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ABSTRACT Synthetic aperture imaging is a technique that mimics a camera with a large virtual convex lens
with a camera array. Objects on the focal plane will be sharp and off the focal plane blurry in the synthesized
image, which is the most important effect that can be achieved with synthetic aperture imaging. The property
of focusing makes synthetic aperture imaging an ideal tool to handle the occlusion problem. Unfortunately,
to automatically measure the focusness of a single synthetic aperture image is still a challenging problem and
commonly employed pixel-based methods include using variance or using a "manual focus" interface. In this
paper, a novel method is proposed to automatically determine whether or not a synthetic aperture image
is in focus. Unlike conventional focus estimation methods which pick the focal plane with the minimum
variance computed by the variance of corresponding pixels captured by different views in a camera array,
our method automatically determines if the synthetic aperture image is focused or not from one single image
of a scene without other views using a deep neural network. In particular, our method can be applied to
automatically select the focal plane for synthetic aperture images. The experimental results show that the
proposed method outperforms the traditional automatic focusing methods in synthetic aperture imaging as
well as other focus estimation methods. In addition, our method is more than five times faster than the state-
of-the-art methods. By combining with object detection or tracking algorithms, our proposed method can
also be used to automatically select the focal plane that keeps the moving objects in focus. To the authors’
best knowledge, it is the first time that such a method of using a deep neural network has been proposed for
estimating whether or not a single synthetic aperture image is in focus.

INDEX TERMS Focusing measure, deep learning, convolutional neural network, synthetic aperture imaging.

I. INTRODUCTION

As is commonly known, typical consumer grade cameras
have the ability to focus on objects located at different depths.
Objects on the focal plane appear sharp while others appear
blurry in images. With the reducing cost of cameras, it is now
practical to use multiple cameras in a camera array for col-
lecting different views of a scene. Synthetic aperture imaging
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is the technique that mimics a camera with a large virtual
convex lens using a camera array. By projecting the view of
each camera in a camera array onto a virtual plane located
at a selected depth, a synthetic aperture image focused at the
selected depth can be generated, in which some parts of the
synthetic image are sharp while others blurry. The part that is
sharp represents that the object is focused on the focal plane,
and the part that is blurry not. Hence, finding if an object is
at the focal depth corresponds to estimating whether or not
the part of the image in which the object is focused.
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However, finding a good focus measure for synthetic aperture
imaging is still a challenging problem. Most of the con-
ventional focus measures used in consumer grade cameras
are based on computing spatial derivatives or on using local
statistics of pixel values. In the case of a camera array, mul-
tiple images of a scene from different cameras are required.
As well, all of these methods usually cannot give the result
based on a single synthetic aperture image but requires a
sequence of such images each focusing at a different depth
within a range. Because of a large amount of calculation on
pixels from multiple images from different views, the con-
ventional synthetic aperture imaging algorithms are compu-
tationally expensive.

To address the above problem in conventional focusing
measures, a novel method based on a deep neural network is
proposed in this paper. Deep neural networks have become
very popular in recent years. They have been applied to
many computer vision areas and produced impressive results.
For example, Parkhi et al. [1] use a Convolutional Neu-
ral Network (CNN) in face recognition, which achieves an
accuracy rate of 98.95%. Pathak et al. [2] get outstanding
inpainting results in image restoration using deep learning.
Krizhevsky et al. [3] achieve the best result in the
ILSVRC2012 contest using a deep neural network. With
mounting successes, deep learning or deep neural networks
have become an indispensable tool in addressing prob-
lems in computer vision. Motivated by the above, the pro-
posed method applies a deep neural network to handle the
focus measure problem, and is shown to be effective in
experiments.

In this paper, we propose a novel method which estimates
whether or not a synthetic aperture image is focused using a
CNN. Only one single synthetic aperture image is required
in the proposed algorithm. The proposed VGG-16 [4] is
pre-trained using ILSVRC2012 and fine tuned using a large
number of synthetic aperture images. Images for fine tuning
are classified into two types, namely, focused images and
defocused images. When estimating whether or not an image
is in focus, the features of the input image are extracted by the
feature maps of the network. The probability of each class is
estimated using a classifier.

The main contributions of this paper are summarized
below: to the authors’ best knowledge, it is the first time that
such a method using a CNN has been proposed for estimat-
ing whether or not a synthetic aperture image is in focus.
In addition, compared with variance-based methods which
are the most commonly used in synthetic aperture imaging,
our method requires only one single synthetic aperture image
instead of a sequence of such images focused over a range
of depths. Thus, our method takes less time compared with
existing methods. Furthermore, the proposed method can be
used to automatically select the optimal focal plane among
the different depths that images are focused at based on the
estimated probability of focus. Last but not least, an image
with a small focused region can also be identified by the
proposed method.
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The organization of this paper is as follows. In Section II,
some related works are introduced. The method we proposed
is in Section III. Then we present details of the implementa-
tion in Section IV. Experimental results and performance dis-
cussion are given in Section V and VI, respectively. Finally,
the paper concludes in Section VII.

Il. RELATED WORKS

During the last few years, many camera array systems are
built, such as the Stanford multi-camera array [5], the self-
reconfigurable camera array [6] and the UCSD Eight-Camera
Array [7] and so on. These systems can be classified
into many categories according to their functions: high-
speed videography system [8], high performance imaging
system [9], image-based rendering system [10], synthetic
aperture system [11]-[13], etc.

In the area of focus measure for images captured by a
single camera, numerous works have been done which are
mostly based on derivatives or local statistics of the pixel
values. Most of these works measure the focus or sharpness
based on variance [14], Laplacian [15], Wavelet [16] and
discrete cosine transform [17]. These algorithms have been
applied to solve problems such as shape from focus [15], [18],
image fusion [14], [16], [19] and automatic focusing [20].
Pertuz et al. [18] and Hashim Mir and van Beek [21] focus
measure operators into several categories according to their
working principles.

Pech-Pacheco er al. [22] propose a method which uses
the local variance of gray level to measure focus. In their
opinion, a well focused image is expected to have a high vari-
ation in gray levels. The method of Pech-Pacheco et al. [22]
computes the variance of pixels inside the region of interest.
Nayar and Nakagawa [15] develop the sum-modified Lapla-
cian operator to measure the quality of image focus. The
goal of their algorithm is to increase the stability of the
traditional Laplacian algorithm in shape from focus. In spite
of the robustness to noise of their method, some details in
images cannot be well dealt with if the size of window
changes. Inspired by the fact that images with different focus
levels have different marginal distributions of wavelet coef-
ficients, Tian and Chen [16] propose an approach of sharp-
ness measurement based on a Laplacian mixture model of
wavelets. Though their result is encouraging, their method
is computationally expensive. Kristan et al. [17] introduce a
method which uses the Bayes spectral entropy of an image
spectrum. The sharpness can be calculated by transforming
each sub-image with a discrete cosine transform. Though
the computational requirement is reduced using smaller sub-
images, the region for measurement is limited by the focusing
window.

In addition to applications in single cameras, focus mea-
sures have been applied to camera arrays in recent years.
Yang et al. [23] propose an algorithm of focus measure
which is based on pixel information among multiple visibil-
ity layers. However, textureless background may limit their
performance. Pei et al. [24] propose a method of generating
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all-in-focus synthetic aperture images using image matting.
The defocused region is replaced by focusing on background
objects using energy minimization, and the focused region is
sharpened using a labeling method. Their method extends the
conventional method by replacing out-of-focus background
with a sharp one using image matting. The shortcoming of
their method is that their method may fail when the objects in
the scene span a small depth range. Yang et al. [25] propose
a novel method to solving the camera array auto-focusing
problem. Moving objects through occlusion can be seen with
an active camera array. However, because of the optimization
and iteration in their method, the procedure is computational
expensive.

Since Krizhevsky et al. [3] published AlexNet in 2012,
more and more deep networks such as VGG [4],
GoogleNet [26], ResNet [27] and DenseNet [28] have been
put forward. In recent years, CNN has been applied to
many areas and achieved excellent results, such as image
segmentation [29]-[32], image super-resolution [33]-[37],
image style transfer [38]-[41], image dehazing [42], [43],
image steganography [44], etc. In particular, many image
classification problems have achieved remarkable results
with CNN. Parkhi et al. [1] use CNN for face recognition,
Levi and Hassner [45] apply CNN to age and gender classi-
fication, and Narayana et al. [46] get outstanding results in
gesture recognition with CNN, etc.

There are two differences between our work and previous
related work. First, our focus measure method is based on a
single synthetic aperture image while most previous methods
require a sequences of such images. Second, our method is the
first one to use a CNN to identify whether or not a synthetic
aperture image is focused.

IlIl. CNN-BASED FOCUS METHOD

Our focus method begins with one single synthetic aperture
image. To state how the image is generated, the method of
synthetic aperture imaging is introduced first. Then the deep
CNN architecture used in our method follows.

A. SYNTHETIC APERTURE IMAGING

According to the plane plus parallax calibration method [11],
a synthetic aperture image on an arbitrary focal plane which is
parallel to the camera plane can be easily computed. Denote
the reference plane which is parallel to the camera plane as
7, and the depth of the reference plane as r. Denote the
N cameras in the camera array as C1,---,Cy and F; as a
frame captured by camera C;. Among these N cameras, one of
them is chosen as the reference camera C,. The homography
matrix H; warps F; to the reference camera C; at the reference
plane 7, as shown in (1):

W, =H; - Fj, (1

wherei =1, ---, N and W; , denotes the warped image from
camera C; to camera C, after the homography transformation.
The relative positions between cameras are represented by the
displacement matrix denoted by AX which can be obtained
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from the calibration result of the camera array. Denote 7; as
the target focal plane at depth [ within the depth range and
7y is parallel to the reference plane .. When focus on the
plane 7, the ratio of the relative depths from the camera plane
is denoted by d’ = (I —r)/I. According to the method in [11],
the parallax Ap’ at depth [ is given by:

Ap =AX-d'. (2)

According to (2), the target plane 7; can be focused on by
translating the images on the reference plane 7, using the
parallax matrix Ap’. For example, assume that plane 7; at
depth [ is to be focused on, image W; , is shifted by Ap’ using:

/
wi=| g S| )
where W;; denotes the shifted image focused at depth [.
I is a 2 x 2 identity matrix. € is a two-dimensional zero
vector. Denote W;; (g) as the value of pixel g. Denote S(q)
as the value of pixel ¢ in the corresponding synthetic aperture
image. According to (4):

1 N
Si(@) = ; Wi (q), 4

the synthetic aperture image S; which focuses at depth /
is generated by averaging the pixel values in all warped
images W; ;.

In conclusion, to create a synthetic aperture image with
the depth information, we place the calibration pattern on the
reference plane 7. Next, we project the images of different
camera views onto the reference plane using homography H;.
Then, the calibration pattern is moved to different relative
depths for computing the parallex. We obtain the relative
camera distance AX with the rank-1 factorization of the
matrix of parallax vectors. Based on the plane plus parallax
method, with the relative camera distance AX, it is easy to
generate parallax Ap’ using (2). Image W;; is obtained by
projecting W; - onto the reference plane with focus at depth /.
Finally, by averaging the pixel values in all warped images
Wi;.1 we obtain the synthetic aperture image S; which focuses
at depth . More details can be found in [11].

The parallel parallax synthetic aperture imaging is shown
in Fig. 1. P denotes a point on the target focal plane, and it
has distinct imaging points p;, p, in cameras C;, and C,. Ax;
denotes the relative camera displacement between C; and C,.,
and Ap’ denotes the corresponding parallax.

B. DEEP CNN ARCHITECTURE

Synthetic aperture images are generated to fine tune a
pre-trained VGG-16 with the fully connected and classi-
fication layers replaced. The input images are processed
by hidden layers including convolution layers, activation
layers, pooling layers, fully connected layers, dropout
layers and the softmax layer. The network is designed to
solve the problem of recognizing different classes accord-
ing to features learned through mappings among layers.

VOLUME 7, 2019



Z. Pei et al.: Focus Measure for Synthetic Aperture Imaging

IEEE Access

FIGURE 1. The parallel parallax synthetic aperture imaging.

Convolution layers [4], [27], [28] are used to extract features.
Activation layers [3], [47] make the neural network model
change from linear to nonlinear, thus being able to deal with
more complex problems such as image classification. Pooling
layers [48], [49] reduce the computational complexity of the
network on the one hand and extract the main features on the
other hand by compressing the feature maps. Fully connected
layers [50] transform the two-dimensional feature maps into a
one-dimensional vector, which facilitates the input of features
to the final softmax layer. Droupout layers [51], [52] are to
prevent overfitting in the network training process. As the
final classification layer, the softmax layer [53], [54] outputs
probability distribution for classification. The structure of the
deep network is shown in Fig. 2. The activation layer, pooling
layer, and dropout layer are not shown in Fig. 2. After an input
image is processed through the different layers, the feature
maps of the input image are extracted for classification. At the
end of the network, the probabilities of the two classes are
estimated using softmax.

Each synthetic aperture image is first resized to a resolution
of 224 x 224. Next, it is processed in the convolution layer.
The convolution operation is expressed as:

1 J
Gy =Y | Y Fx+ay+bH@b |,
X,y a,b

FIGURE 2. The structure of the network.
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where F(x,y) denotes an element of the input matrix and
G(x,y) an element of the output matrix. x and y denote the
x-th row and the y-th column of the matrix, respectively.
Similarly, a and b denote the a-th row and the b-th column of
the kernel. Denote H(a, b) as an element of the convolution
kernel. The size of the kernel is J. I denotes the size of the
input matrix. In the convolution layers, kernels are initialized
by a Gaussian function. After the convolution operation of
one kernel, a two-dimension feature map is generated. Hence,
the output of the convolution layer is equal to the number of
kernels in the layer. The detailed parameters in each convolu-
tion layer are shown in Fig.2. For example, in the convolution
layer “conv1”, the size of the kernel is 3 x 3 and the number
of filters is 64.

In our network, there is one activation layer followed each
convolution layer. The rectified linear units (ReLU) function
is used as the activation function. The output of the activation
layer is defined as:

R(x,y) = max (0, G (x,)), (6)

where R (x, y) denotes an element in the output matrix of the
activation layer. Compared with sigmod, ReLU will speed up
training with less computation.

To reduce the number of parameters, pooling layers are
used in the network. In our proposed method, pooling oper-
ations are max-pooling. The output of the pooling layer is
defined as:

U(x',y)=max(Rx+m,y+n)|mnel0,All), (7)

where U (x’, y ) denotes an element in the output matrix of
the pooling layer, and A/ denotes the stride. In this paper, Al
is set to 2.

Fully-connected (FC) layers are appended as “fc6”,
“fc7”, and “fc8” as shown in Fig. 2, and each can be
expressed as:

Y
OW =B+ wi. U@, ®)

x=1
where O (¢) denotes the t th element in the output matrix of
the FC layer. w; x denotes the weight of the xth element of the
input matrix U (x). 8 denotes the bias, and Q the number of
elements in U (x). The input of the first FC layer is converted
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FIGURE 3. The workflow of the proposed method.

FIGURE 4. 8 scenes in our campus dataset which are used in our experiments. (c) and (f) are scenes without occlusions. The others are scenes with

occluders.

by rasterizing the output of the previous layer. “fc6”, “fc7”,
and “fc8” are fully connected. In the network, three fully-
connected layers, “fc6”, “fc7”’, and “fc8”’ are used. To avoid
the overfitting problem in the network, dropout is used in the
fully connected layers with a rate of 0.5.

To classify the output of the final fully-conntected layer
into “focused”” and ‘“‘defocused” categories, a softmax layer
is added at the end of the network. Denote p,, as the predicted
probability of the k-th class in total K = 2 classes, and it is
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calculated as:

e%

= 2521 00

Then, the logistic loss is used as the network loss function,
which is defined as:

Pk &)

B
1
Lw) = =2 3 log(pe.n), (10)
n=1
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FIGURE 5. 8 focused images used in the experiments.

FIGURE 6. 8 defocused images used in the experiments.

where L is the loss function. B denotes the number of images
in a batch in one iteration. Denote Aw as the partial deriva-
tive of the loss with respect to the weight, which is expressed
by:
oL

Aw = —. (11)
ow
The weight of a neuron is adjusted as:
Witl = wi+ Aw - a, (12)

where w; denotes the weight of the neuron in the i-th iteration.
o denotes the learning rate of the network. In the proposed
network, the value of « is 0.001. After thousands of iterations,
the loss in the network approaches zero.
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The workflow of our method is shown in Fig. 3, in which
the synthetic aperture images are taken as the input of the
network, processed by several hidden layers, and finally the
network outputs the probabilities of focused or defocused.
The pseudocode of the whole algorithm is presented in
Algorithm 1.

IV. IMPLEMENTATION DETAILS

In order to get synthetic aperture imaging datasets more
conveniently, a single GoPro Hero Silver 4 camera which
can move horizontally on a tripod is used to simulate a
camera array in the experiments. The scenes in the campus
dataset are static. During the process of moving, different
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FIGURE 7. Samples of synthetic aperture images utilized in the Stanford CD-case scene. The relative focusing depth increases from top left to bottom

right. The result of this scene is shown in Table 3.

FIGURE 8. Synthetic aperture imaging results of focusing at increasing relative depths from top left to bottom right. The top left image is focused at
130 relative depth and the bottom right image is focused at 490 relative depth. Images focused at 190 depth (row 1, column 5) and 430 depth
(row 5, column 1) appear sharp while others appear blurry. The curve of auto-focusing in this scene is shown in Fig. 9.

positions on the tripod can be viewed as positions of each
camera in the camera array. By extracting frames in the
captured video, different frames can be viewed as different
positions of cameras in a camera array. The method of gener-
ating unstructured synthetic aperture images can be found in
Ma et al.’s work [55].

After getting the data, we implement the process of
synthetic aperture imaging with C++ and OpenCV 3.3.0.
44 campus scenes which include buildings, stone figures,
glass walls, cars, etc. are selected as our campus dataset.
In each scene, about 200 synthetic aperture images are gen-
erated at different depths for training and testing.
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Caffe is used [56] as the implementation of the deep
learning framework and fine-tuning is applied to the
pre-trained network. VGG-16 is used in the proposed work.
In the training dataset, synthetic aperture images generated
from 44 scenes are classified by one of the authors into
either focused or defocused. If the focused regions cover
an interesting object of an image, the image is classified as
focused. Otherwise, it is classified as defocused.

V. EXPERIMENTAL RESULTS

In this section, we use 2812 focused images and 288 defo-
cused images with a resolution of 640 x 360 in 36 scenes,
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Algorithm 1 Algorithm 1 of the Proposed Method
Generate synthetic aperture images of different scenes;
Classify generated images into two categories;
Initialize “fc6”, “fc7” and “‘fc8”’ with Gaussian filter;
for each mini-batch in the training set do
for each sample in one mini-batch do
for each layer i = 1 to number of hidden layers n do
Compute the output matrix with the input matrix of
each layer i according to section I1I-B;
end for
for each layer j=nto 1 do
Compute the Loss L; according to Eq. 9 and 10;
Update every weight w in the network according to
Eq. 11 and 12;
end for
end for
end for
Input testing set into the deep network;
Get probability of each category using the deep network.
if the probability of the focused class is greater than the
probability of the defocused class then
The input image is a focused image.
else
The input image is a defocused image.
end if

which are part of the 44 scenes for training, the other 8 scenes
(see Fig. 4) and the Stanford CD cases dataset are used for
testing.The training process runs on Ubuntu 16.04 operating
system with 4.20GHZ Intel Core i7-7700K central processing
unit, 32GB of memory and NVIDIA TITAN Xp graphics
card. It takes 8 hours 36 minutes to train the network with
100000 iterations. Synthetic aperture images of these scenes
are generated in different depths with the same interval.
To evaluate the performance of determining whether or not a
synthetic aperture image is focused, our method is compared
with the method based on the variance of pixel values method
which is widely used to distinguish the focus pixels from
the background in synthetic aperture imaging, such as [9],
[23], [24], [57], and [58]. Whether or not pixels in the test
image are in focus is determined by the variance value. If the
percentage of focused pixels is larger than a threshold of the
focused region, the test image is determined as a focused one.
Otherwise, the test image is determined as a defocused one.
The focused and defocused images used for comparison are
shown in Fig. 5 and Fig. 6, respectively, and the correspond-
ing results are shown in Table 1 and Table 2.

The Stanford CD-cases dataset! consists of a scene with
two CD cases and a poster and is also used for testing. The
performance of estimating whether or not a single image is
focused is also evaluated by the Stanford CD-cases dataset
(see Fig. 7). Images focused at different depths are evaluated
by the proposed method. The results are shown in Table 3.

I'Stanford dataset download in http://lightfield.stanford.edu/Ifs.html
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FIGURE 9. The auto-focusing result of the networks in Fig. 9. (a) The
result of the avgNetwork. (b) The result of the defocusNetwork. (c) The
result of the focusNetwork.

TABLE 1. The results of focused images in Fig. 5. v/ represents that the
test image is determined as a focused one. X represents that the test
image is determined as a defocused one.

Scene a|blc|d|e|f]|g|h]|ACC

Ours AR AR AN AR AN AR4 100%

Variance X | X[ X | X|X|X|V/|X]| 13%

The images focused at relative depths 165, 175 and 200 are
well focused while images focused at depths 135, 235 and
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TABLE 2. The results of defocused images Fig. 6. v/ represents that the
test image is determined as a defocused one. X represents that the test
image is determined as a focused one.

Scene a|blc|d|e|f]|g|h]|ACC

Ours IV N
Variance IV X 88%

100%

TABLE 3. The probability of the focused class of corresponding images
in Fig. 7.

Depth | Probability | Depth | Probability
135 0.36% 200 100.00%
165 100.00% 235 0.12%
175 100.00% 255 0.02%

TABLE 4. Details of the number of images used for training in the three
networks.

Focused Defocused
Network . .
images images
“avgNetwork” 1550 1550
“defocusNetwork™ 288 2812
“focusNetwork” 2812 288

255 are defocused. The results show that both focused images
and defocused images are estimated properly.

VI. PERFORMANCE EVALUATION AND DISCUSSION

To analyze the performance of our algorithm, the discussion
is separated into three different parts. First, the influence
of weights in the training set is evaluated. Then, the pro-
posed method is compared with other focus measures for
auto-focusing synthetic aperture images. Finally, the perfor-
mance of our method on images with small focus regions is
discussed.

A. DISCUSSING DIFFERENT WEIGHTS OF THE

TRAINING SET

To evaluate the influence of the training set, the weights of
focused images and defocused images are changed in three
different training sets. Three CNNs which have the same
structure are trained by three different training sets. In the
first network, which is called the avgNetwork, the number
of focused and defocused images are the same. In the second
network, which is called the defocusNetwork, there are more
defocused images than focused images, while in the third
network, which is called the focusNetwork, there are more
focused images than defocused images. Details of the number
of images used for training the three networks are shown
in Table 4. All three networks are trained by these three sets
in the same 36 scenes with 100000 iterations. In the result
of auto-focusing, three networks are evaluated by scene (f)
in Fig. 4 (sequence of the synthetic aperture images are shown
in Fig. 8). The three networks have different ability to select
the optimal focused depth from images focused at different
depths. All networks estimate relative depths around 190,
265 and 430 as the most focused images. As shown in Fig. 9,
images focused at these three depths are well focused at
different regions. Our method can automatically choose the
optimal focal plane if the weight of training images changes.

TABLE 5. The accuracy of methods in auto-focusing. v/ represents that the focus depth predicted by each method has the target object. X represents that

the focus depth predicted by each method has no target object.

2]
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FIGURE 10. The example of comparison with scene (f) in Fig. 4. Synthetic aperture images in Fig. 8 are used in the comparison.

(see text for details).

However, the performance of auto-focusing is influenced by
the weights. For example, in Fig. 9 compared with (a) and (b),
the result of (c) is much closer to the ground truth. Therefore,
we chose the focusNetwork for final evaluation.

B. EVALUATING AUTO-FOCUSING QUALITY

The proposed method are compared with other focus measure
operators in the performance of auto-focusing in Table 5, such
as Sum Modified Laplacian (SML) [59], Gray-level Local
Variance (GLV) [22], First-Derivative (FD) [60] which is
based on first-order differentiation, Vertical Sobel (VS) [61]
which is based on second-order differentiation, Range His-
togram (RH) [62] which is based on image histogram and
Normalized Variance (NV) [62], [63] which is based on
image statistics. To explain how our method is compared with
others, an example of comparison is shown in Fig. 10. Due to
the different ranges of different methods, we normalize the
results to a range of 0 to 1 for comparing different methods
conveniently. The function value of each method represents
the normalized focus measure obtained by each method. The
green region above the horizontal axis denotes the optimal
depth range which has the target object. In order to remove
noise of small peaks, only the distance between peak and
trough greater than 0.1 is considered. There are 8§ scenes
and the Stanford CD cases dataset used in the comparison.
In each scene, around 15 synthetic aperture images focused
at different depths are generated. For example, synthetic
aperture images of scene (f) are generated in 150-220 depths
with the interval 5. In the comparison, the range of expected
focus depth is set at a relative depth of 10. Table 5 shows the
comparison of the accuracy of auto-focusing using different
focus measures. Fig. 11 shows autofocus images of scene (f)
obtained by different focus measures. The methods based on
Var, RH and NV failed to automatically focus. The methods
based on SML, GLV, FD, VS all automatically focus on depth
185, which is incorrect, while our method on depth 190,
which is sharp. The performance of our method is the best.
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FIGURE 11. The results obtained by different focus measures. (a) is the
result of the method based on SML, GLV, FD, VS. (b) is the result of our
method.

The computation time of the method based on variance, SML,
GLV, FD, VS, RH, NV and our method are, respectively,
960 ms, 557 ms, 465 ms, 432 ms, 960 ms, 330 ms, 419 ms
and 60 ms. Thus, our method can process synthetic aper-
ture image sequences focusing at different depths at 16.7fps,
which is 5.5 times faster than the second RH method (3fps).

C. TESTING ON IMAGES WITH SMALL FOCUS REGIONS
Our method has the capacity of measuring an image which
has small focus regions. The images in Fig. 12 are focused at
the depth of objects with small regions. The focus probabil-
ities of (a), (b) and (c) in Fig. 12 are, respectively, 100.00%,
100.00% and 100.00%.
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TABLE 6. The computation time of the methods.

Var SML GLV FD
960 ms 557 ms 465 ms 432ms

VS RH NV Ours
960 ms 330 ms 419ms 60ms

FIGURE 12. Synthetic aperture images focused on small regions. (a) and
(b) Two images focused on a tree. (c) An image focused on a statue.

VII. CONCLUSION

In this paper, we propose a novel method which utilizes deep
learning to estimate whether or not a synthetic aperture image
is in focus. Our method uses a CNN which is a powerful
method for focus measure. There are many advantages of
our proposed method. First, compared to other focus mea-
sure algorithms which require image sequences, our method
uses only one single synthetic aperture image as input with
much less computation time. Second, our method is the first
CNN-based focus measure for synthetic aperture imaging.
Third, our method has the capacity of measuring an image
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which has small focus regions. Furthermore, our method can
be used in auto-focusing. In spite of many advantages, there
are still limitations in our method. According to the data-
driven method, our method is sensitive to the training set. For
augmentation of the training data, focal images which are
near the depth of the object may decrease the performance
of our method. To handle this problem, we plan to increase
the number of images in the training dataset in the future.
As well, developing a real-time focus measure system using
deep learning for synthetic aperture images has become a
possibility as demonstrated in our proposed method, which
we also plan to investigate.
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