: ζ = 0
8: while S1_list_of _tagged_tokens do
9: if word_similarity_value >

benchmark_similarity_value then
10: C1← C1+ 1
11: while S2_list_of _tagged_tokens do
12: if word_similarity_value >

benchmark_similarity_value then
13: C2← C2+ 1
14: ζ ← sum(C1,C2)/γ
15: S ← ||V1||.||V2||
16: if sum(C1,C2) = 0 then
17: ζ ← vector_length/2
18: δ← S/ζ

of this word in the word order vector corresponds to the word
with maximum similarity. This case is not always valid and
introduces errors in the final semantic similarity index. For
the methods which calculate the similarity by chunking the
sentence into words, it is not always necessary to decide
the word order similarity. For such techniques, the word
order similarity actually matters when two sentences contain
same words in different order. Otherwise, if the sentences
contain different words, the word order similarity should be
an optional construct. In the entirely different sentences, word
order similarity doesn’t impact on the large scale. For such
sentences, the impact of word order similarity is negligible as
compared to the semantic similarity. Hence, in our approach,
we implement word order similarity as an optional feature.
Consider following classical example:

• S1: A quick brown dog jumps over the lazy fox.
• S2: A quick brown fox jumps over the lazy dog.

The edge-based approach using lexical database will produce
a result showing that both S1 and S2 are same, but since
the words appear in a different order we should scale down
the overall similarity as they represent different meaning. We
start with the formation of vectors V1 and V2 dynamically for
sentences S1 and S2 respectively. Initialization of vectors is
performed as explained in section III-A.3. Instead of forming
joint word set, we treat sentences relatively to keep the size
of vector to the minimum.

The process starts with the sentence having maximum
length. Vector V1 is formed with respect to sentence 1 and
cells in V1 are initialized to index values of words in S1
beginning with 1. Hence V1 for S1 is:

V1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Now, we form V2 concerning S1 and S2. To form V2, every
word from S2 is compared with S1. If the word from S2 is
absent in S1, then the cell in V2 is filled with the index value
of the word in sentence S2. If the word from S2matches with
a word from S1, then the index of the word from S1 is filled
in V2.

In the above example, consider words ‘fox’ and ‘dog’ from
sentence 2. The word ‘fox’ from S2 is present in S1 at the
index 9. Hence, entry for ‘fox’ in V2 would be 9. Similarly,
the word ‘dog’ form S2 is present in the S1 at the index 4.
Hence, entry for ‘dog’ in V2 would be 4. Following the same
procedure for all the words, we get V2 as:

V2 = [1, 2, 3, 9, 5, 6, 7, 8, 4]

Finally, word order similarity is given by:

Ws = ||V1− V2||/||V1 ∗ V2|| (9)

In this case,Ws is 0.067091.

B. PASS 2: BOUND THE SIMILARITY
The first pass of the algorithm returns the maximized
similarity(δ) between two sentences. The second pass of the
algorithm aims at computing a more robust similarity by
reducing the ancillary similarity which causes skeweness in
results by considering syntactical structure, adjectives and
adverbs, and negations in the sentences. Skewness in this
context implies the deviation of the similarity(δ) from the
similarity in the SICK dataset.

We propose three approaches for the Pass 2 of the
algorithm.

1) Recurrence of words
2) Negation and stanford POS tagger model
3) Spacy’s dependency parser model

1) MODEL 1: RECURRENCE OF WORDS
We consider the number of occurrences of a word with same
meaning in the sentence. If a word occurs multiple times
in the sentence, then we should reduce the impact of the
word on the overall similarity. To illustrate this property of
occurrences, consider following example:
S1: Explain the termDatabase and DatabaseManagement

System DBMS, as well as the use of Primary and Foreign Key.
S2: Understand the fundamental concepts of relational

database and implement a relational database.
The word Database occurs twice in both sentences. The

impact it has on the final similarity is more than the actual
information it adds to the sentence. Hence, while assigning
the similarity value for such word pairs, we divide the subse-
quent occurrences by the number of occurrences.

V [word] = similarity/number_of _occurrences (10)

where V represents the semantic vector. In this example,
the value of similarity for database would be reduced to half
as it occurs twice.

VOLUME 7, 2019 16297

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

FIGURE 4. Normal distribution of θ over correlation.

2) MODEL 2: NEGATION AND STANFORD
POS TAGGER MODEL
The intuitive idea behind this model is to build a concise
list containing syntactical information for both sentences and
subsequently processing the lists to arrive at a decision value.
We focus on verbs, adverbs, and adjectives primarily. In this
model, we use Stanford POS tagger, thesaurus.com Python
API [33] and a list of English language contractions from
Wikipedia [34]. We start by resolving the contractions to get
the necessary form of the sentences. Both the sentences are
tagged in their respective parts of speeches using Stanford’s
bidirectional distsim tagger [35]. A list is formed for both the
sentences in following order:

1) The length of lists is determined by the length of the
list containing POS of the sentences.

l = max(s1_tagged, s2_tagged)

2) All the elements in the list are initialized to zero.
3) If the word is verb, adverb, adjective or negation, then

the corresponding bit is set to represent the POS of the
word.

Both the lists are compared as depicted in Figure 5.
A decision is made explicitly for each verb, adverb, and
adjective. If opposite sense is encountered in the sentences,
then similarity δ is amended using following formula:

ω = δ/θ (11)

θ is set to 1.5. Through grid search we found that θ at
1.5 gives the highest correlation with the SICK values.
Figure 4 represents the normal distribution using Gaussian
curve of correlation with respect to θ .

a: SPACY’S DEPENDENCY PARSER MODEL
The model based on dependency parsing outperforms model
1(III-B.1) and model 2(III-B.2). We use Spacy’s [36] depen-
dency parser to get the dependency grammar of the sentence.
We follow a similar approach as in model 2 by forming a
list representing the dependency information of the sentence.
We assemble the following information from dependency
parsing:

cell = {token, token.pos, token.dep}

FIGURE 5. Decision making for negation 1 signifies the negation and
0 signifies no negation.

The above cell format represents a cell in the list. A token
is a word from a sentence, token.pos is the part of speech of
the token in a sentence, token.dep depicts the dependency in
the sentence. We maintain information about root, nouns, and
verbs from both the sentences separately.

The goal of this approach is to keep track of the syntactical
differences by incrementing a global dependency variable.
We start the comparison with the roots of both the sentences.
If roots are not similar or if the synsets of roots do not intersect
each other, then we increment the dependency variable by 1.
Next, we compare the lists containing nouns and accordingly
increment the dependency variable. We consider the length of
the lists containing nouns and the dependency of the nouns
in the sentence. Similarly, we compare the lists containing
verbs.

16298 VOLUME 7, 2019

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

We check the negation explicitly. We maintain a list of
words conveying negation. We use the SICK dataset to com-
pile this list. If we encounter a word from the list of negation
words, then we increase the dependency variable(dep_var)
by 1. Length of sentences is also an important factor affecting
the semantics of the sentences. We use the following for-
mula to calculate the shift between two sentences. Following
formulae are derived considering the normal distribution of
semantic similarity over SICK dataset [17].

shift = ε ∗ log(abs(s1_length− s2_length)+ 1) (12)

We establish a dependency index(dep_index) using following
formula:

dep_index = (ε ∗ tan−1(dep_var))+ shift (13)

ε is set to 0.10 through grid search over correlation on
SICK dataset. Finally, we use this dependency_index as a
measure indicating the syntactical difference between two
sentences. We establish final similarity as:

ω = δ − dep_index (14)

IV. IMPLEMENTATION USING SEMANTIC NETS
The database used to implement the proposed methodology
is WordNet and statistical information from WordNet is used
calculate the information content of the word. This section
describes the prerequisites to implement the method.

A. THE DATABASE - WORDNET
WordNet is a lexical semantic dictionary available for
online and offline use, developed and hosted at Princeton.
The version used in this study is WordNet 3.0 which has
117,000 synonymous sets, Synsets. Synsets for a word rep-
resent the possible meanings of the word when used in a
sentence. WordNet currently has synset structure for nouns,
verbs, adjectives and adverbs. These lexicons are grouped
separately and do not have interconnections; for instance,
nouns and verbs are not interlinked.

The main relationship connecting the synsets is the super-
subordinate(ISA-HASA) relationship. The relation becomes
more general as we move up the hierarchy. The root node
of all the noun hierarchies is ‘Entity’. Like nouns, verbs are
arranged into hierarchies as well.

1) SHORTEST PATH DISTANCE AND HIERARCHICAL
DISTANCES FROM WORDNET
The WordNet relations connect the same parts of speeches.
Thus, it consists of four subnets of nouns, verbs, adjectives
and adverbs respectively. Hence, determining the similarity
between cross-domains is not possible.

The shortest path distance is calculated by using the
tree-like hierarchical structure. To figure the shortest path,
we climb up the hierarchy from both the synsets and deter-
mine the meeting point which is also a synset. This synset is
called subsumer of the respective synsets. The shortest path
distance equals the tohops from one synset to another.

We consider the position of subsumer of two synsets to
determine the hierarchical distance. Subsumer is found by
using the hyperonymy (ISA) relation for both the synsets. The
algorithm moves up the hierarchy until a common synset is
found. This common synset is the subsumer for the synsets
in comparison. A set of hypernyms is formed individually for
each synset and the intersection of sets contains the subsumer.
If the intersection of these sets contain more than one synset,
then the synset with the shortest path distance is considered
as a subsumer.

2) THE INFORMATION CONTENT OF THE WORD
For general purposes, we use the statistical information from
WordNet for the information content of the word. WordNet
provides the frequency of each synset in theWordNet corpus.
This frequency distribution is used in the implementation of
section III-A.2.

B. ILLUSTRATIVE EXAMPLE
This section explains in detail the steps involved in the calcu-
lation of semantic similarity between two sentences.

• S1: A gem is a jewel or stone that is used in jewellery.
• S2: A jewel is a precious stone used to decorate valuable
things that you wear, such as rings or necklaces.

Following segment contains the parts of speeches and corre-
sponding synsets used to determine the similarity.

For S1 the tagged words are:
Synset(‘jewel.n.01’): a precious or semiprecious stone

incorporated into a piece of jewelry
Synset(‘jewel.n.01’): a precious or semiprecious stone

incorporated into a piece of jewelry
Synset(‘gem.n.02’): a crystalline rock that can be cut and

polished for jewelry
Synset(‘use.v.03’): use up, consume fully
Synset(‘jewelry.n.01’): an adornment (as a bracelet or ring

or necklace) made of precious metals and set with gems (or
imitation gems)

For S2 the tagged words are:
Synset(‘jewel.n.01’): a precious or semiprecious stone

incorporated into a piece of jewelry
Synset(‘stone.n.02’): building material consisting of a

piece of rock hewn in a definite shape for a special purpose
Synset(‘use.v.03’): use up, consume fully
Synset(‘decorate.v.01’): make more attractive by adding

ornament, colour, etc.
Synset(‘valuable.a.01’): having great material or monetary

value especially for use or exchange
Synset(‘thing.n.04’): an artifact
Synset(‘wear.v.01’): be dressed in
Synset(‘ring.n.08’): jewelry consisting of a circlet of pre-

cious metal (often set with jewels) worn on the finger
Synset(‘necklace.n.01’): jewelry consisting of a cord or

chain (often bearing gems) worn about the neck as an orna-
ment (especially by women)

VOLUME 7, 2019 16299

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

TABLE 5. L1 compared with L2.

After identifying the synsets for comparison, we find the
shortest path distances between all the synsets and take the
best matching result to form the semantic vector. The inter-
mediate list is formed which contains the words and the iden-
tified synsets. L1 and L2 below represent the intermediate
lists.
L1: [(‘gem’, Synset(‘jewel.n.01’))],

[(‘jewel’, Synset(‘jewel.n.01’))], [(‘stone’,
Synset(‘gem.n.02’))], [(‘used’, Synset(‘use.v.03’))],
[(‘jewellery’, Synset(‘jewelry.n.01’))]
L2: [(‘jewel’, Synset(‘jewel.n.01’))],

[(‘stone’, Synset(‘stone.n.02’))], [(‘used’,
Synset(‘use.v.03’))], [(‘decorate’, Synset(‘decorate.v.01’))],
[(‘valuable’, Synset(‘valuable.a.01’))],
[(‘things’, Synset(‘thing.n.04’))], [(‘wear’,

TABLE 6. L2 compared with L1.

Synset(‘wear.v.01’))], [(‘rings’, Synset(‘ring.n.08’))],
[(‘necklaces’, Synset(‘necklace.n.01’))]

Now we begin to form the semantic vectors for S1 and
S2 by comparing every synset from L1 with every synset
from L2. The intermediate step here is to determine the size
of semantic vector and initialize it to null. In this example,
the size of the semantic vector is 9 by referring to the method
explained in section III-A.3. The following part contains the
cross comparison of L1 and L2.

Cross-comparison with all the words from S1 and S2 is
essential because if a word from statement S1 best matches
with a word from S2, it does not necessarily mean that it
would be true if the case is reversed. This scenario can
be observed with the words jewel from Table 5 and things
from Table 6. things best matches with jewel with index

16300 VOLUME 7, 2019

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

TABLE 7. Linear regression parameter values for proposed methodology.

FIGURE 6. Perfomance of word similarity method vs Standard by
Rubenstein and Goodenough.

FIGURE 7. Linear Regression model word similarity method against
Standard by Rubenstein and Goodenough.

of 0.4063 whereas jewel from Table 5 best matches with jewel
from Table 6.
After getting the similarity values for all the word pairs,
we need to determine an index entry for the semantic vector.
The entry in the semantic vector for a word is the highest
similarity value from the comparison with the words from

FIGURE 8. Pearson’s coefficients from various algorithms against
Standard by Rubenstein and Goodenough.

FIGURE 9. Linear regression model- mean human similarity vs algorithm
sentence similarity.

other sentence. For instance, for the word gem, from Table 5,
the corresponding semantic vector entry is 0.90800855 as it
is the maximum of all the compared similarity values.

Hence, we get V1 and V2 as following:

• V1 = [0.90800855, 0.99742103, 0.90118787,
0.42189901, 0.81750916, 0.0, 0.0, 0.0, 0.0]

• V2 = [0.99742103, 0.90118787, 0.42189901, 0.0, 0.0,
0.40630945, 0.0, 0.59202, 0.81750916]

The intermediate step here is to calculate the dot product of
the magnitude of normalized vectors: V1 and V2 as explained
in section III-A.3.

S = 3.472426

The following segment explains the determination of ζ with
reference to section III-A.3.b.

From Algorithm 1, C1 for V1 is 4. C2 for V2 is 3. Hence,
ζ is (4+3)/1.8 = 3.89.
Now, the final similarity is
δ = S/ζ = 3.472426/3.89 = 0.8929.
We execute Pass 2 of the algorithm using dependency

parser model. Here length_difference for S1 and S2 is 7.
Hence we obtain a shift of 0.2079. Next the depen-
dency_variable computed is 5 considering roots, negation if
any, count and index of nouns and verbs in both the sentences.
We obtain dependency_index of 0.1373.

Finally, δ = 0.8929−(0.2079+0.1373) = 0.5477

VOLUME 7, 2019 16301

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

TABLE 8. Results on the SICK semantic relatedness subtask. For our experiments, we report correlations and MSEs for 3 different models. Results are
grouped as (1) previously reported supervised models (2) proposed unsupervised models.

V. EXPERIMENTAL RESULTS
To evaluate the algorithm, we used a three standard datasets:
• Rubenstein and Goodenough word pairs [16]
• Sentence similarity for Rubenstein and Goodenough
word pairs [18]

• SICK test dataset [17]
The data has been used in many investigations over the
years and has been established as a stable source of the
semantic similarity measure. The word similarity obtained
in this experiment is assisted by the standard sentences
in Pilot Short Text Semantic Similarity Benchmark Data
Set by O’Shea et al. [18]. The aim of this methodology
is to achieve results as close as possible to the bench-
mark standards [16], [17]. The definitions of the words are
obtained from the Collins Cobuild dictionary [37]. Our
algorithm achieved a good Pearson correlation coefficient
of 0.8753695501 for word similarity which is cosiderably
higher than the existing algorithms.

Figure 6 shows the word pair similarity obtained from the
algorithm along with the R&G similarity. Figure 8 represents
the correlation results for 65 pairs from various algorithms
against the R&G benchmark standard. Figure 9 represents the
linear regression against the R&G standard. Table 7 shows
the values of parameters for linear regression for word simi-
larity and Figure 7 shows the corresponding linear regression.
Proposed method outperforms all the existing methods con-
cerningR&Gbenchmark standard for bothword and sentence
similarity.

A. SENTENCE SIMILARITY: R&G
Tables 11, 12 and 13 (see Appendix) contain the mean human
sentence similarity values from Pilot Short Text Seman-
tic Similarity Benchmark Data Set by O’Shea et al. [18].
As Li et al. [15] explains, when a survey was conducted by
32 participants to establish a measure for semantic similarity,
they were asked to mark the sentences, not the words. Hence,
word similarity is compared with the R&G [16] whereas
sentence similarity is compared with mean human similarity.
Our algorithm’s sentence similarity achieved good Pearson
correlation coefficient of 0.8794 with mean human similarity

outperforming previous methods. Li et al. [15] obtained
correlation coefficient of 0.816 and Islam and Inkpen [38]
obtained correlation coefficient of 0.853. Out of 65 sentence
pairs, 5 pairs were eliminated because of their definitions
from Collins Cobuild dictionary [37]. The reasons and results
are discussed in the discussion section.

B. SENTENCE SIMILARITY: SICK
To evaluate the sentence similarity algorithm, we used the
SICK dataset which is considered as a stable measure of
semantic correlation and has been used as a task in SemEval
2014: semantic relatedness. Our aim is to achieve semantic
similarity as close as to the semantic similarity established in
the SICK dataset. We present the results obtained from the
three proposed models. Table 8 represents the correlations
obtained for each model.

1) MODEL 1: RECURRENCE OF WORDS
Model 1 utilizes the property that the reoccurring words in the
sentences contain less semantic information than the words
occurring once. This property is useful when dealing with
longer sentences. There are very few incidences in the SICK
dataset which possess this property.We obtained a correlation
of 0.58 concerning SICK dataset [17].

2) MODEL 2: NEGATION AND STANFORD
POS TAGGER MODEL
We obtained a fairly good correlation of 0.66 for model 2
which uses Stanford POS tagger. This model performs well
when all the words in both sentences are tagged correctly.
It incurred few inaccuracies when negation is involved. The
reason behind this behavior is the word following nega-
tion is tagged with a different POS than the corresponding
word from the other sentence. Hence the negation calculation
fails.

3) MODEL 3: SPACY’S DEPENDENCY PARSER MODEL
The dependency parser model performed best and obtained
a correlation of 0.79 which is the best performing unsuper-
vised model. We also encountered few outliers. Outliers are

16302 VOLUME 7, 2019

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

TABLE 9. Rubenstein and Goodenough vs Lee 2014 vs proposed algorithm similarity.

VOLUME 7, 2019 16303

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

TABLE 10. Proposed algorithm similarity vs Islam2008 vs Li2006.

the cases where either the disambiguation function fails to
identify the correct synset for the word or the dependency
parser fails to form the fitting dependency model. Our algo-
rithm’s measure obtained the correlation of 0.83 by eliminat-
ing the outliers.

VI. DISCUSSION
Our algorithm’s similarity measure achieved a good Pear-
son correlation coefficient of 0.8753 with R&G word
pairs [16]. This performance outperforms all the previous
methods. Table 9 represents the comparison of similarity
from proposed method and Lee et al. [42] with the R&G.
Table 10 depicts the comparison of algorithm similarity
against Islam and Inkpen [38] and Li et al. [15] for the
30 noun pairs and performs better.

For sentence similarity, the pairs 17: coast-forest, 24: lad-
wizard, 30: coast-hill, 33: hill-woodland and 39: brother-lad
are not considered. The reason for this is, the definition of
these word pairs have more than one common or synonymous
words. Hence, the overall sentence similarity does not reflect
the true sense of these word pairs as they are rated with low
similarity in mean human ratings. For example, the definition
of ‘lad’ is given as: ‘A lad is a young man or boy.’ and
the definition of ‘wizard’ is: ‘In legends and fairy stories,
a wizard is a man who has magic powers.’ Both sentences
have similar or closely related words such as: ‘man-man’,

‘boy-man’ and ‘lad-man’. Hence, these pairs affect overall
similarity measure more than the actual words compared
‘lad-wizard’.

VII. CONCLUSIONS
This paper presented an unsupervised approach to calculate
the semantic similarity between twowords, sentences or para-
graphs which is applicable across multiple domains. The
ability to accurately predict semantic similarity using a robust
algorithm, a standardized lexical database and interchangable
corpora with low computing overhead is beneficial to pro-
fessionals in all domains requiring semantic similarity calcu-
lations. The algorithm initially disambiguates both the sen-
tences and tags them in their parts of speeches. The disam-
biguation approach ensures the right meaning of the word
for comparison. The similarity between words is calculated
based on a previously established edge-based approach. The
information content from a corpus can be used to influence
the similarity in particular domain. Semantic vectors con-
taining similarities between words are formed for sentences
and further used for sentence similarity calculation. Word
order vectors are also formed to calculate the impact of the
syntactic structure of the sentences. Since word order affects
less on the overall similarity than that of semantic similarity,
word order similarity is weighted to a smaller extent. The
methodology has been tested on previously established data

16304 VOLUME 7, 2019

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

TABLE 11. Sentence similarity from proposed methodology compared with human mean similarity from Li2006.

sets which contain standard results as well as mean human
results. Our algorithm achieved a good Pearson correlation
coefficient of 0.8753 for word similarity concerning the

benchmark standard and 0.8794 (Table 9) for sentence sim-
ilarity with respect to mean human similarity (Table 11-13)
and 0.7958 concerning the SICK dataset.

VOLUME 7, 2019 16305

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

TABLE 12. Sentence similarity from proposed methodology compared with human mean similarity from li2006 (continued from previous page).

16306 VOLUME 7, 2019

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

TABLE 13. Sentence similarity from proposed methodology compared with human mean similarity from Li2006 (continued from previous page).

TABLE 14. Sentence similarity from proposed methodology compared with SICK similarity.

APPENDIX A
TABLES
See Tables 9–14.

ACKNOWLEDGMENT
The authors would like to thank Salimur Choudhury for his
insight on different aspects of this project; Danny Kivi for
setting up the online demo;4 Andrew Heppner and the data-
lab.science team for reviewing and proofreading the paper.

REFERENCES
[1] D. Lin, ‘‘An information-theoretic definition of similarity,’’ in Proc. ICML,

vol. 98. 1998, pp. 296–304.
[2] J. J. Jiang and D. W. Conrath. (1997). ‘‘Semantic similarity based

on corpus statistics and lexical taxonomy.’’ [Online]. Available:
https://arxiv.org/abs/cmp-lg/9709008

[3] A. Freitas, J. G. Oliveira, S. O’Riain, E. Curry, and J. C. P. da Silva,
‘‘Querying linked data using semantic relatedness: A vocabulary indepen-
dent approach,’’ in Proc. Int. Conf. Natural Lang. Process. Inf. Syst., 2011,
pp. 40–51.

[4] V. Abhishek and K. Hosanagar, ‘‘Keyword generation for search engine
advertising using semantic similarity between terms,’’ in Proc. 9th Int.
Conf. Electron. Commerce, 2007, pp. 89–94.

[5] C. Pesquita, D. Faria, A. O. Falcao, P. Lord, and F. M. Couto, ‘‘Semantic
similarity in biomedical ontologies,’’ PLoS Comput. Biol., vol. 5, no. 7,
p. e1000443, 2009.

[6] P. W. Lord, R. D. Stevens, A. Brass, and C. A. Goble, ‘‘Investigating
semantic similarity measures across the Gene Ontology: The relation-
ship between sequence and annotation,’’ Bioinformatics, vol. 19, no. 10,
pp. 1275–1283, 2003.

4http://www.loaga.science/algorithm

[7] T. Pedersen, S. V. Pakhomov, S. Patwardhan, and C. G. Chute, ‘‘Mea-
sures of semantic similarity and relatedness in the biomedical domain,’’
J. Biomed. Inform., vol. 40, no. 3, pp. 288–299, 2007.

[8] G. Varelas, E. Voutsakis, P. Raftopoulou, E. G. Petrakis, and E. E. Milios,
‘‘Semantic similarity methods in wordNet and their application to infor-
mation retrieval on the Web,’’ in Proc. 7th Annu. ACM Int. Workshop Web
Inf. Data Manage., 2005, pp. 10–16.

[9] G. Erkan and D. R. Radev, ‘‘LexRank: Graph-based lexical centrality as
salience in text summarization,’’ J. Artif. Intell. Res., vol. 22, pp. 457–479,
Dec. 2004.

[10] Y. Ko, J. Park, and J. Seo, ‘‘Improving text categorization using the
importance of sentences,’’ Inf. Process. Manage., vol. 40, no. 1, pp. 65–79,
2004.

[11] C. Fellbaum, ‘‘WordNet,’’ in Theory and Applications of Ontology: Com-
puter Applications. Hoboken, NJ, USA: Wiley, 1998.

[12] A. D. Baddeley, ‘‘Short-term memory for word sequences as a function of
acoustic, semantic and formal similarity,’’ Quart. J. Exp. Psychol., vol. 18,
no. 4, pp. 362–365, 1966.

[13] P. Resnik, ‘‘Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural language,’’
J. Artif. Intell. Res., vol. 11, pp. 95–130, Jul. 1999.

[14] G. A. Miller and W. G. Charles, ‘‘Contextual correlates of semantic simi-
larity,’’ Lang. Cogn. Process., vol. 6, no. 1, pp. 1–28, 1991.

[15] Y. Li, D. McLean, Z. A. Bandar, and J. D. O’Shea, and K. Crockett,
‘‘Sentence similarity based on semantic nets and corpus statistics,’’ IEEE
Trans. Knowl. Data Eng., vol. 18, no. 8, pp. 1138–1150, Aug. 2006.

[16] H. Rubenstein and J. B. Goodenough, ‘‘Contextual correlates of syn-
onymy,’’ Commun. ACM, vol. 8, no. 10, pp. 627–633, 1965.

[17] M. Marelli et al., ‘‘A SICK cure for the evaluation of compositional
distributional semantic models,’’ in Proc. LREC, 2014, pp. 216–223.

[18] J. O’Shea, Z. Bandar, K. Crockett, andD.McLean, ‘‘Pilot short text seman-
tic similarity benchmark data set: Full listing and description,’’Computing,
Jul. 2009.

[19] C. T. Meadow, Text Information Retrieval Systems. New York, NY, USA:
Academic, 1992.

[20] Y. Matsuo and M. Ishizuka, ‘‘Keyword extraction from a single document
usingword co-occurrence statistical information,’’ Int. J. Artif. Intell. Tools,
vol. 13, no. 1, pp. 157–169, 2004.

VOLUME 7, 2019 16307

A. Pawar, V. Mago: Challenging the Boundaries of Unsupervised Learning for Semantic Similarity

[21] D. Bollegala, Y. Matsuo, and M. Ishizuka, ‘‘Measuring semantic similarity
between words using Web search engines,’’ in Proc. WWW, vol. 7, 2007,
pp. 757–766.

[22] R. L. Cilibrasi and P. M. B. Vitanyi, ‘‘The Google similarity distance,’’
IEEE Trans. Knowl. Data Eng., vol. 19, no. 3, pp. 370–383, Mar. 2007.

[23] Z. He, S. Gao, L. Xiao, D. Liu, H. He, and D. Barber, ‘‘Wider and deeper,
cheaper and faster: Tensorized LSTMS for sequence learning,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 1–11.

[24] J. Mueller and A. Thyagarajan, ‘‘Siamese recurrent architectures for learn-
ing sentence similarity,’’ in Proc. AAAI, 2016, pp. 2786–2792.

[25] K. S. Tai, R. Socher, and C. D. Manning. (2015). ‘‘Improved semantic
representations from tree-structured long short-term memory networks.’’
[Online]. Available: https://arxiv.org/abs/1503.00075

[26] A. Lai and J. Hockenmaier, ‘‘Illinois-lh: A denotational and distribu-
tional approach to semantics,’’ in Proc. 8th Int. Workshop Semantic Eval.
(SemEval), 2014, pp. 329–334.

[27] J. Bjerva, J. Bos, R. van der Goot, and M. Nissim, ‘‘The meaning fac-
tory: Formal semantics for recognizing textual entailment and determining
semantic similarity,’’ in Proc. 8th Int. Workshop Semantic Eval. (SemEval),
2014, pp. 642–646.

[28] G. A. Miller, ‘‘WordNet: A lexical database for English,’’ Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[29] S. Bird, ‘‘NLTK: The natural language toolkit,’’ in Proc. COLING/ACL
Interact. Presentation Sessions, 2006, pp. 69–72.

[30] M. P.Marcus andM.A.Marcinkiewicz, and B. Santorini, ‘‘Building a large
annotated corpus of English: The penn treebank,’’ Comput. Linguistics,
vol. 19, no. 2, pp. 313–330, 1993.

[31] T. Pedersen, S. Banerjee, and S. Patwardhan, ‘‘Maximizing semantic relat-
edness to perform word sense disambiguation,’’ Univ. Minnesota Super-
computing Inst., Duluth, MN, USA, Res. Rep. UMSI 2005/25, 2005.

[32] L. Tan. (2014). PYWSD: Python Implementations of Word Sense
Disambiguation (WSD) Technologies [Software]. [Online]. Available:
https://github.com/alvations/pywsd

[33] Accessed: May 23, 2018. [Online]. Available: https://github.com/
Manwholikespie/thesaurus-api

[34] Wikipedia English Language Contractions. Accessed: May 11, 2018.
[Online]. Available: https://en.wikipedia.org/wiki/Wikipedia:Listof
Englishcontractions

[35] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and
D. McClosky, ‘‘The Stanford CoreNLP natural language processing
toolkit,’’ in Proc. 52nd Annu. Meeting Assoc. Comput. Linguistics, Syst.
Demonstrations, 2014, pp. 55–60.

[36] M. Honnibal, ‘‘Spacy (version 1.3.0),’’ Explosion AI, Berlin, Germany,
Tech. Rep., 2016. [Online]. Available: https://spacy.io/

[37] J. M. Sinclair, Looking Up: An Account of the COBUILD Project in
Lexical Computing and the Development of the Collins COBUILD English
Language Dictionary. London, U.K.: Collins ELT, 1987.

[38] A. Islam and D. Inkpen, ‘‘Semantic text similarity using corpus-based
word similarity and string similarity,’’ACMTrans. Knowl. Discovery Data,
vol. 2, no. 2, p. 10, 2008.

[39] S. Jimenez, G. Duenas, J. Baquero, and A. Gelbukh, ‘‘UNAL-NLP: Com-
bining soft cardinality features for semantic textual similarity, relatedness
and entailment,’’ in Proc. 8th Int. Workshop Semantic Eval. (SemEval),
2014, pp. 732–742.

[40] J. Zhao, T. Zhu, and M. Lan, ‘‘Ecnu: One stone two birds: Ensemble of
heterogenous measures for semantic relatedness and textual entailment,’’
in Proc. 8th Int. Workshop Semantic Eval. (SemEval), 2014, pp. 271–277.

[41] H. He, K. Gimpel, and J. Lin, ‘‘Multi-perspective sentence similarity
modeling with convolutional neural networks,’’ in Proc. Conf. Empirical
Methods Natural Lang. Process., 2015, pp. 1576–1586.

[42] M. C. Lee, J. W. Chang, and T. C. Hsieh, ‘‘A grammar-based semantic sim-
ilarity algorithm for natural language sentences,’’ Sci. World J., vol. 2014,
Apr. 2014, Art. no. 437162.

[43] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2013, pp. 3111–3119.

ATISH PAWAR received the B.E. degree (Hons.)
in computer science and engineering from the
Walchand Institute of Technology, India, in 2014,
and the master’s degree (Hons.) in computer sci-
ence from Lakehead University, in 2018. He was
with Infosys Technologies, from 2014 to 2016. He
is currently a Research Assistant with the Data-
Lab, Lakehead University. His research interests
include machine learning, natural language pro-
cessing, and neural networks.

VIJAY MAGO received the Ph.D. degree in
computer science from Panjab University, India,
in 2010. In 2011, he joined the Modelling of
Complex Social Systems Program, IRMACS Cen-
tre, Simon Fraser University, before moving on
to stints at Fairleigh Dickinson University, The
University of Memphis, and Troy University. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, Lakehead Univer-
sity, ON, Canada, where he teaches and conducts

research in areas including decision-making in multi-agent environments,
probabilistic networks, neural networks, and fuzzy logic-based expert sys-
tems. Recently, he has diversified his research to include natural language
processing, big data, and cloud computing. He has published extensively on
new methodologies based on soft computing and artificial intelligent tech-
niques to tackle complex systemic problems, such as homelessness, obesity,
and crime. He has served on the program committees of many international
conferences and workshops. He currently serves as an Associate Editor for
BMC Medical Informatics and Decision Making and as a Co-Editor for the
Journal of Intelligent Systems.

16308 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	THE PROPOSED METHODOLOGY
	PASS 1: MAXIMIZE THE SIMILARITY
	WORD SIMILARITY
	INFORMATION CONTENT OF THE WORD
	SENTENCES' SEMANTIC SIMILARITY
	WORD ORDER SIMILARITY

	PASS 2: BOUND THE SIMILARITY
	MODEL 1: RECURRENCE OF WORDS
	MODEL 2: NEGATION AND STANFORD POS TAGGER MODEL

	IMPLEMENTATION USING SEMANTIC NETS
	THE DATABASE - WORDNET
	SHORTEST PATH DISTANCE AND HIERARCHICAL DISTANCES FROM WORDNET
	THE INFORMATION CONTENT OF THE WORD

	ILLUSTRATIVE EXAMPLE

	EXPERIMENTAL RESULTS
	SENTENCE SIMILARITY: R&G
	SENTENCE SIMILARITY: SICK
	MODEL 1: RECURRENCE OF WORDS
	MODEL 2: NEGATION AND STANFORD POS TAGGER MODEL
	MODEL 3: SPACY'S DEPENDENCY PARSER MODEL

	DISCUSSION
	CONCLUSIONS
	REFERENCES
	Biographies
	ATISH PAWAR
	VIJAY MAGO

