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ABSTRACT Mining and analysis of time series data (TSD) have drawn a great concern, especially in the
TSD clustering, classification, and forecast. In the industrial field, e.g., the work condition monitoring and
the environmental safety, it is crucial to follow the trend of the corresponding TSD for a safety forecast, and
few studies have been devoted to such a trend following. Motivated by this, we propose a trend following the
strategy of TSD by using a long short-term memory (LSTM) network for safety forecast, in which the training
method aggregates the particle swarm optimization (PSO) algorithm with gradient descent (GD) to obtain
more competitive model parameters. Three kinds of trend representations of TSD are first defined based on
the corresponding research in stock option. Then, the LSTM optimized with the PSO-GD is developed to
perform the trend following. From the viewpoint of safety forecast, the trends varied in different time length
are further predicted and analyzed. The superiority of the proposed algorithm is experimentally demonstrated
by applying it to the electromagnetic radiation intensity TSD sampled from an actual coal mine and PM2.5 in

UCI repository.

INDEX TERMS LSTM, PSO, safety farecast, series data, trend following.

I. INTRODUCTION

Data mining have been widely used in our real life, and
it refers to automatically extract intriguing, implicit, pre-
vious unknown, and potential helpful patterns or knowl-
edge from large-scale mass data [1]. Time series data (TSD)
are an important type of high dimensional data with high
complexity, dynamics and noise. TSD are a series of data
points indexed (or listed or graphed) in time order [2]. Exam-
ples of time series are stock market transactions, heights of
ocean tides, counts of sunspots, and status collected from
sensors [3]. Many fruitful data mining studies have been
devoted to the classification [4], clustering [5], forecast [6]
and visualization [7] of TSD. The existing research on TSD
prediction in the industry field is further addressed here since
it is closely related to our algorithm.

A large amount of diversified TSD is generated at high
speeds from industrial equipment and formed as industrial big
data. For the industry, environmental safety and equipment
health are very important and can be forecasted based on their
corresponding TSD, and machine learning methods have
been well developed and widely applied. In literature [8],
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researchers proposed a Logistic regression based rock burst
early-warning model, practice has proven the model achieved
higher forecasting accuracy than conventional mathematics
methods. The Markov Chain model was applied to forecast
the lifecycle of expressway charging equipment based on
the historical TSD in [9]. This method provides theoreti-
cal support for the life management of electromechanical
equipment. [10] proposed a multi-objective genetic algorithm
coupled artificial neural network to predict water quality.
Compared with the SVM and artificial NNs trained with
PSO, the proposed model exhibited a superior accuracy in
processing water quality TSD. In the field of energy internet,
literature [11] pointed out that the key to ensuring the safe and
stable operation of the energy internet lies primarily in the
accurate prediction of the load, which is a typical TSD. Deep
learning based TSD prediction had been performed with great
successes in the load TSD in guaranteeing the accuracy of
load forecasting in [12].

Clearly, these works on TSD prediction for industrial big
data have mostly emphasized on the accuracy. However,
the variation trend within a certain period of time rather
than a specific data point at a certain moment of the corre-
sponding TSD is more significant for environmental safety
or equipment health [13], [14]. For example, in water quality
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monitoring, the conclusion that an artificial pollution source
may exist can be obtained if a 13-month consecutive upward
trend appears in the water dissolved oxygen TSD of an area.
That is, even if we could get an accurate prediction of the
water dissolved oxygen of each month, we cannot obtain
valuable information for the pollution source unless we track
the variation trends of the 13-month TSD.

The concept of trend following of financial TSD has been
sufficiently studied in the market price or stock option, how-
ever, in the industry, especially for safety forecast, trend
following of the industry TSD has a wide range of demands,
but few studies have been reported to date. Therefore, it is
necessary to develop powerful methods to solve the afore-
mentioned problems. To this end, the trend of TSD should
be first defined, which can be achieved by transferring the
corresponding knowledge from the financial TSD. Once the
trend of industrial TSD is defined, trend following becomes
an essential new form of a TSD prediction.

LSTM provides a very elegant way to deal with TSD
through time that embodies the correlations among the TSD
in time order [15], [16], and lots of research have pre-
sented the superiority of LSTM on TSD. In literature [17],
researchers embedded bottleneck vocal features in LSTM
architecture to measure the pain level through voice char-
acteristics, and the results showed that the classification
accuracy are higher than other comparisons. Reference [18]
utilized LSTM to predict the coding unit splitting, and the
experimental results demonstrated its advantages in high effi-
ciency. The trend following of a TSD is also a new form
of a TSD prediction, therefore, LSTM is a natural choice
here.

LSTM is outstanding in dealing with TSD only when its
network parameters, e.g., weights and bias, are finely tuned
or optimized. GD is the most popular training method for the
LSTM due to its relatively easy implementation and has been
met with great successes in practice [19]-[21]. GD training,
however, may cause the "vanishing/exploration gradient prob-
lem’ which will greatly impede the network [22]. Designing
more effective optimization method to train a LSTM is critical
in applying it to TSD prediction. Evolutionary algorithms
assisted optimization methods have proven to be feasible and
powerful in traditional neural networks and thus such scheme
is considered here.

Evolutionary algorithm (EA), which mainly contains PSO
algorithm [23], Genetic algorithm [24], Ant colony [25],
etc., is a generic population-based metaheuristic optimization
algorithm. The algorithms mainly depend on stochastic opti-
mization methods and do not need the process of gradient
calculation. Compared with other evolutionary algorithms,
the PSO algorithm is able to keep a memory of good solution
to update the particles in the iteration process while the
GA cannot [26]; meanwhile the algorithm is relatively easily
implemented with no need of crossover or mutation opera-
tions. Because the algorithm intend to optimize the weights
of LSTM, an algorithm that is efficient to solve continuous
problem should be selected, thus the ant colony is not suitable

VOLUME 7, 2019

for this problem [27]. Based on that, the PSO algorithm is
chosen here.

Lots of research associating PSO with the NNs, e.g., in [28]
and [29] the PSO-RNN, PSO-ESN are trained mainly by PSO
instead of GD. Compared with the GD training methods,
the PSO is less sensitive to weight initializations, less likely to
be trapped in local optima, and independent of the activation
function gradient [30]. Therefore, PSO is not susceptible to
the gradient problem [31]. It seems that the PSO method
is a potentially good deep learning approach, but research
has indicated that the pure PSO training method struggles
to train relatively large neural networks [32]. Reference [33]
presented an integration framework of the PSO and GD
for the LSTM when identifying handwriting. In his work,
PSO was performed before the LSTM to arrive closer to the
global minimum. The learning process of LSTM to fulfill
the prediction of TSD is dynamic while pre-using the PSO
is too complex for proper implementation. Therefore, new
integration strategies for the PSO and GD must be developed.

Motivated by these factors, we present a novel PSO-GD-
aggregated LSTM and show its effectiveness in performing
trend following for industry TSD. Specifically, the trend
definition of the TSD is first derived based on the volatility
definition of the stock option [34]. Then, the trend following
is converted into a trend TSD prediction and the LSTM is
selected to accurately approximate the trend to provide a
safety forecast. Different from traditional training methods,
we propose a PSO-GD method by aggregating the GD with
the PSO to train the LSTM. The trend of TSD in multiple
time periods can be obtained using the proposed PSO-GD-
LSTM. In the end, the proposed PSO-GD-LSTM model with
different trend representations is first validated using the
electromagnetic radiation intensity data sampled from a coal
mine and the PM2.5 data from the US Embassy in Beijing,
and is then applied for time various trend following of the
two datasets for safety forecast.

The main contributions of our work are as follows: (1)
The trend following for safety forecast is modeled as a TSD
prediction based on three kinds of trend calculation meth-
ods with different time window lengths. (2) A PSO-GD-
aggregated LSTM is presented by iteratively applying PSO
and GD methods to optimize the structural parameters of
the LSTM with lower calculation cost and higher accuracy.
(3) The enhanced LSTM is applied to follow the trend of
electromagnetic radiation intensity data sampled from a coal
mine and the PM2.5 data from the US Embassy in Beijing for
safety forecast.

The remaining of the paper is organized as follows. Three
types of trend representations for TSD are presented in
Section 2, while Section 3 illustrates the LSTM model for
trend following. In Section 4, we present the detail of the
training methods in aggregating the PSO and GD approaches.
The application of the proposed algorithm in the electromag-
netic radiation intensity data of a coal mine and PM2.5 data
in Beijing together with the experimental analysis are demon-
strated in Section 5. Finally, the conclusions are followed.
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Il. TREND REPRESENTATION OF TIME SERIES DATA
Times series data are a sequence of discrete-time instances
taken at successive and equally-spaced time points. For sim-
plicity, the industry TSD are denotedas Y = {p;,t € T}, T =
{1,2,---M}, where T is the discrete-time index set with M
time points. Considering a length [ for the time window of Y,
three trend representations of the k-th time span, i.e., the
average Ay, the logarithm 7, ; and the standard deviation
o1, are presented here based on their similar definitions in
the stock option.

For the T discrete-time index set, the number of points in
the time span can be easily calculated as N = |T/l], where
|.] represents the floor integer of an element. Then, the Ay ;
is defined in Eq. 1.

kl

Pt
t=(k—1)I+1

[

The logarithmic operation is universally applied in TSD
processing, which simply uses the log differences between
the starting and ending values of the considered length / of the
time window to compresses the data scale. The logarithmic
metric over the period /, is defined in Eq. 2.

Pkl
1k, = In(———) = In(pg) — In(pg—1)1+1) ()
Pk—1)I+1

Ak,lz 9k:1129"'9N (1)

The logarithm of the trend definition is simple since only
two points of a time period are used. However, the informa-
tion of other data in this period are ignored, which cannot
sufficiently reflect the overall trend of this time span. There-
fore, the standard deviation of the logarithm based metric is
further addressed according to the volatility definition of the
market price in [34].

The logarithm of each pair of (p;, ps+1—1) is first calculated
on Y as:(3)

Pi+1-1
et = I0(=7) = Inprs—1) = Inp) 3)
t
Then, the standard deviation of the arithmetic or logarithmic
mean over a k-th time window oy can be calculated as

follows.

i -,
> (g —hiy)

t=(k—1)I+1
-1

Okl = k=1,2,--- N (4
where l_zk, 1 is the average of /; ; on the k-th time window.
The values of these three trend representations are illus-
trated in Figures 1 (a) and (b) by comparing with the TSD
of the electromagnetic radiation intensity of a coal mine.
A total of 1320 points are normalized or z-scored for com-
parability in the same coordinates, and the [ is set to 30.
The values of Ay ; and oy ; are plotted in Figure 1 (a) due
to their similar variation scales. The same values for 7y ;
are given in Figure 1 (b). oy ; and that of the average A ;
Several conclusions are observed from these two figures.
(1) The values of the standard deviation (std) have similar
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FIGURE 1. Visualization of the indicators. (a) Curves of o) ;,A ; and the
real data. (b) Curves of logarithmic ry ; and the real data.

variation trends, i.e., on the same time span points, the trends
of the TSD on these two metrics are similar. (2) The curves
of ok ; and Ay ; are relatively smooth, and the oy ; is more
stable. (3) The trend values calculated with the logarithmic
ri,; vary greatly and may have different variations to the other
metrics, i.e., between two adjacent time spans, the values
of the logarithmic increase while that of the oy ; and A ;
decrease.

Accordingly, the average method is simpler, and the
logarithmic-based standard deviation is more stable, which
should be more reliable than the logarithmic one in depicting
the trend of the industry TSD. These defined trend represen-
tations will be further predicted by the LSTM strategy and
further compared.

lIl. LSTM-BASED TREND FOLLOWING OF TSD
From the aforementioned trend representations, the trend of
the TSD can be represented as 7r = {x¢ .,k =1,2,--- ,N}
with [ being the time window length. The values of x; ; are
determined by the /, and the corresponding trend represen-
tation, i.e., the xx ; can be one of the form Ay j,r¢ ; or ok .
In this scenario, trend following of the TSD is to predict the
values of xy1,7, XN42,1, - - -, 1.€., to predict the trend of the
source TSD in the time span of {T + 1,7 + 2,---,T +
BAT +14+1,T+1+2,---,T + 2l}---. Clearly, trend
following of the TSD is converted into a TSD prediction
onTr = {xx;,k = 1,2,---,N}. Accordingly, powerful
machine learning methods and models in the TSD prediction
can be applied to the trend following problem, besides, based
on the analysis in the Introduction, LSTM is designed here to
perform the TSD trend following.

LSTM is composed of collections of cells and is one
of the recurrent neural network (RNN) models developed
to ease the dilemma of gradient vanishing or explosion in
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FIGURE 2. LSTM for trend following of a TSD.

the back-propagation algorithm when processing TSD with
long-term dependency [35]. In our algorithm, a cell model
of the LSTM is shown in Figure 2. For the presented trend
following, the input of the LSTM is the trend values of x; ;

and the training set 7s = {xx ;,k = 1,2, ---, L} is obtained
by selecting the first L elements from 7r = {xx;, k =
1,2,---,N}. The remaining N — L elements of T, are set

as the testing samples. With the training set T, the trend
following process can be implemented with Eq. 5 to Eq. 10,
and the output /i ; in Eq. 11 is the forecasted trend of Xx41 ;.

Sy = oWy * [h—1,1, x,1] + by) 5
i1 = (Wi [hg—1,1, Xk 1] + bi) (6)
ok, = 0(Wo * [hi—1,1, Xk 1] + bo) @)
k1 = tanh(We * [Ag—1,1, xk 1] + bc) 3
Cri = fig * Cr—1,0 + ik 1 % Cr 1 )
hk,l = Ok, * tanh(Ck’]) (10)
X410 = Wi i(og,1 * tanh(Cy 1)) + b (11)

The common training method in the LSTM is essentially
the same as that used in traditional BP neural networks [35].
Compared with traditional shallow NN, the LSTM is a deep
learning model with significant growth in the number of
parameters along with an increase of the cells. In our model,
the input and output of the LSTM is 1-dimension. Supposing
the LSTM has one hidden layer and H cells in each layer,
the total number of model parameters can be np = 4H? +
9H + 1. For example, if H = 5, then np = 146, and if
H = 10, then np = 491. Clearly, the optimization of the
LSTM parameters is a critical but hard task. We present a
PSO-GD method here to train the LSTM by integrating both
the merits of the PSO in exploring and GD in exploitation and
speed. The presented PSO-GD optimization will be further
illustrated in the following section.

IV. IMPROVED LSTM WITH PSO-GD-AGGREGATED
TRAINING

Particle swarm optimization (PSO) is a kind of population-
based, meta-heuristic, optimization approach inspired by the
social behavior of birds within a flock [23]. As previously
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addressed, PSOs have been successfully applied to optimize
NNs by encoding the weights, bias or even structure param-
eters into particles [36]. For the LSTM, which is a kind of
deep learning model, the PSO cannot be simply used as
before due to the following two reasons. First, the number of
optimized parameters is larger (e.g., 146,491 or even bigger),
which is a high dimensional optimization for the PSO and is
difficult to obtain satisfactory solutions with an acceptable
computational cost. Second, the LSTM is often designed to
online fulfill the TSD, the computation should be much more
rapid, which is quite difficult for the population based PSO.
The GD is fast for training the LSTM, with the exception
of local trapping. Therefore, developing an integration of the
PSO and GD is a natural methodology.

Our purpose here is to optimize the weights and bias values
for the trained LSTM, and the main idea of the PSO-GD
method is as follows. We first train the LSTM network using
the GD approach for a few iterations. Then, we send the
GD obtained model parameters i.e., the weights and biases,
of the LSTM network to the PSO procedure as a reference and
informative solution to generate competitive initial particles
for further exploring, which is expected to reduce the possi-
bility of the “vanishing/exploration gradient problem™ or the
local optima problem. The model parameters of the LSTM
optimized from the PSO are again fed into the GD. Such a
loop can be repeated until the performance of the LSTM is
satisfied. The detail aggregation of GD and PSO is developed
as follows.

A. GD SESSION

(1) Set the hyper-parameters including the structure of the
LSTM, the dimensions of input and the output of the LSTM,
denoted as input_dim and output_dim, learning rate, time step
and number of iterations.

(2) The gradient descent algorithm is selected and used
to first train the LSTM for T iterations by inputting the
calculated trend TSD, and the model parameters, i.e., weights
and bias of the LSTM, are recorded as W(t),r =1,2,...T.

B. PSO SESSION

(1) Calculate the total number of parameters to be optimized.
For a standard LSTM, i.e., an input layer with input_dim
inputs, one hidden layer with H cells and a full connect
layer with output_dim outputs, the number of parameters
can be calculated as 4 x (H + input_dim) x H + H) +
(H + output_dim) in our algorithm. Both the input_dim and
output_dim are 1 and H = 35; therefore, a total number
of 146 parameters are optimized. Real-number encoding is a
good choice for such an optimization and can be expressed
as W = (W, W;, W, Wy, by, by, be, b,) according to the
structure of LSTM.

(2) Initialize the PSO population based on W () obtained
from GD session. The PSO population is initialized here by
considering the convergence information involved in W(¢)
and the local escaping requirement. Several methods can
be used to generate the initial population of the PSO. For
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example, randomly selecting some optimized parameters as
part of the initial particles or selecting parameters according
to their prediction errors. In order to possibly cover more
locals, we present an alternative selection method for gen-
erating competitive particles. T is divided equally into M
batches, and the parameter sets W(Ti/M),i = 1,2,...,. M
are selected as the bases of the initial particles, that’s to say
the weight parameters obtained from different iterations will
be selected as the initial position of each particle. A 1/3 pop-
ulation size of the particles are directly copied from these
parameter sets, and another 1/3 of the particles are generated
by adding a Gaussian perturbation to the finally obtained
parameter set W (T'). For the last 1/3 of the particles, we fully
consider the process of weights convergence in GD thus
randomly generate particles in the scope between the values
of W(T)and W(T — T /M).

(3) Calculate the fitness of the particles. Each particle
corresponds to a LSTM network, and we take the root mean
square error (RMSE) between the LSTM output and the true
value as the fitness of the particles.

(4) Assign the number of particles as / and iteration times
in every particle as S, and then operate the PSO algorithm
according to the following equations.

Vits + 1) = w *x Vi(s) + rici(pbest; — W)
+ rpco(gbest — W) (12)
Wils +1) = Wi(s) + Vis + 1) (13)

where o is the inertia weight, which controls the impact of
the previous history on the new velocity, ¢; and ¢, are the
acceleration terms that pull each particle X; towards its own
current best position and the population global best position,
and r; and rp are two random numbers in the range [0,1],
whose values can be found by trial and error.

(5) Output the best particle as the starting point of the next
GD session.

V. APPLICATIONS

We apply our algorithm to two trend followings of TSDs for
safety forecast, i.e., the electromagnetic radiation intensity
data sampled in every minute from a Chinese coal mine and
the PM2.5 data sampled in one hour from the US Embassy in
Beijing.

A. BACKGROUND

The dynamic coal or rock disasters, which mean large
amounts of coal and rock burst out from the mass in a
short period accompanying with a strong dynamic phe-
nomenon, can cause significant personal casualties and prop-
erty losses [37]. Electromagnetic radiation intensity (ERI)
can reflect the stress state and deformation level of coal and
its amplitude shocks with the dynamic energy changes [38].
The variation trend of the ERI-TSD is an important indi-
cator for judging the occurrence of dynamic coal or rock
disasters for underground coal mines [39]. Three cases are
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usually considered for safety forecast of the dynamic damage
according to the trends of the ERI-TSD. Mines are considered
safe if the variation trend of the ERI-TSD remains relatively
stability, i.e., no large or sudden changes in the trend values.
A high probability for the occurrence of dynamic disasters
will appear if a continuous rising tendency of the ERI-TSD
occurs, and the safety forecast should be activated with a
high level of concern. The most dangerous scenario is that
a sudden high change of the ERI-TSD happens and holds
for a period. In such case, it is possible that the coal or rock
may have exploded, and preventive measures should be taken
immediately for life safety [37], [40]. Literature [41] defined
a variable coefficient as the division between the standard
deviation and mean value of ERI-TSD over the same time
period, and took the coefficient as the trend variation over the
time period. Once the coefficient value reached the threshold
given by practice, the dynamic disaster was thought broke
out. Similarly, if the predicted trend value is greater than a
threshold, a pre-warning will be activated.

Atmospheric aerosol particles, also known as particulate
matter (PM), are microscopic solid or liquid matter suspended
in Earth’s atmosphere. Sources of PM can be natural or
anthropogenic and impact the climate and human health.
PM2.5 refers to particles with aerodynamic equivalent diam-
eters less than or equal to 2.5 microns. A study [42] revealed
that there was no safe level of particulates, and the smallest
PM2.5 were particularly deadly, with a 36% increase in lung
cancer per 10ug/m? since they can penetrate deeper into the
lungs. Thus, if we can obtain the trend of PM2.5 over a certain
period ahead of time, more targeted environmental protection
measures and more accurate safety recommendations can be
implemented.

It is clear that the single value of the TSD on each sampled
time point has no significance towards the judgement of
disaster occurrences or performing measurements and cannot
provide reliable information for safety forecast. Only the
variation trend of these different types of TSD is extracted
and forecasted, the safety status together with its changes can
be well measured and predicted. Therefore, trend following
for such problems are important and can be adopted to verify
the performance of the proposed algorithm.

B. EXPERIMENTAL SETTINGS

The specific experimental environment is the Anaconda plat-
form using Python, TensorFlow 1.4 and Keras 2.1.3. Two
groups of experiments are conducted to validate the pro-
posed algorithm and forecast the trend for the real ERI and
PM2.5 TSDs. Total 41,696 data points of the these two TSDs
are separately obtained and used for our algorithm.

The forecast horizon of the TSD trend is specified by the
calculations on the trend metrics, i.e., the values of Ay j, ¢ ;
and oy ;. Taking the ERI for example, the variation trend of
the ERI in 15, 30 or 60 minutes are often concerned for the
short-, medium- or long-term safety forecast. Therefore, three
different trend metrics on these three kinds of time window
lengths are calculated for forecasting. As for the PM2.5-TSD,
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trend in 6 hours and 24 hours are considered. Thus, the train-
ing data sets 7r can be obtained with equations 1, 2 and
4 by calculating Ay ;, rx,; and oy ;. The sizes and elements
of Tr on the ERI with different time window lengths are
listed in Table 1. The Tr of the PM2.5-TSD can be similarly
specified.

TABLE 1. Tr with different time window lengths.

l Ag Tkl Okl
15 A115, - ,A2779,15 T1,15, " ,T2779,15 01,15, " ,02778,15
30 A1,30, - ,A1389,30 71,30, ,7T1389,30 01,30, " ,01388,30

60 A160, - ,A4649,60 T1,60," " ,7649,60 1,60, " ,T648,60

Two groups of experiments are conducted here. First,
we validate the feasibility of the aggregated PSO-GD method
by comparing the prediction accuracy and time consump-
tion between the PSO-GD algorithm and two state-of-the-art
GD based methods, i.e., Adam and RMSprop, since these
two metrics are mainly chased by the LSTM. Specifically,
the LSTM network trained by the traditional PSO, Adam,
RMSprop, PSO-Adam and PSO-RMSprop are used to per-
form the trend following TSD problems with / = 30 and
compared. Second, we change the time window length / for
trend following of the ERI-TSD and PM2.5-TSD to find a
reliable safety forecast under different time spans.

Four indicators, i.e., Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Percent Error
(MAPE), and Max Error are shown in Eq. 14 to Eq. 17 are
used to measure the accuracy of our algorithm in trend fol-
lowing.

n
. 2
> kel — Xieta,1)

RMSE = | = (14)
n
] n
MAE = - Z [kt — i (15)
t=1
1 <& |x —X
MAPE — — Z k+t,1 k+t,1 (16)
n — Xic+t,1
Max_Error = Max |xk+,,l - fck+,,l| 17

where x4, is the true trend following value, g4, is the
predictive value, ¢ is the sampling time, and » is the number
of predicted values.

C. EXPERIMENT I. FEASIBILITY OF PSO-GD LSTM
We first conduct experiments to validate the feasibility of
the proposed PSO-GD based LSTM for trend following.
Specifically, ox; and Ag; are chosen, then the predic-
tion accuracy and time consumption of the LSTMs trained
with PSO-Adam, PSO-RMSprop, Adam, RMSprop and PSO
are compared with our PSO-GD on the ERI-TSD and
PM2.5 problems, respectively.

Take the trend following of ERI-TSD as example, the Tr =
{x1,30, X2,30, - - - , x1388,30} are used in the experiments, and
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the first 1,250 points are selected as Ts, ie., Ts =
{x1,30, X2,30, - - - , x1250,30}. The remaining points are used
as the testing set. The first 20 points of Ts are selected
to predict the 21st value [43]. Specifically, we take X; =
{x1,30, x2,30, - -+, x20,30}, X2 = {x2,30, X3,30, - * - X21,30}, - -
X1368 = {X1368,30, X1369,30, - - - X1387,30} as the inputs to
predict Y}, Y, -+ Y[, respectively. To obtain a higher
accuracy, the true values of the predicted trend on Y7 =
{x21,30}, Y2 = {x22,30}, - - -, Y1388 = {x1388,30} are also taken
as the inputs of LSTM. In summary, the inputs of the model
are fi, = {(X1, Y1), (X2, Y2), - -, (X1368, Y1368)}. And the rest
experiments are carried out follow this example.

The optimization objective function of PSO is defined as
Eq. 18:

1 N
foss = |22 Y =YHLN = 1T/1] (18)
t=1

The parameters of all the compared methods are given
in Table 2. Among the methods, PSO-GD-LSTM is the abbre-
viation of LSTM trained with the proposed aggregated opti-
mization method, while the GD-LSTM and PSO-LSTM are
the LSTM respectively optimized by only GD and standard
PSO.

TABLE 2. Parameters of compared methods.

Category

Parametor PSO-GD- GD-LSTM PSO-LSTM
LSTM
Optimization methods Adam/RMSprop Adam/RMSprop —*
Number of cell_units 5 5 —*
Learning rate 0.0001 0.0001 —*
Initial training times 400 750 —*
Retraining times 200 —* —*
Dimension of the input data 1 1 —*
Dimension of the output data 1 1 —*
Population size (pN) 150 —* 150
Population dimension(dim) 146 —* 146
Learning factor and c1 = —* c1 =
learning(c, c2, w) co =2,w =0.8 cg =2,w =0.8
PSO iteration times(N) 50 —* 500

—* Indicating corresponding method does not involve that parameter.

TABLE 3. Experimental results of trend following on ERI-TSD with
different methods.

Test Process

Error indicators Train Process
Methods RMSE  TimeLosss) RMSE ~ MAE  MAPE  Max_eror

PSO 0.00114 759.3 0.0191 0.0356 0.2501 0.0063
Adam 0.00186 339 0.0086 0.0055 0.101 0.0039
RMSprop 0.00193 3759 0.0087 0.0056 0.0993 0.0033
PSO-Adam 0.00082 461.9 0.0071*  0.0048 0.089* 0.0034
PSO-RMSprop 0.00079 457.3 0.0076 0.0052 0.093 0.0037
PSO 0.00345 7445 0.0245 0.0143 0.1511 0.0079
Adam 0.00092 278.7 0.0097 0.0058 0.059 0.0023
RMSprop 0.00126 333 0.0099 0.0058 0.0663 0.0038
PSO-Adam 0.00021 5147 0.0094 0.0057 0.0571 0.0014*
PSO-RMSprop 0.00021 530.6 0.0095 0.0057  0.0583 0.0035

The experimental results of trend following are shown
in Tables 3 and 4. All the experiments are executed for twelve
times, and their average values are calculated as experimental
results. The best values of the results are bolded. If the value
is significantly better than the compared ones by T-testing,
it will be marked with a star.
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FIGURE 3. Trend-following results of the ERI-TSD (Row 1) and PM2.5-TSD (Row 2) data sets. (a) Ag_j—30- (b) o 1=30- () A 1=30- (d) ok, j=30-

TABLE 4. Experimental results of trend following for the PM2.5-TSD with
different methods.

Train Process Test Process

Error indicators
Methods RMSE

Time Loss(s) ~ RMSE MAE MAPE  Max_error

PSO 0.0048 719.5 0.3754 0.3104 0.4272 0.2033
Adam 0.0043 321 0.2819 0.2059 0.3117 0.1207
RMSprop 0.0044 3355 0.2795 0.1978 0.299 0.1279
PSO-Adam 0.0042 466.2 0.245 0.1952 03011 0.0767
PSO-RMSprop 0.0042 471.5 0.2541 0.1996  0.2984 0.1073
PSO 0.1390 700.9 0.0641 0.0742 1.433 0.0439
Adam 0.1237 322 0.049 0.0583 1.046 0.0511
RMSprop 0.1192 329 0.0493 0.0375 1.039 0.0309
PSO-Adam 0.1169 468.9 0.0482 0.0371 1.042 0.0549
PSO-RMSprop 0.1176 453.2 0.0486 0.0374 1.038 0.0307

The trend following process of the two datasets with differ-
ent methods are given in forms of graph as shown in Figure 3.

From the above experimental results, the following con-
clusions can be made: (1) Significant differences in the
MSE indicator exist between the PSO-Adam and the other
methods, and the LSTM network trained by the PSO-Adam
reaches the highest accuracy in the process of trend follow-
ing for both ERI-TSD and PM2.5-TSD. (2) Compared with
the GD-LSTM or PSO optimized LSTM, the LSTM trained
by the PSO-GD (PSO-Adam, PSO-RMSprop) algorithm has
a better performance in the training process and achieves
smaller training errors, meanwhile generally performs better
on accuracy in the test process. Although the PSO-GD is
somewhat time consuming, the PSO has the highest time
cost with the lowest accuracy. (3) The PSO-GD-LSTMs can
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accurately track the trends calculated with the average and
standard deviation metrics. The indicators for the standard
deviation trend following are the better between the two
trend calculations. These results demonstrate that the PSO-
GD-aggregated training method for LSTM is superior and
feasible.

D. EXPERIMENT II. TREND FOLLOWING WITH DIFFERENT
TIME WINDOW LENGTHS

In practical applications, we usually need to observe the
trend of a TSD in different time periods, i.e., long-term or
short-term trends. To this end, we can adjust the length of
time window [ to perform trend following in different time
periods.

We carry out trend following of the ERI-TSD data sets
with [ = 15 (short-term) and 60 (long-term) minutes, and
PM2.5-TSD with [ = 6 (short-term) and 24 (long-term)
hours. All of these are completed by the PSO-Adam-LSTM.
The Tr set and corresponding parameters of the PSO-Adam-
LSTM for Ak, rk; or ok, under different time window
lengths are given in Table 5. The results of the trend following
are given in the form of graphs, and the error indicators are
given in the tables.

The trend following process of the ERI-TSD are presented
in Figure 4 and Table 6, and that of PM2.5-TSD are shown
in Figure 5 and Table 7. From Figure 4, Figure 5, Table 6 and
Table 7, the following observations can be reached: (1) The
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TABLE 5. Parameters of PSO-Adam-LSTM for different trend following methods with different time window lengths.

o Akl Tkl Ok,
Trend indicators
m ERI-TSD PM2.5 ERI-TSD PM2.5 ERI-TSD PM2.5
=15 =60 =12 =24 [=15 =60 =12 [=24 =15 =60 =12 [=24
Training_nums(Ts) 2715 630 3300 1650 2715 630 3300 1650 2715 630 3300 1650
Number of cell_units 5 5 5
Learning rate 0.0001 0.0005 0.0001 0.0001 0.0005
Initial training times 200 200 400 200 200 200
Retraining times 100 150 200 200 150 200
Population size(pN) 150 150 150
c1,C2,W c1=co=2,w=0.8 c1=co=2,w=0.8 c1=co=2,w=0.8
Iteration(max_iter) 50 50 50

== real |
— pso-adam

- real g
—— pso-adam ¥

i --- real
. — pso-adam

== real
— pso-adam

()

FIGURE 4. Trend following of ERI-TSD with different time window lengths. (a) Ay j_1s. (b) rx j=15- (€) ok j=15- (d) Ak j=60- (€) Ik I=60-

(f) ok,1=60-

TABLE 6. Average indicators of ERI-TSD trend following.

TABLE 7. Average indicators of PM2.5-TSD trend following.

Train Process Test Process

Error indi
Trend type

Train Process Test Process

RMSE  TimeLosss) RMSE ~ MAE  MAPE  Max_error RMSE  TimeLosss) RMSE ~ MAE  MAPE  Max_error
0.00079 715 0.0074 0.0061 0.0726  0.0128 0.3719 817 03676 02698  0.7743 1.2281
0.1227 689 02786 02098 14031 0.5106 0.7192 782 10656 0.8941 1 1.2539
0.0144 702 00482 00362  0.1572 0.0981 0.0820 817 0.2581 0.1666 0.3105  0.2187
5 0.00085 271 0.0486  0.0360  0.0971 0.0164 0.1204 586 04186 03422 0.7307 0.2205
Thi=60 0.1371 275 03736 02988 32193 0.0399 0.9383 550 1.365 1.2079 Vi 0.8983
Tk l=60 0.00073 277 0.007  0.0056 0.0627  0.0019 0.1130 588 0304 02182 0.3689  0.0504

average indicator Ay ;-5 achieve lowest training error and
performs the best for the ERI-TSD when the time window
length is 15 minutes. The standard deviation method derived
from the logarithmic, i.e., ok ;, however, is superior to all
other indicators in the other cases with different time win-
dow length for both ERI-TSD and PM2.5-TSD. Accordingly,
the standard deviation oy ; is more reliable for trend fol-
lowing and safety forecast with the proposed PSO-Adam-
LSTM. (2) For the trend of ERI-TSD, high fluctuations in
testing samples can be found in the short-term trend following
results, indicating some sudden changes occur; and from the
long-term trends we can get these changes occur only on
some points instead of keeping for a long period, there is

VOLUME 7, 2019

// Meaning indicators can’t be calculated due to the existance of 0.

no continuous rising tendency. All analysis implicates the
status of the current coal mine may occur small rock mass
disaster but has no obvious danger. (3)And the trend of
PM2.5-TSD shows a relative high variation of concentration,
this may be related to the temporal weather factor like the
wind scale, wind direction, etc. But we should recognize
sometimes the needed adjustment beyond the nature power,
thus some efficient actions and timely life tips should be taken
by the government when the PM2.5 concentration variation
is relative high.

In summary, the PSO-Adam-LSTM model has an excellent
performance for trend following with higher accuracy and
can be used for trend following of a TSD with different
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FIGURE 5. Trend following of PM2.5-TSD with different time window lengths. (a) Ay ;1. (b) rg j=12- (€) ok 1=12- (d) Ak 1=24- (€) Iy |=24-

®) ok, 1=24-

time window lengths for creditable safety forecast. From the
viewpoint of reliable and stable trend following, the standard
deviation method derived from the logarithmic, i.e., ox s,
is recommended in practical applications.

VI. CONCLUSIONS

In industrial fields with time series data, trend extraction
and forecasting are much more significant for work con-
dition monitoring and environmental safety forecast, but
few researches have been concerned about these problems.
Consequently, we present our work on the trend following
of TSD for safety forecast. The extraction of TSD is first
addressed using three methods, i.e., the average values of a
time span, logarithmic differences between the starting and
ending points of a time span, and the standard deviation of
the logarithmic values of the time span. With trend extraction,
the trend following is converted into a novel TSD prediction.
A PSO and GD aggregated optimization is developed to train
a LSTM to perform the trend following of a TSD. We validate
the feasibility of our algorithm by applying several PSO-GD
based LSTMs to real problems, i.e., the trend following
in the analysis of the electromagnetic radiation intensity
TSD for the coal or rock dynamic damage safety forecast
and the PM2.5-TSD for the environmental safety forecast.
The experimental results demonstrate that PSO-GD methods
can improve both the training effects and testing accuracy,
the PSO-Adam-LSTM outperforms all the other compared
methods and can get a most accurate prediction on the trend
following of a TSD. Trend extraction with some latent learn-
ing methods and trend following with fewer parameters for
stronger optimization-based models will be further studied in
the future.
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