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ABSTRACT Software-defined networking (SDN) is the key outcome of extensive research efforts over the
past few decades toward transforming the Internet infrastructure to be more programmable, configurable,
and manageable. However, critical cyber-threats in the SDN-based cloud environment are rising rapidly,
in which distributed denial-of-service (DDoS) attack is one of the most damaging cyber attacks. In this
paper, we propose an efficient solution to tackle DDoS attacks in the SDN-based cloud environment.
We first introduce a new hybrid machine learning model based on support vector machine and self-
organizing map algorithms to improve the traffic classification. Then, we propose an enhanced history-
based IP filtering scheme (eHIPF) to improve the attack detection rate and speed. Finally, we introduce a
novel mechanism that combines both the hybrid machine learning model and the eHIPF scheme to make a
DDoS attack defender for the SDN-based cloud environment. The testbed is implemented in an SDN-based
cloud with service function chaining. Through practical experiments, the proposed DDoS attack defender is
proven to outperform existing mechanisms for DDoS attack classification and detection. The comprehensive
experiments conducted with various DDoS attack levels prove that the proposed mechanism is an effective,
innovative approach to defend DDoS attacks in the SDN-based cloud.

INDEX TERMS Distributed denial-of-service attacks, machine learning, software defined networks, net-
work function virtualization.

I. INTRODUCTION
In recent years, Software Defined Networking (SDN) [1] and
Network Functions Virtualization (NFV) [2] have emerged as
cloud computing technologies. SDN is an innovative network
framework that can monitor and control network traffic by
utilizing the control-data plane detachment.Meanwhile, NFV
has been developed as a novel solution technology to design,
deploy and control network services with much lower costs
by separating the functions from physical network devices.
In addition, Service Function Chaining (SFC) [3] technology,
which is enabled by both SDN andNFV,was proposed to sup-
port a sequence of multiple service functions (e.g., Firewall,
DPI, Load Balancing) to a specific network flow. SDN, NFV,
SFC technologies and cloud platform (OpenStack [4]) assist
and benefit from each other to make a future SDN-based
cloud environment as shown in Figure 1.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ghufran Ahmed.

FIGURE 1. Future SDN-based cloud environment.

A. PROBLEM STATEMENTS
While SDN-based cloud is more advantageous in network
traffic control and elastic resource management for a better
cloud service in the future, it causes the vulnerability to
Distributed Denial-of-Service (DDoS) attacks to both SFC
operation and the cloud provider [5], [6]. Themain purpose of
DDoS attacks is to flood a victim with a massive traffic vol-
ume that is generated from botnets, which deplete computing
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resources and shut down the victim network systems. The
reasons why DDoS attacks are tough challenges for the SDN-
based cloud environment can be listed as follows
• First, every SoftwareDefinedNetworking orOpenFlow-
based network is now vulnerable to DDoS attacks
because an OpenFlow switch is normally able to
maintain from several up to a hundred thousands of
flow-entries. However, when the network is under a
large-scale DDoS attack, the flow number can rocket to
somemillions. This leads to not only the victimmachine
is affected, but also the SDN Controller and OpenFlow
switches stop working due to resource exhaustion.

• Regarding the use of SFC in cloud environment, every
service chain including a determined sequence of vir-
tual network functions (VNFs) is fixed in a specific
network path and may be public to internet users for
commercial purposes. This can result in DDoS attack-
ers flooding unwanted traffic to these SFCs to further
degrade the public service quality or other reasons [7].
For instance, a service function chain consists of three
VNFs such as: a Firewall, a DPI and a public service
(e.g. Web). If this SFC is attacked by DDoS attackers,
prior functions can be overloaded because of the rock-
eted attack traffic volume. In that case, there might be
some actions from the cloud provider such as initiating
more VNFs or randomly dropping incoming traffic to
ensure the next VNFs are able to handle the service
chain traffic. However, every SFC customer has a fixed
resource allocation and provides users an acceptable
quality of service depending on service types (Web,
video and etc.) in terms of delay, packet loss rate, and
so on. Therefore, this DDoS attack will reject legitimate
user requests due to excessive resource consumption and
traffic disruption.

• Moreover, if the small or medium-sized cloud providers
do not provide any security solutions for their cus-
tomers and themselves, some attack target domains in
the cloud may become a traffic bottleneck when the
traffic increases rapidly in a short period of time, and
network devices or servers may go down in the worst
case.

From mentioned issues, we can see that the damaging
effects of DDoS attacks cause great difficulties to every
network system not only in a legacy cloud network, but also
SDN-based cloud environment. In addition, to the best of our
best knowledge and as seen in [7] and [8], not many studies
can effectively solve these grave problems.

B. OUR PROPOSAL
To resolve the serious issues given above and improve the
robustness of the cloud system, we present a concrete pro-
posal with a novel mechanism that monitors, checks and
filters incoming traffic before forwarding to VNFs on the
cloud.

In our proposal, we first introduce a novel combined
machine learning algorithm to enhance the performance of

classification in network traffic. It mainly takes advantages
of two classification algorithms, Support Vector Machine
(SVM) taking little time to produce outputs with a high accu-
racy and Self Organizing Map (SOM) making a reliable pre-
diction based on their neurons, in order to minimize resource
consumption while ensuring a high traffic classification per-
formance. We then present an enhanced History-based IP
Filtering scheme (eHIPF) to enhance the detection time of
an abnormal source accessing the cloud system. Finally,
we propose a novel security mechanism that combines both
the hybrid machine learning model and the eHIPF scheme to
tackle DDoS attacks in the SDN-based cloud, especially for
SFC protection.

C. CONTRIBUTIONS
In summary, the major contributions of our research consist
of the following:
• We introduce a new machine learning hybrid model for
DDoS attack classification [9] based on Support Vector
Machine (SVM ) [10] and Self Organizing Map (SOM )
[11], [12] algorithms to improve the performance of
classification in network traffic.

• We propose an enhanced History-based IP Filtering
scheme (eHIPF) in comparison with prior studies to
improve the detection rate and speed in distinguishing
DDoS attack’s source IP addresses.

• We propose a novel security mechanism that combines
both the hybrid machine learning model and the eHIPF
scheme to produce an efficient DDoS attack defender in
the SDN-based cloud.

The rest of the paper is structured as follows. Section II
presents several related researches to our work. Section III
first gives a brief introduction to a novel hybrid machine
learning model, and describes the concept of Software
Defined Networks and the Network Functions Virtualiza-
tion technologies in cloud environment. Section IV mainly
focuses on system analyses and practical design of the pro-
posed security mechanism. Our experiments are conducted in
Section V. Results and performance evaluation are presented
in Section VI. Finally, conclusion and future researches are
given in Section VII.

II. RELATED WORK
In the integrated SDN network environment, many studies
[13], [14] proposed various solutions for Dos/DDoS attack
detection and prevention recently.

Non-machine learning-based solutions also have been
widely proposed to tackle DoS/DDoS attacks in SDN envi-
ronment. For instance, FLOOD-GUARD [15] provides two
modules: proactive flow rule analyzer and packet migra-
tion to preserve network policy enforcement and protect
the controller from being overloaded. Van Trung et al. [16]
introduce the usage of Fuzzy Interference System into
DDoS attack prevention in the SDN. Reference [17] pro-
poses a combined anomaly detection mechanism comprised
of: (a) reduced data gathering with sampling, implemented
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with the use of the sFlow protocol, (b) anomaly detection,
implemented by entropy-based algorithm and (c) network-
wide anomaly mitigation using OpenFlow, in which DDoS
attacks is one of threats they tested using the proposed
mechanism. Mehdi et al. [18] argue that the advent of Soft-
ware Defined Networking provides a unique opportunity to
effectively detect and contain network security problems in
home and home office networks. Then, they present how
four traffic anomaly detection (e.g. DDoS detection) algo-
rithms can be implemented in an SDN context. A proposal,
namely Fayaz [19], is introduced as a flexible and elas-
tic DDoS defense system which addresses key challenges
with respect to scalability, responsiveness, and adversary-
resilience. Peng et al. [20], Dao et al., and Goldstein [22]
propose and conduct a DDoS detection engine by analyzing
some historic datasets and finding hard thresholds to distin-
guish the attack sources from normal sources. In summary,
non-machine learning-based solutions are effectively evalu-
ated in DDoS detection and prevention in SDN environment.
However, these approaches are quite complex in deploy-
ment and not adaptable to rapidly changes in network status,
especially SDN-based networks. In other words, intelligent
and adaptive detection and mitigation system is required for
dealing with DDoS attacks in SDN-based networks.

Accordingly, several machine learning-based
approaches [23] have been proposed to handle saturation
attacks which can provide artificial intelligence in DDoS
detection and mitigation. For example, Braga et al. [24]
created a DDoS detection scheme using Self-OrganizingMap
(SOM) with 4 and 6 tuples of attributes, while Support Vector
Machine classifier is applied to recognizingDDoS attack traf-
fic in [25]. Phan et al. [26] propose a distributed scheme lever-
aging SOM algorithm to cope with flooding attacks. A deep
learning based multi-vector DDoS detection system [27]
is introduced in SDN-based environment. Meti et al. [28]
proposed to utilize the Support Vector Machine classifier and
the Neural Network classifier to detect the suspicious and
harmful connections in the SDN controller. Overall, these
proposed methods mainly base on one or a combination
of machine learning algorithms in order to make a DDoS
detection system in SDN-based networks. However, they
focus on only intelligently DDoS detection and forget about
the importance of other techniques (e.g. history-based) that
can be applied along with their machine learning proposals
in order to improve further processes such as mitigation and
optimization.

From above analyses, this motivates us to propose a
novel approach compared to previous studies, which is based
on both machine learning and history-based techniques to
efficiently tackle DDoS attacks in the SDN-based cloud
environment.

III. BACKGROUND KNOWLEDGE
A. SDN-BASED CLOUD
The integration of SDN and NFV technologies is referred
to as the SDN/NFV architecture [29], as shown in Figure 2.

It includes NFV Orchestration, Controller platform, forward-
ing devices and servers. The traffic path is determined by the
SDN controller using mainly OpenFlow protocol to commu-
nicate with forwarding devices (OpenFlow switch) to enforce
policies from the control plane to data plane. Meanwhile,
the NFV allows servers or cloud platform (e.g. OpenStack)
to produce high-bandwidth and high-performance Network
Functions without great cost. Hypervisors, which run on
servers, majorly focus on supporting VMs that allow to oper-
ate Network Functions such as IDS, Firewall, Proxies.

FIGURE 2. SDN-based cloud design.

The SDN controller [30]–[33] and the NFV orchestra-
tion are responsible for the logical control functions. The
NFV orchestration system performs VNFs provisioning,
and it is integrated with the SDN controller through inter-
faces or APIs. After considering the policy requirements and
generating network topology from the Topology Manage-
ment in the control platform, the Controller produces optimal
function assignments and assigns the functions to certain
VMs in the optimized path which can be known as a service
chain [3]. The NFV orchestration system conducts a service
function chain, and the controller instructs the traffic through
a determined sequence of VMs by installing flow rules into
forwarding devices.

B. DDOS ATTACKS IN SDN-BASED CLOUD
We briefly discuss DDoS attacks in traditional networks.
In these network models, a wide range of approaches are
used by attackers to attack victim [34], but we can sum-
marize into two main types: bandwidth depletion attacks
and resource depletion attacks. In the bandwidth depletion
attacks, attackers flood a victim with unwanted traffic, which
exhausts the victim network’s bandwidth. This results in
legal traffic not being able to access the victim network. For
instance, UDPflooding, ICMPflooding or Smurf and Fraggle
attacks [13]. With respect to the resource depletion attacks,
attackers aim to send IP packets that are malformed or misuse
the network protocol. Consequently, the victim suffers from
resource exhaustion, and when the volume of connection is
enough, the victim will stop working. TCP SYN flooding
is a good illustration which bases on the three-handshake
protocol between sender and receiver before opening a TCP
connection.
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TABLE 1. DDoS attacks in SDN-Based cloud.

From the perspective of SDN, which is a flow rule-based
network system, we also classify DDoS attacks into two
major types as follows:
Type I : The main idea is to rely on the volume of pack-

ets or data coming from a source address. When the network
system is under this type of DDoS attack, a prominent char-
acteristics is that a source IP address connects to the victim
network by generating one or two flows with a high level
of the volume of packets in each flow. For example, ICMP
flooding attack, Smurf and Fraggle attacks [13].
Type II : The second type bases on the volume of the

number of flow to break down the victim network system.
The basic idea is that a source IP address generates a large
number of flows to a victim address in a short time (e.g.
TCP SYN flooding [13]) and may keep these flows alive
during the attack (e.g. low and slow rate DDoS attack [35]).
This not only makes the victim, but also network devices
such as OpenFlow switches, the SDN controller or VNFs to
be crashed because of resource consumption (e.g. packet_in
process, RAM and so on) [15], [35].

In conclusion, from a new point of view in the SDN-based
environment and our analyses, these common DDoS attacks
can be summarized as shown in Table 1.

C. A NOVEL HYBRID MACHINE LEARNING MODEL
In this section, we provide readers with a briefly discussion
of the combination of Support Vector Machine (SVM) and
Self Organizing Map (SOM). Interested readers can refer to
our previous work [9] for more detailed information.

In [9] , we present a novel hybrid flow-based Distributed
Denial-of-Service defender in Software Defined Networks,
the core idea is to produce a two-algorithm combination that
helps an intelligent security system enhance the accuracy
in differentiating normal flows from abnormal flows during
runtime. The SVM [10] performs as a high-speed classi-
fier based on a hyperplane or set of hyperplanes in a high-
dimensional space. In security problem solving, the SVM is
also evaluated as a resource saving, high accurate classifi-
cation algorithm or application that consumes low compu-
tational resources. However, some data points belong to a
vague region or vague space for multiple dimensions which is
limited by two margin lines or planes in the SVM algorithm.
These vague data points are considered as suspicious points.
In order to find their exact spaces, we take an unsupervised
learning algorithm - SOM into account to recognize these
data points with higher prediction results. By implementing
our system, we proved that the proposed hybrid classification
model outperforms original algorithms, and it can protect

FIGURE 3. Conceptual Architecture.

the OpenFlow switches and the SDN controller from being
overloaded under DDoS attacks.

Although the proposed solution in [9] already improved
the classification performance of the traffic in SDN-based
networks, there are some limitations. For instance, one com-
pany including several LAN networks only with some public
IP addresses can access the Internet or public web services
on the cloud and some PCs in LAN networks are bots of
DDoS attackers. Then, the attackers send commands to their
bots to send traffic to a targeted web server on the cloud.
Unfortunately, many legal officers access to the web server
at the same time, and this leads to one public IP may be used
for both normal and attack request flows to the destination
sever. Hence, the cloud security scheme may quickly detect
attack flows and ban the IP address for a period of time. This
makes normal users unable to access the web server. In addi-
tion, we note that many normal TCP flows behave like attack
flows because of a very little packets at the beginning stage.
As a result, the system may make bad decisions on legal
requests and may apply strict polices (e.g. delete action [36]).
This might also raise a concern in extra resource consumption
due to the new flow installation process.

All things considered, this motivated us to propose new
algorithms and mechanisms to overcome the mentioned limi-
tations of our previous research and efficiently defend against
DDoS attacks in the SDN-based cloud environment.

IV. SYSTEM ANALYSIS AND PRACTICAL DESIGN
To overcome the security problems related to DDoS attacks in
previous sections, we introduce a novel, executable and prac-
tical framework in this section. First, we conduct a thorough
logical analysis of the system, and we then illustrate how the
proposed framework is designed with the main components
in further detail.

A. SYSTEM ANALYSIS AND GOALS
In the SDN-based cloud, we suppose we are given following
groups:
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• Let S = {s1, s2, s3, ..., sx} shows a group of all legiti-
mate source IP addresses that accessed the SDN-based
cloud in a specific period of h hours in nonattack condi-
tion, where |S| = x. This means the group S is updated
after h hours as a loop because our proposed mechanism
always considers every source IP as a potential DDoS
attacker after h hours. Then, if a source IP overcomes
security checkers (SVM -k , SOM and eHIPF) after some
observation times, it will be considered as a legitimate
source. Peng et al. [20], Dao et al., and Goldstein [22]
used a traced dataset and always set the considering
time up to some days, and this not only makes a large
database, but also is useless if there are lots of sources
that only accessed just once or twice. Therefore, it is
reasonable, if we only consider our history database in h
hours.

• Let T =
{
t1, t2, t3, ..., ty

}
presents a group of all trusted

source IP addresses provided by the SDN-based cloud
provider, where |T | = y. This group is updated by
a Trusted Source Database (TSD) if there are some
changes from the cloud administrator.

• Let A = {as1, as2, as3, ..., asz} illustrates a group of all
source IP addresses except trusted IPs that appeared on
the cloud system in DDoS attack time, where |A| = z.

From these above groups, we have the number of source IP
addresses in the SDN-based cloud system srcIPnum as follows{

srcIPnum = x + y, Nonattack,
srcIPnum = z+ y� x + y, DDoS attacks.

(1)

At first, groupA can be seen as group S in the normal condi-
tion when only legal users access the cloud system. However,
when the system is under DDoS attacks, the attackers always
use a vast number of random spoofed source IP addresses
to send attack traffic to a predetermined victim. Under the
SDN perspective, the victim is an SFC (NIDS, Firewall, Web
and etc) that provides a public service, such as Web or FTP
services. Hence, the number of source IP address increases
dramatically, which means that the value of z fires a rocket in
a short time. Therefore, our first goal is to keep the value of
srcIPnum as small as (x+y) possible in both normal and attack
conditions. In other words, our introducedmechanism detects
attack sources as quickly as possible, and distinguishes them
from normal and trusted sources.

In addition, we assume that the incoming traffic follows
Poisson distribution [37] in the normal traffic condition with
a parameter λ, revealing the rate of average packet arriving,
and the SDN-based cloud serves n customers for their SFCs
in the cloud system. For each customer, they always have to
negotiate with the cloud provider for the network resource
(Bandwidth) from the cloud gateway to their SFCs and the
VNF resources (CPU, RAM memory, Disk space, ...) before
launching their services, which depends on the cloud infras-
tructure and the customer’s budget. Let Bm (bps) is the upper
bandwidth bound inside the cloud of the mth customer (m ≤
n). Normally, if there are no DDoS attacks, the actual transfer

bandwidth is always less than Bm (bps) and the VNFs are not
overloaded due to the customer having their own stable users.
However, when a DDoS attack happens, if the cloud provider
forwards all incoming traffic without filtering to SFCs of
their customer, it results in a rocket in bandwidth reaching
Bm (bps). Hence, legitimate and trusted source IP addresses
are unable to access the destination service due to some
overloaded VNFs in their SFC. Accordingly, a demanding
requirement for the SDN-based cloud provider is to provide
a security mechanism for customer traffic before forwarding
the filtered traffic to their SFCs to ensure the SFC quality
of service (QoS) [38]. This leads to our second goal is to
keep the traffic to the mth customer’s SFC always being
less or equal than the Bm (bps) from the border OpenFlow
switches. This means that our proposed solution has to pre-
vent abnormal traffic from accessing customer SFCs as much
as possible inside the cloud.

B. SYSTEM DESIGN
To achieve the two mentioned goals in Section IV-A to face
with saturation attacks while guaranteeing the SFCQuality of
Service, we introduce a novel combined scheme among SVM
classifier, SOM classifier and eHIPF mechanism to defend
against DDoS attacks in the SDN-based cloud environment.
This combined operation includes extension modules that
can be implemented and distributed both in the SDN appli-
cation plane and cloud controller platform (OpenStack [4]).
We suggest that these modules could be placed at a dedicated
security server in real deployment in order to reduce the SDN
controller processing load. For convenience, however, in this
work we design modules including SVM , SOM and eHIPF
and locate these modules in the SDN application layer, just
some modules are placed in the OpenStack controller for
synchronization and further actions as shown in Figure 3.
We build some functional modules: Raw Data Processing,
two databases (Training and Trusted Source), Mitigation
Agent, Statistic Sender and Update Agent, which are placed
in the SDN control plane. Note that, the proposed scheme can
be implemented in a distributed manner of nowadays cloud
computing, in which databases can be shared among dis-
tributed agents to enhance anomaly detection performance.
We next explain in more detail in following sections.

1) RAW DATA PROCESSING
As can be seen in Figure 4, we illustrate how the introduced
modules connect and make a workable defending system.
First, in order to get data from data plane, we run a Statistic
Sender that sends frequently request messages [36] to Open-
Flow switch and wait for response messages. After receiving
the response data, OpenFlow Channel forwards them to the
Raw Data Processing module. These data (raw data) are
processed by Flow Collector, Feature Extractor and Traffic
Classifier modules before going to an appropriate SVM -k
classifier.
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FIGURE 4. Detailed Architecture synchronized OpenStack Controller .

• Flow Collector: This module is a simple module run-
ning in the SDN controller, and it simply receives
StatsResponse messages [36] in a preset period of time.

• Feature Extractor: It extracts flow information from
StatsResponse messages to take out several attributes of
a flow. Two of them are inputs of the SVM -k and the
SOM processes four attributes (shown in Figure 5).

• Traffic Classifier: This module is accountable to transfer
the attributes of a flow to the corresponding SVM -k . For
example, a flow that protocol field is ICMP, flow infor-
mation will be sent to the SVM -ICMP for classification.

FIGURE 5. System Process Logic.

2) MACHINE LEARNING TRAINING AND CLASSIFYING
Once the proposed scheme is activated, and machine learning
training processes will take place at the initialization stage.
In this process, SVM -k and SOM classifiers are trained by the
appropriate ready-made datasets from the Training Database.
Note that, in this scheme, the Training Database is con-
tinuously updated using the flow attributes collected from
the above loop. In a preset time, which may be defined by
a network administrator, the SVM -k and the SOM will be
replaced by a SVM -k and a SOM that are trained by using

the updated database because the SVM and SOM are not an
online learning algorithms [39]. By doing so, the proposed
mechanism can adapt well to various network states.

We already utilized the enhanced workable SVMs-SOM
combination in [9]. Therefore, we briefly summarize our
proposed mechanism as follows
• Each SVM -k classifies an input vector (a tuple of flow’s
attributes) basing on the distance d from their margins
to the hyperplane, and a decision will be given based
on the input’s position that is pointed out in the SVM -k
representation.

• If d < 1
‖w‖ where

→
w is the normal vector to the hyper-

plane, the input vector is believed as a suspicious pat-
tern and located in a vague space (VS) because SVM -k
cannot find any groups (normal or abnormal) for the
considered input vector. Then, the input information will
be forwarded to the Self-Organizing Map to ask for a
high-accurate decision. Otherwise, the SVM -k produces
and forwards an output to the eHIPF for next processes.

• After receiving the input from one of SVM -k , the SOM
map, which is constructed by a training process using
a ready-made dataset and makes decision based on the
weight computation of the neurons, it will compute the
distance from the input vector to every node or neuron
in it’s map to choose the Best Matching Unit. Next,
the SOM gives out and forwards an output to the eHIPF
for next processes.

3) SYSTEM PROCESS LOGIC
To represent our introduced scheme, the system control-flow
logic is shown in Figure 5. At first, an input Fi or an attribute
tuple of flow Fi, which is previously processed by the Raw
Data Processing module, is fed into one of the SVM -k . Then,
if the Fi’s position locates outside the vague space (Fi ∈ G1
or Fi ∈ G2), an output Oi1 will be sent immediately to the
eHIPF module. Otherwise, Fi ∈ VS, the Fi’s information
is forwarded to the next machine learning classifier (SOM
map). The SOM takes more Fi’s attributes in order to make
a more accurate prediction by using the SOM neurons, and
then it produces an output Oi1 for Fi and also forwards to the
eHIPF . The eHIPF scheme is responsible for deeply attack
checking based on the traffic history of the incoming traffic
pattern Fi (discussed in IV-C) and produces an output Oi2.
After gathering outputs Oi1 and Oi2, final decision is made
by following rules:
• If Oi1 is ATTACK and Oi2 is ATTACK, Oi is ATTACK;
• IfOi1 is ATTACKandOi2 is NORMAL,Oi is NORMAL
(Consider at next observation);

• IfOi1 is NORMAL andOi2 is ATTACK,Oi is NORMAL
(Consider at next observation);

• If Oi1 is NORMAL and Oi2 is NORMAL, Oi is
NORMAL.

By doing so, the Fi will be grouped and classified based
on a various adjustment aspects. The last procedure is at the
Mitigation Agent module that formulates policies for specific
types of attacks and sends rules to OpenFlow switches with
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the purpose of reducing attacks. Regarding normal traffic
flows, we do nothing to keep them alive in the flow-tables.
These mentioned processes are summarized in Algorithm 1.

Algorithm 1 Proposed DDoS Defense Scheme
1: N ← A set of flows
2: Fi ← Attribute tuple of flow i
3: Oi ← Final decision of Fi
4: Oi1 ← Output of SVM − k or SOM classifier
5: Oi2 ← Output of eHIPF
6: ri ← A generated rule for an attack flow Fi
7: R ← A set of rules in each loop
8: loop
9: for i = 1 to N do
10: Feed Fi into SVM-k
11: if Fi ∈ VS then
12: Suspicious Flow
13: Pass Fi→ SOM ⇒ Oi1
14: else
15: Produce Oi1
16: end if
17: Forward Fi→ eHIPF ⇒ Oi2
18: Process (Oi1,Oi2)→ Oi
19: if Oi is ATTACK then
20: Forward (Fi,Oi)→ Mitigation Agent ⇒ ri
21: R← (R + ri)
22: else
23: continue
24: end if
25: end for
26: end loop
27: return: R

C. ENHANCED HISTORY-BASED IP FILTERING SCHEME
AND MITIGATION AGENT
1) HISTORY-BASED IP DATABASE
To begin with, we first define a set of parameters (or rules) of
a source IPj (y≤ j≤ x) which is used to differentiate normal
sources from their illegal counterparts.

The first parameter is the active time of a source IPj
denoted as atj (atj ≤ h). This parameter not only denotes
how long time a source has been connecting to a service on
the cloud, but also proves that the source IPj has not sent
any attack traffic to our system under the view of a cloud
provider. Hence, atj is considered to be a key parameter in
making accurate decisions on attack detection (the outputOi2
in Algorithm 1). As mentioned in section IV-A, the value
of atj of the source IPj will be reset to 0 after h hours, and
it will then recount up to h hours. The second parameter
is the number of flows of a source IPj, nconj , which shows
how many incoming flows have been established to a service
on the cloud, where nconj ≥ 1. It is reasonable to consider
only request flows because the NFV and SFC technologies,
in which the return traffic is always another route for a better
service response or for other purposes. The ICMP protocol

is known as a supporting protocol in the Internet protocol
suite, and it is just used to check whether a requested service
is not available or a host or router could not be reached.
Thus, a normal source IPj usually sends few ICMP request
packets to a destination, and each ICMP (generally attack
Type I mentioned in Section III-B) source IPj only gener-
ates one flow in flow-tables of a SDN switch. In contrast,
a TCP or UDP (generally attack Type II traffic mentioned in
Section III-B) source IPj can generate one or more flows in
a SDN switch. From the above analyses, we define the third
parameter, Pfj (the average number of packets per flow of the
source IPj) to differentiate an abnormal source IPj from their
normal counterparts as followsPfj = tpktj , Attack Type I ,

Pfj =
tpktj
nconj

, Attack Type II ,
(2)

where nconj is the flow number of the source IPj and tpktj is the
transferred packets of the source IPj to the cloud. The traffic
protocol of the source IPj is a major point to classify traffic
type into two main attack types as described in III-B, Proj.
For example, the ICMP flooding attack belongs to the Type I
(Proj = 1), while TCP SYN flooding is classified as Type II
(Proj = 2). The next judged parameter is the priority of a
source IPj denoted as Prij that distinguishes among trusted
(Prij = 1), normal (Prij = 2) and unidentified (Prij = 3)
sources. The last parameter we introduce is the flag, Flagj,
which shows the status of the source IPj.We have two statuses
for a source IPj: attack and normal which represent Flagj =
−1, 1, respectively. A new source is assigned as a normal
source at the beginning.

Note that at each observation, the Update Agent collects
values of atj, nconj , Pfj, Proj and Prij of each active source
IPj and updates to a database. From the above definitions,
the tuple of parameters of a source IPj is formed as IPj = (atj,
nconj , Pfj, Proj, Prij Flagj) and is an entry in the database. For
each search process, the search engine relies on two matches:
IPj and Proj to distinguish the IP sources.

2) ENHANCED HISTORY-BASED IP FILTERING SCHEME
As shown in [20]–[22], the experiments are conducted by
analyzing some datasets and finding some hard thresholds
to distinguish the attack sources from normal sources. For
example, [20] recommend that a TCP traffic the number of
packets of a normal source IPj is not less than 3 packets for
a normal TCP session. Because these previous researches set
hard threshold and datasets to determine the attack source,
they cannot be adaptive to changes in the real time traffic
characteristics. Furthermore, the use of a long-day dataset
is not an efficient way to make the system be fresh after
a long period of operation. Hence, in this paper, we intro-
duce an enhanced scheme to detect abnormal sources under
DDoS attacks based on the history of network traffic which
is referred eHIPF scheme.

We now investigate how eHIPF scheme efficiently clas-
sifies normal and attack sources using a History-based IP
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Database (HIP Database) described in IV-C.1 at each obser-
vation using the following phases:
Phase 1 (Threshold Initialization): At the begin-

ning, we generate a specific set of thresholds Ini ={
(atini,w1), (Pfini,w2), (nconini ,w3)

}
for each type of traf-

fic or protocol, where w1,w2,w3 are weights of Ini attributes
that indicate the importance of a specific attribute among
others. To choose appropriate values for these weights, from
our deep discussion in Section III-B. Normally, each spe-
cific attack has one or two prominent characteristics (e.g.
ICMP flooding has a large number of packets in one request
flow). Hence, we clearly know which attributes have the
highest effects on detecting a DDoS source. Therefore, we set
w1,w2,w3 values according to the impact of its attributes
on the detection decision. In order to initiate the Ini sets,
we utilize data from the Training Database of the machine
learning classifiers because we also use this database to
train for SVM and SOM algorithms. However, this is just an
initialization step, the Ini sets will no longer be used if new
sources are added to the HIP Database.
Phase 2 (Real-Time System Processing):When the system

is on running-time, based on the collected statistics at each
observation, we first extract and update all active source IP
addresses by protocol to the HIP Database using the Update
Agent. For some beginning observations, we use the Ini sets
to classify normal and abnormal sources for each type of
traffic protocol and the Ini sets will be maintained separately
until the proposed system detects any of the attack sources.
For the observation t , the HIP Database may add some new
sources. Then, these sources are verified to find their Flag
using ready-made Ini sets. The value of the corresponding Ini
set will replaced for the next observation (t + 1) according to
our proposed Algorithm 2.

We provide an example of the source classification using
our presented eHIPF scheme. Regarding to the ICMP
DDoS attack (Type I ), we assume that B(t+1)ICMP =

{(15.56, 0.3), (50.5, 0.5), (1.0, 0.2)} is already calculated in
t observation, and we get 1000 active IP sources at (t + 1)
observation. Next, we compare these source’s attributes with
B(t+1)ICMP to classify the ICMP attack and normal sources
according to the Algorithm 3. For instance, a new ICMP
source A.B.C .D = {3.6, 1.0, 67.0, 1.0, 1.0, 1}. According to
the Algorithm 3 we can have: XICMP = 30.118 < XA.B.C .D =
34.78. Therefore, we can conclude that the source A.B.C .D
is an ICMP flooding attack source.

To prove the proposed eHIPF scheme as an enhancement
of the original HIPF solutions, we conducted experiments
and comparisons in Section V.

3) MITIGATION AGENT
To meet our two goals discussed in Section IV-A: The pro-
posed scheme has to detect the attack sources as fast as
possible, and to prevent abnormal traffic from accessing
VNFs inside the cloud as much as possible. Accordingly,
we apply various protection techniques for different attack
types or protocols.

Algorithm 2 Boundary Calculation for Next (t+1) Observa-
tion
1: z ← The number of all IP sources in the system
2: B(t+1) ← Boundary set at next (t+1) observation
3: w1,w2,w3 ← Attribute weights of the boundary set
4: Initialize at = Pf = ncon = 0.0
5: B(t+1) = {(at,w1), (Pf ,w2), (ncon,w3)}
6: c← 0
7: for j = 1 to z do
8: if Flagj = −1 (Consider attack sources) then
9: c+ = 1
10: at+ = atj
11: Pf+ = Pfj
12: ncon+ = nconj
13: end if
14: end for
15: B(t+1) =

{
( atc ,w1), (

Pf
c ,w2), (

ncon
c ,w3)

}
16: return: B(t+1)

Algorithm 3 eHIPF Abnormal Source Detection

1: B(t+1)i =
{
(ati,w1i ), (Pfi,w2i ), (nconi ,w3i )

}
← the

boundary set of the protocol i given at the tth observation

2: (atj, nconj , Pfj, Proj, Prij, Flagj)← A set of attributes of
a source IPj that is collected at the (t + 1) observation

3: Xi = ati ∗ w1i + Pfi ∗ w2i + nconi ∗ w3i
4: Xj = atj ∗ w1i + Pfj ∗ w2i + nconj ∗ w3i
5: if Xi ≤ Xj then
6: Flagj = −1 {Attack source}
7: else
8: Flagj = 1 {Normal source}
9: end if
10: return: Flagj

Regarding attack Type I , in which attack sources intend
to create one or two flows from a client. They always send
a large number of packets, for example ICMP Flooding.
To prevent this attack, the Mitigation Agent sends a flow mod
message [36] with a drop action and a preset hard − timeout
value to the edge OpenFlow switch. This means that every
packet of the flooding source will be dropped at the border
switch and cannot reach inside the cloud. This action is
applied as soon as the eHIPF scheme produces an attack
output to theMitigation Agent. Note that these policy-applied
flows will no longer be considered as an input at next obser-
vation. By doing so, the proposed mechanism can reduce
the computational resources of the cloud control plane in the
SDN-based architecture.

Attack Type II generates a massive number of flows to the
victim with a small number of packets, for instance with a
TCP SYN DDoS attack. To tackle this attack, the Mitiga-
tion Agent sends a flow_mod message with a delete action
to the edge OpenFlow switch and informs the forwarding
engine of the SDN controller to drop packet_in messages
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of attacking sources which require for new flow installation
at the OpenFlow switch. This policy removes all abnormal
flows and prevents new attack flows in case an DDoS attack is
happening. Hence, it makes VNFs not getting overloaded and
ensures the smooth cloud operation. In addition, at the next
observation the number of collected flows will significantly
decrease due to the attack flow deletion from the switch. As a
result, this policy can save as much computational resources
of the cloud control plane as possible.

V. EXPERIMENTS
First, this section gives readers a demonstration of the eHIPF
scheme compared to the HIPF [20], [21] in terms of the
detection speed. Next, we present an elaborate implemen-
tation and a comprehensive result analysis of the proposed
scheme.

A. EHIPF EXPERIMENT
With the purpose of the eHIPF scheme deployment, we set up
a simple topology including a SDN controller, an OpenFlow
switch (HP E3800 [40]), an attacker host, a Web server
and a connection to our laboratory network. In this setup,
the SDN controller connects to the OpenFlow switch via a
secure connection, and two hosts, and the Laboratory net-
work is assigned to three switch ports. We coded and placed
eHIPF and HIPF [20], [21] modules in the SDN controller
respectively, and run these as applications. We perform two
separate scheme experiments by activating the modules, both
accessing from the laboratory network and generating DDoS
attack traffic from the attacker host installed BoNeSi (DDoS
attack tool) [41] to the Web server machine.

Before running the system, we extract and take Ini ={
(atini,w1), (Pfini,w2), (nconini ,w3)

}
sets for each protocol

from the CAIDA datasets [42], [43]. In addition, we use a
pool of 900 fake source IP addresses in the attacker host and
a set of 100 trusted sources in the laboratory hosts to simulta-
neously generate attack and normal traffic. However, to test
the speed of detection of both approaches, the attack tool
begins with different attack sources corresponding to various
arrival rates λ1 = 100, λ2 = 300, λ3 = 500. We tested
two typical attacks ICMP flooding (Type I ) and TCP SYN
flooding (Type II ) with the observation time, tob = 3 seconds.
The results of the experiment are detailed in Section VI.

B. SDN-BASED CLOUD IMPLEMENTATION AND
TEST PREPARATION
We implement our proposed solution and compare to
other machine learning-based solutions: SVMs-SOM [9],
SVMs [25] and SOM [24]. Figure 6 shows our testing topol-
ogy which consists of a SDN controller, OpenStack platform
(a Controller-Network node and three Compute nodes run-
ning OvS drivers for cloud networking), an OpenFlow switch
HP E3800, a Router, the laboratory’s LAN network, the Inter-
net connection and botnets. In order to emulate real DDoS
attack scenarios, three servers installed the BoNeSi DDoS
attack tool are used to generate different attack volumes and

FIGURE 6. Experimental topology.

rates to the victim. With respect to the service function chain-
ing setup, we configure flows for a service chain including
three applications on three OpenStack Compute nodes: VNF
01 - Snort , VNF 02 - Firewall and VNF 03 - Web server .
In addition, a synchronized connection is established between
the SDN and the OpenStack controllers for the cloud infor-
mation and adjustments that are needed.

Machine learning training experiments are conducted
using both normal and attack datasets from CAIDA Datasets
[42], [43] (Normal traffic - on 21st May, 2015 and DDoS
attack traffic - on 04th August, 2007) to train SVM and a
SOM classifiers. CAIDA is one of the most credible datasets
which collects diverse real network traffic types, including
Web, FTP, Ping and etc at different locations worldwide. In a
legitimate dataset, the TCP protocol packet occupies a mas-
sive 89%, a merely 6% is ICMP packets and other protocols
make up only 5%. Whereas, in the abnormal dataset, a small
proportion of just under 6% are TCP packets and ICMP
packets becomes a main protocol used for DoS attacks with a
vast majority 93%, and there is merely 1% corresponding to
other protocols. From the two aforementioned datasets, both
TCP and ICMP protocols account for the highest proportion.
Thus, in this work, we focus on DoS attacks using TCP and
ICMP protocols.

To generate real DDoS attack traffic to a predefined SFC,
the DDoS attack tool named BoNeSi [41] is installed in three
bots to generate abnormal flows, while normal flows are
made from the laboratory’s network which is considered as a
trusted subnet or every source IP from this network is believed
to be a normal and trusted source. We set the value of the
key parameters to test our introduced mechanism, as shown
in Table 2.

C. TESTING CONDUCTION
The testing procedure is divided into three main periods for
each mechanism and can be summarized as follows:
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TABLE 2. Key testing parameters.

• At the beginning of the experiment, we generate traffic
from the trusted sources and BoNeSi tool using only the
ICMP protocol.

• Next, we use the same configuration to send only TCP
traffic.

• Finally, we attack the service chain using both ICMP
and TCP traffic protocols and each protocol has a same
number of fake sources.

VI. RESULT ANALYSIS
This section demonstrates detailed experiments along with
comprehensive analyses to evaluate our proposed mechanism
compared to other solutions.

A. EHIPF ENHANCEMENT COMPARISON
As mentioned in Section V-A, we carried out experiments
for two different solutions, eHIPF and HIPF [20] under
DDoS attacks to evaluate an enhancement in our proposed
scheme in terms of the speed of detection. Figure 7 illustrates
the number of abnormal sources detected by time for two
flooding attack types (ICMP and TCP SYN). It is evident that
both eHIPF schemes totally outperform the normal HIPF
using hard thresholds to detect attack sources. First, we gen-
erate three different arrival rate levels of attack source groups
(λ1 = 100, λ2 = 300, λ3 = 500), then it would result
in various incoming traffic to the victim. The normal HIPF

FIGURE 7. Detection performance of eHIPF and HIPF .

based on a hard threshold to make decision, has to wait
for some parameters being over the threshold. Meanwhile,
eHIPF adapts its self to the volume of traffic, and varies the
threshold according to the Algorithm 2. Hence, the result is
understandable in that the eHIPF always has higher detected
sources at the same time with normal HIPF . In other words,
the eHIPF enhances much the speed of detection when com-
pared to the traditional solution.

B. DETECTION RATE, ACCURACY AND FALSE ALARM
RATE ENHANCEMENTS
Figure 8 shows that regarding Detection rate and Accuracy,
our novel approach always accounts for the highest rate,
99.27% and 99.30% respectively, which is slightly higher
than the SVMs-SOM solution with 98.47% and 97.62%, and
clearly outperforms the original SVMs and SOM algorithms.
With respect to False alarm rate, the proposed scheme domi-
nates the production of wrong warnings when only occupies
0.67%, while the rate of incorrect alarm generated by the
SVMs-SOM is above 3.20%, SOM and SVMs are around
6.40%. To achieve these improvements, the main reason is
that the eHIPF gives out sensible advice to decide which
groups flows belong to (attack or normal group). For exam-
ple, a normal TCP session sends very first packets to a des-
tination. Due to the short observation time, a collected TCP
flow would look like a TCP SYN flooding attack flow with
1 or 2 packets. Consequently, the system without eHIPF will
make a wrong decision. This mistake leads to many thorny
problems in the cloud, such as a packet_in process or service
delay. In conclusion, our new mechanism is more efficient
than other methods for all evaluation criteria.

C. TRAFFIC FLOW OCCUPATION AT DATA PLANE
As demonstrated in Figure 9, it is clear that there are major
differences among the four tested mechanisms. In the first
stage, attackers send only ICMP flooding traffic, and the
number of flow occupations in the switch flow-tables are the
same because each source IP is able to open only one request

FIGURE 8. Detection rate, Accuracy and False alarm rate comparison.
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TABLE 3. Bandwidth occupation in control-data plane secure channel.

flow to the destination. However, we apply the drop action
for attack flows. Therefore, the number of flow is equal to
both the number of abnormal and trusted sources. In case,
the attack tool only generates TCP SYN attack traffic, we can
see the proposed solution and the SVMs-SOM outperform two
original schemes, in which the proposed scheme is the best
flow saver with approximately 3000 flows in the switch all
time. This lower flow occupation of our novel mechanism can
be explained by successfully applying the eHIPF scheme to
produce fewer wrong decisions, and this leads to an abnormal
detection rate that is higher than that of other cases, and more
attack flows are removed from the switch as soon as the final
output from the eHIPF scheme is obtained.

FIGURE 9. Flow rule occupation in flow-tables of the HP 3800 switch.

D. CONTROL PLANE RESOURCE CONSUMPTION
1) SDN CONTROLLER’S CPU UTILIZATION
The SDN controller’s CPU consumption is considered to be
the main criteria to assess the proposed solution performance
when compared to other schemes. First, Figure 10 indicates
the use of the SDN controller’s CPU of three testing sce-
narios. Overall, it is easy to realize a better performance by
our proposed method. In the ICMP traffic period, the SVMs
scheme is the least computational resources because of the
light SVM algorithm and the same flow number level, fol-
lowed by our novel solution just under 30%. However, during
the TCP traffic period, our proposed scheme is the best one in
spite of the lowest flow number and packet_in number in each
observation, the SOM (58.5% on average) and SVMs (42%
on average) are the worst cases with the same reason for the
flow quantity in one observation. The last is the combined

FIGURE 10. SDN controller’s CPU utilization comparison.

period, and the results are the same as those in the second
scenario. It is clear that our proposed solution always keeps
the SDN controller stable at around 30% in consuming its
computational resources.

2) PACKET_IN RATE AND BANDWIDTH OCCUPATION IN
CONTROL-DATA PLANE CHANNEL
We collect the packet_in rate to the SDN controller demon-
strated in Figure 11 and the bandwidth occupation in Control-
Data plane channel is shown in Table 3. At a glance, there
are no significant differences between the solutions in both
measurements. Regarding the packet_in rate, in all three

FIGURE 11. Number of packet_in requests arriving SDN Controller.
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attack periods, the proposed scheme and others show a same
trend at each period. This is understandable because the
incoming ICMP traffic opens one flow for one source while
TCP traffic generates random Layer 4 port number. Hence,
after being detected the ICMP traffic will no longer send
packet_inmessages to the SDN controller. However, the TCP
traffic still does. Regarding the bandwidth occupation in the
channel, our proposed scheme is slightly less than others due
to the fact that more precise decision making does not result
in more control messages from the SDN controller.

E. SERVICE CHAIN OPERATION
Previous assessments mainly focus on the OpenFlow switch
and the SDN controller as well as the secure channel. Now,
we evaluate how DDoS attacks affect the service chain on
the SDN-based cloud and which problems can be solved
by the proposed mechanism when compared with other
solutions.

1) VNF 01 - SNORT CPU UTILIZATION
From the demonstration in Figure 12, we can see that our pro-
posed solution always accounts for the smallest percentage of
the Snort CPU usage. This enhancement is quiet reasonable
because the proposed scheme offers faster detection, more
accurate decision making and is the right policy maker. These
things keep the service chain traffic as low as possible for the
Snort process. Hence, it significantly reduces the usage of
the Snort CPU. Regarding the trend of the CPU usage, in the
ICMP traffic case, although at the early stage the Snort is
under high pressure from the high traffic volume, the CPU
usage then goes down steadily because the attack sources
are detected and the Mitigation Agent applies rules to drop
all incoming packets. Therefore, Snort can save much of the
processing resources. Meanwhile, the second case witnesses
different stable uses of the Snort CPU for all solutions. This is
mainly based on the quantity of flows and traffic in each flow
(normally 1 or 2 packets per request flow. Hence, the Snort

FIGURE 12. VNF 01 - Snort CPU utilization comparison.

resource consumption adapts to the flow number of each
mechanism. Finally, in the last case, it is the combined attack
traffic with an equal number of attack sources. The trend still
increases at the beginning of the attack, and it then goes down
and stands at the same level until the attack finishes.

2) QUALITY OF SERVICE
To assess the effects of DDoS attacks on the service chain
customer with the four mentioned solutions, we observe and
score the Quality of Service (QoS) using two criteria: Request
delay time and Packet loss rate.

3) TRAFFIC DELAY
As demonstrated in Figure 13, this provides readers a request
delay of a service chain on the SDN-based cloud environ-
ment under different DDoS attack levels for four mecha-
nisms. To observe this experiment, we simply generate a
Ping command to the VNF 03 - Web server from a trusted
host in the laboratory network, and we use the tool named
Wireshark [44] to measure the service chain traffic delay.
It is evident that the fastest response from the Web server is
provided by the proposed scheme from just under 60 (ms) to
around 120 (ms) on average, which is followed by the SVMs-
SOM , SVMs and SOM , respectively. Once again, our novel
proposal presents a better judgment among others in terms of
the service chain traffic delay.

FIGURE 13. Comparison in service chain traffic delay.

4) LEGAL USER’S PACKET LOSS RATE
The next criterion is chosen to evaluate the proposed scheme
is the packet loss rate of a legitimate user to a service chain.
To measure this experiment, we also do with 100 ICMP ping
packets and the same technique under various DDoS attack
levels for four testing solutions. Due to the traffic congestion
that causes the packet to drop under saturation attacks, this
makes the packet loss rate increase when the attack level goes
up as shown in Figure 14. As we can see, that our proposed
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FIGURE 14. Comparison in packet loss rate.

still achieves the best performance in all testing attack degrees
while others cannot.

VII. CONCLUSION AND FUTURE WORK
In this paper, we propose a novel mechanism to handle
DDoS attacks in SDN-based cloud environment. This pro-
posal not only protects cloud infrastructure from being over-
loaded resulted by DDoS attacks in both control and data
planes, but also brings a better quality of service to cloud
customers. We present a new machine learning hybrid model
for classification based on utilizing the advantages of Sup-
port Vector Machine and Self Organizing Map algorithms.
We also propose an enhanced History-based IP Filtering
scheme to improve the detection performance in recognizing
DDoS attack source IP addresses. Finally, we introduce a
novel DDoS attack defender which is based on both machine
learning and history-based techniques. Through experimental
results conducted in various DDoS attacks levels, we prove
that the novel mechanism can be an effective and innova-
tive approach to face DDoS attacks in SDN-based cloud
environment.

As our future work, we expect to design some new func-
tional modules to enhance the packet_in process in the pro-
posed mechanism with the purpose of recognizing malicious
packet_in messages from the data plane and optimizing the
bandwidth occupation in the secure communication channel.
In addition, we plan to compare the proposed scheme to other
machine learning techniques (e.g., deep learning) using more
evaluation criteria.
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