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ABSTRACT Brain—computer interface provides a new communication bridge between the human mind and
devices, depending largely on the accurate classification and identification of non-invasive EEG signals.
Recently, the deep learning approaches have been widely used in many fields to extract features and classify
various types of data successfully. However, the deep learning approach requires massive data to train its
neural networks, and the amount of data impacts greatly on the quality of the classifiers. This paper proposes
anovel approach that combines deep learning and data augmentation for EEG classification. We applied the
empirical mode decomposition on the EEG frames and mixed their intrinsic mode functions to create new
artificial EEG frames, followed by transforming all EEG data into tensors as inputs of the neural network
by complex Morlet wavelets. We proposed two neural networks—convolutional neural network and wavelet
neural network—to train the weights and classify two classes of motor imagery signals. The wavelet neural
network is a new type of neural network using wavelets to replace the convolutional layers. The experimental
results show that the artificial EEG frames substantially improve the training of neural networks, and both two
networks yield relatively higher classification accuracies compared to prevailing approaches. Meanwhile,
we also verified the performance of our new proposed wavelet neural network model in the classification of
steady-state visual evoked potentials.

INDEX TERMS Motor imagery classification, deep learning, convolutional neural network, wavelet neural
network, empirical mode decomposition, artificial EEG frames.

I. INTRODUCTION

Brain-computer interface (BCI) is a system designed to
translate users’ brain intentions into commands or machine
codes. It creates a direct connection between an individual’s
intentions and the assistive devices [1]-[5]. Most BCI stud-
ies are based on electroencephalograms (EEG), since non-
invasive EEG-based BCI provides brain signals with relative
ease. There are three types of neuropsychological signatures
commonly used in BCI research, steady-state visual evoked
potentials (SSVEPs) [6], event-related potentials (ERPs) [7]
and motor imagery [8]. Compared with the SSVEPs and

ERPs measured through visual or auditory paradigms [9],
motor imagery signals caused by the imagination of limb
movement can provide human movement intentions without
the need of external stimuli [10]-[12].

Many researchers have investigated different feature
extraction and classification methods for motor imagery task
recognition. A popular classification method for this BCI
paradigm is the common spatial pattern (CSP) method with
suitable preprocessing [13]. It is more effective than tra-
ditional time-frequency domain feature extraction method
by extracting the differences in the spatial features of the
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two types of signals. Other well-known feature extrac-
tion and dimension reduction methods like independent
component analysis (ICA) [14] and principal component
analysis (PCA) [15] are used frequently to improve the clas-
sification accuracy [16]. Some motor imagery feature learn-
ing methods are also used for improving the motor imagery
classification, such as the sparse Bayesian extreme learning
machine [17], sparse group representation model [18] and
jaya based adaptive neuro-fuzzy classifier (NFC) [19]. More-
over, tensors emerged as promising tools for the exploratory
analysis of multidimensional data. Phan proposed the ten-
sor decomposition method for the motor imagery feature
extraction and classification, which dramatically improved
the classification accuracy [20]. In the classification ses-
sion, many traditional algorithms such as support vector
machine (SVM) [21], linear discriminant analysis (LDA) [22]
and Bayesian classifier [23], have been employed in dif-
ferent studies [24], [25]. In recent years, deep learning has
achieved great progress in neuroscience, text mining, and
pattern recognition. Some researchers proposed deep learn-
ing approaches for motor imagery classification [26]-[28].
However, BCIs based on a motor imagery paradigm typically
require a training period to adapt the system to each user’s
brain, and the long training period may cause the subjects’
fatigue and EEG signal drift. Furthermore, the classifiers are
created with the acquired EEG by feature extraction. The
property of the classifier relies on amount of training data.
More data can improve the classification accuracy and be
substantial important for the deep learning method. For the
small EEG dataset, it is difficult to use deep learning method
to achieve better results. Therefore, we need to use effective
tools to analyze brain signals’ features and create artificial
EEG frames for deep learning classification. Common anal-
ysis tools like fast Fourier transform (FFT) and wavelets
can not be adequate to extract feature and create new EEG
frames in this scenario, because EEG signals are non-linear
and non-stationary. Previous works have created artificial
EEG frames by using some stationary approaches that use
Gaussian noise as a source into an FFT-based system [29], but
those approaches obviously miss the temporal features of the
natural EEG signals. On the other hand, in some studies the
artificial EEG is created by mixing different parts of different
temporal EEG signals [30], but it keeps the temporal features
of the signal but fails to process the frequency features.
The empirical mode decomposition algorithm [31] fits with
non-stationary signals that change in the frequency structure
within a short period of time [32]-[34]. Therefore, empirical
mode decomposition is proposed to generate artificial EEG
frames, and it is proved effective in the use of new EEG
frames for linear classifier [35].

In our approach, we applied empirical mode decomposi-
tion method on the EEG frames to generate new artificial
frames to improve classification accuracy for the small train-
ing dataset. To verify the feasibility of our method, we tried
different increasing ratios of artificial EEG frames to help
the network training. Then, we transformed EEG data into
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tensors as inputs of the neural network by complex Morlet
wavelets. Finally, we used a two-layer convolutional neural
network (CNN) [36] to classify motor imagery feature ten-
sors. In addition, based on the CNN model we proposed the
wavelets neural network (WNN) model in which convolu-
tional layers are replaced.

The rest of the paper is organized as follows: Methods for
deep learning model and artificial EEG frames generation are
explained in Section II. EEG recording experiments and pre-
processing as well as their results are presented and discussed
in Section III. The discussion and conclusion are given in the
Section IV and Section V, respectively.

Il. METHOD

In this work, we presented two deep learning methods—
CNN and WNN—for EEG classification. We first introduced
the two-layer CNN model for 4-dimensional tensors. Then,
based on CNN model, we proposed the WNN model that
used wavelets to replace convolutional layers. In order to
take advantage of the small dataset that is difficult to train
the network, we proposed the empirical mode decomposition
method to generate the artificial EEG frames for improving
the classification results. Five healthy subjects participated in
the experiment to validate our methods, and all of them were
required to read and sign an informed consent form approved
by the Research Ethics Committee of Nankai University
before the EEG experiment.

A. CONVOLUTIONAL NEURAL NETWORK

CNN is a multi-layer neural network with several
convolution-pooling layer pairs and fully connected layers at
the output, which is always designed to recognize shapes in
images. Input image is convolved with several 2-dimensional
filters in the convolutional layer and subsampled to a smaller
size in the pooling layer. Network weights and filters in
the convolutional layer are learned through back-propagation
algorithm in order to decrease the classification errors.

As for the EEG data, we first transformed them into inte-
grated time, frequency, and electrode location information
tensor as inputs by complex Morlet wavelets with bandwidth
parameters f, = 1 Hz. As a result, our training data input is
a 4-dimensional tensor of N sub-tensors for two classes (N
denotes the number of two classes motor imagery training
set): N training samples x 23 frequncy bins x 49 time frames
X 14 channels. And then we normalized the 4-dimensional
input tensors and used these tensors to train the network.
The proposed CNN structure is summarized in Fig. 1. In the
two-layer CNN model, we first set the convolution-2D layer,
which includes 200 filters with the size of 3 x 1. Then a max-
pooling2D layer was used for downsampling, which has the
pool size of 4 x 4. Sequentially, we set a convolution-2D
layer and a downsampling layer again, where the parameters
of the convolution kernel are 200 filters with the size of 2 x 2.
Finally, after flattening the tensors, two fully connected layers
were set for classification.
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FIGURE 1. The two-layer CNN model for motor imagery classification. The input tensors are N training samples x 23
frequncy bins x 49 time frames x 14 channels. And we showed an input tensor’s feature representations of first three
channels learned at every hidden layer as the feature visualization.

At the convolutional layer, the input tensor is convolved
with trainable filters and put through the output function f
to form the output feature map. The Ngth feature map at the
convolution-2D layer is obtained as

P =f(a) = f(WNF %x); + by,) 4))

where x is the input matrix of the 4-dimensional tensor, WwNF
is the weight matrix for the convolution kernel Ny and by, is
the bias value. Here, the output function of the convolution-
2D layer is selected as the rectified linear unit (ReLU) func-
tion. The output function is defined as:

Relu(a) = In(1 + &%) 2)

Following the double convolution and pooling, two fully
connected layers have two outputs representing the imagery
of left and right hand movement. In this way, the labeled
training set is imported to the network and can be computed
the error between the network output and the desired output.
And we used gradient method to minimize the errors by
changing the parameters of neural network.

B. WAVELET NEURAL NETWORK

For the feature extraction of CNN model, considering the
convolutional layer may not accomplish much for the time-
frequency domain information, we used wavelets to replace
the convolutional layers. And we changed the input of the
network into 5-dimensional tensors for the EEG data, which
includes six dictionaries consisted of six sub 4-dimensional
tensors made by different bandwidth parameters of complex
Morlet wavelets. The proposed WNN model is summarized
in Tab I. The size of 5-dimensional input tensor is N training
samples x 23 frequncy bins x 49 time frames x 14 channels
X 6 dictionaries. In the WNN model, We first set the dense
layer for choosing the suitable wavelets data for subsequent
process with the output dimension 2. Specially, the output
dimension 2 is the optimal output dimension among 1 to
6, which achieves the highest accuracy. Sequently, we set
the max-pooling3D layer with the pool size 4 x 5 x 4 for
downsampling. Finally, classification structure has the same
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structure with the CNN model, including the flatten layer and
two fully connected layers for motor imagery classification.

C. TRAINING OF TWO NETWORKS

The implementations were all written in Keras [37] with
a Tensorflow backend [38]. The stochastic gradient descent
optimizer was used for the optimization with the following
parameters [r = 0.001 (learning rate), momentum = 0.9
and decay = 1e~5. Both two networks were trained by using
batch training method for 300 epochs. The batch size varies
from 16, 32 and 64, determined by the magnification time
of the EEG data augmentation. Consequently, every epoch
is guaranteed to have approximative six iterations. In order to
solve the overfitting of the models, we applied the regulariza-
tion for both two networks with the parameters /2 = 0.004.
And we applied the normalization of the input data for both
two networks to improve the accuracy of the model.

D. EMPIRICAL MODE DECOMPOSITION

The empirical mode decomposition method is based on the
algorithm that allows users to conduct a data-driven analy-
sis for nonlinear and non-stationary signals. The algorithm
decomposes the original signals into a finite number of
functions called intrinsic mode functions (IMFs) [31], each
of which represents a non-linear oscillation of the signal.
This technique fits very well for the non-linear and non-
stationary signals, such as EEG signals. Once the signal has
been decomposed, we can recover it by adding all the IMFs
and the residue without loss.

The main idea, originally presented in [35], is to use empir-
ical mode decomposition to generate new frames by swap-
ping IMFs of the decompositions. This will create new EEG
frames similar to the original ones but not equal. Moreover,
the intrinsic characteristics of each class will be preserved
because we will only mix IMFs of the same class when
generating new frames of this class. We thereby generated the
appropriate ratio of the artificial EEG frames, with the aim of
decreasing overfitting problems in a deep learning system,
and eventually improved classification results.
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TABLE 1. Detailed architecture for the feature extraction of the WNN.

Layer Layer Type  size stride  Output dimension  Activation Mode
Input 1 (N,23,49,14,6)
Dense 2 (N,23,49,14,2) ReLU
. Maxpooling 3D 3 4,54) 222 (N,10,23,6,2) ReLU valid
Features Extraction Flatten 4 (N.10%236%2)
Dense 5 (N,200) RelLU
Classifier Dense 6 (N,2) Softmax
— W*WHMWW M1 Algorithm 1 The Algorithmic Process of Empirical Mode
Decomposition
MMWMWW‘\IM IMF-2 Input: x(r)
WUWVWMWW IMF-3 QOutput: imf ()
EEG Signals : initial ro(f) = x(2);

g — (2=

IMF-N-2

IMF-N-1

IMF-N

—

N
-

FIGURE 2. Empirical mode decomposition (EMD) of an EEG signal,
of which decomposed EEG signals had less than 12 IMFS.

For these intrinsic mode functions by empirical mode
decomposition, each signal fulfills two conditions: (1) The
number of maxima is the same as the number of zero-
crossing, or differs by at most one. (2) The mean value
between the envelope of the local maxima and the envelope
of the local minima is zero. The process to obtain the IMFs
from a signal x(¢) is shown as Algorithm. 1.

Once ri(t) fulfills terminating condition, the signal can
be recovered by adding its all IMFs and the final residue
ru(t), where n denotes the number of IMFs by empirical
mode decomposition. The structure of the decomposed signal
decides the number of IMFs. For our EEG signals, we found
that the decomposed signals has at most 12 IMFs. The decom-
position process of this method is depicted in Fig. 2.

x(t) =Y IMFi(t) + ra(t) 3)
k=1

E. THE STRATEGY OF NEW ARTIFICIAL EEG FRAMES
We obtained some IMFs of every decomposed EEG signals
by empirical mode decomposition. So we can generate a
new EEG frame by combining IMFs from different EEG
signals. Most of all, they will exhibit similar characteris-
tics in time and frequency with the signals that contributes
with their IMFs, due to the fact that each IMF represents a
specific non-linear oscillation. We need create new frames
that have same channel number with the EEG signals of our
motor imagery paradigm, meaning that any new frames are
14-channel artificial signals.

Here, the strategy of artificial EEG frames has been proved
in the linear classification [33]. Initially the real EEG frames
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1

2: repeat(i=1,2...)

3: repeat(j=1,2...)

4 hj—1() = ri—1(2);

5: Detect the local maxima and the local minima of
hj—1(2);

6: Interpolate all local maxima to generate the upper
envelope; and interpolate all local minima to generate the
lower envelope, respectively;

7 Obtain the local mean m;_1(¢) by averaging the
upper and lower envelopes;
8: hj(t) = hj—1(t) — mj—1(1);

9: until /;(¢) satisfies the IMF’s conditions

10: imfi(t) = hj(t);

1: rit) = rieg () — imfi(t);

12: until If r;(¢) is a monotonic function or does not
have enough extrema to calculate the upper and lower
envelopes

13: return imf(t);

are collected in the EEG experiments, then the new EEG
collection containing artificial frames is generated as follows:

1. Define the number of artificial frames to be created for
deep learning approach, meeting the requirement that each
class (left hand class and right hand class) has the same
number of artificial EEG frames.

2. Randomly select the frames that contribute with their
IMFs to generate the artificial EEG frames. To generate an
artificial EEG frame of a specific class, selected EEG frames
are split into two sets of EEG frames according to their class.

3. Randomly select EEG frames from the set of frames
belonging to the same class. The first selected EEG frame
contributes with all its first IMFs (14 IMFs, one IMF per
channel), the second one with its second IMFs, and suc-
cessively until the nth frame, which contributes with its nth
IMFs.

4. Generate a new artificial 14-channel EEG frame by
adding up all the IMFs corresponding to the same channel.

As explained above, different EEG signals might generate
different numbers of IMFs, so we need to predefine the
number of artificial EEG frames which contribute with their
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together the IMF-1 from original frame 2, the IMF-2 from original frame 1,
the IMF-3 from original frame 3... and the IMF-N from original frame M.

IMFs. We set the number of artificial EEG frames as 15, and
additional zero value IMFs need to be added in order to reach
15 IMFs for every decomposed signal. A graphical example
of this procedure is depicted in Fig. 3.

IIl. EXPERIMENT AND RESULT

A. EEG RECORDING AND PREPROCESSING STEPS

To evaluate our methods, we used our experimental motor
imagery EEG data and dataset III from BCI Competition
II. In the EEG experiment, we selected 14 Ag/AgCl elec-
trodes that were relevant to the motor cortex of brain region
following the Brodmann brain function partition and inter-
national 10/20 electrode lead system [39]-[41]. Among the
14 electrodes, two (Fz and Cz) were placed in the central
brain region, six (T7, P3, P7, CP3, FC3, and C3) were placed
in the left brain region, and six (T8, P4, P8, CP4, FC4, and
C4) were placed in the right brain region. The electrodes in
the left and right brain regions are symmetric (see Fig. 4).
Monopolar derivations were used throughout the recordings.
All EEG data are acquired by using a g.tec device (g.tec
medical engineering GmbH, Schiedlebrg, Austria). The left
mastoid and forehead served as the reference and ground,
respectively. And the EEG signals were sampled at 256 Hz,
then a 50 Hz notch filter was enabled to suppress the power
line interference.

In the experiment, a subject sat on a relaxing chair,
and placed both arms on his legs in a relaxed position.
Our experimental paradigm consisted of two imagery tasks,
that are imagery movements with the left hand and right
hand [42], [43]. For the experimental flow, at the beginning
of a trial (r = Os), a fixation cross “+”’ was displayed on a
black screen and a short acoustic warning tone was played.
After two seconds (r = 2s), a text prompt for either the
left hand or the right hand was displayed in the center of
the screen and remained on the screen for two seconds. This
prompted the subject to perform the desired motor imagery
task. The subject was asked to keep performing the motor
imagery task till the fixation cross “+ disappeared from the
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FIGURE 5. The paradigm of the motor imagery signal recording.

screen at t = 7s. A short break followed, with a blank screen
lasting for two seconds. The paradigm is illustrated in Fig. 5.

Five healthy subjects, that three men (Subject 1, 2, and 5)
were 30, 25, and 23 years of age, and two women (Subject
3 and 5) were 21 and 23 years of age, participated in the exper-
iment and performed the two motor imagery tasks. Subject
3 was left-handed, and the other subjects were right-handed.
Each session consisted of 60 trials separated by a short break
(lasting a couple of minutes), in which each imagery state was
performed 30 trials. In total, two sessions of 120 trials were
performed per subject.

As for the acquisition of the EEG signals in the BCI
Competition II dataset III, at + = 2s an acoustic stimulus
indicating the beginning of the trial was used and a cross
“+” was displayed for one second. Then, at t = 3s, the sub-
ject was asked to perform the related motor imagery task
by displaying an arrow (left or right). Visual feedback was
provided during the motor imagery task. Here we extracted
the time interval between 0.5 and 2.5s after the arrow was
displayed. The dataset has 280 trials for only one subject (two
classes of motor imagery, 140 trials for each class), and EEG
signals was sampled at 128 Hz with only three channels—C3,
C4 and Cz.

All the EEG signals are preprocessed by a bandpass fil-
ter with cutoff frequencies of 8 Hz and 30 Hz. The key
point of the enhancement methods for deep learning is
that the trials are augmented to become 3-dimensional or
4-dimensional tensors by using the complex Morlet wavelets.
Transformation of EEG signals into the time frequency
domain is a standard technique to augment dimensionality.
In previous research, some researchers used short time
Fourier transform (STFT) to get time-frequency domain
information for neural network. However, complex Morlet
wavelets transformation of the EEG signals has been proved
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(b) The detection of WNN. (c) The exception at 6 times magnification.

effective in recent motor imagery studies, including tensor
decomposition and wavelet-based combined feature vectors
method [44]. Therefore, we transformed the EEG signals
into the time-frequency domain by using the complex Morlet
wavelets in two ways. For 3-dimensional tensors used by
CNN, the parameters for Morlet wavelets are bandwidth
parameter f, = 1 Hz, and the wavelet center frequency
fe = 1 Hz. And for the 4-dimensional tensor used by WNN,
the bandwidth parameter f;, ranges from 1 Hz to 6 Hz, and
the rest of parameters including the wavelet center frequency,
frequency bins and time frames are same as the 3-dimensional
tensor, meaning that a trial becomes a 4-dimensional tensors
with 6 dictionaries.

B. RESULT AND DISCUSSION

In this study, the experiments were conducted in Anoconda
environment on an Intel 4.00 GHz Core i7 PC with 16GB
of RAM. The code was written in Keras with a Tensorflow
backend.

First of all, we validated our algorithms on our experi-
mental dataset. Besides across subjects, BCI performance is
inconsistent within subjects and fluctuates greatly over time.
We tried to remove the effect of within subject variation on
our results by using cross validation [45]. The performance
of proposed networks for the experimental data was evalu-
ated by comparing with tensor decomposition methods using
5-fold cross-validation. In this way, for our small dataset,
80% of 120 trials were selected randomly as the training set
and the remaining 20% were selected as the test set. Due to
the fact that the training set is rather small for deep learning
approach, we need to generate new EEG frames to improve
the neural network training. Firstly, we need to confirm the
optimal increasing ratio of the origin training set. Every mag-
nification is tested 5 times by generating different artificial
EEG frames. For CNN model, as is depicted in Fig. 6(a),
the detection results of optimal increasing ratio of the origin
training set for Subject 1, we found that the magnifying two
times the original training sets had highest mean value and
better stability. So we applied the 2 times magnification for
all the subjects to analyze the accuracy in CNN model. And
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as for the WNN, the tested highest magnification was set to 5
because at higher magnification the network sometimes had
no convergence, as is depicted as Fig. 6(c). We speculated
what the reason of this phenomenon is that the artificial EEG
frames influences the performance of WNN model. In the
subsequent discussion, we applied the actual dataset without
artificial frames to verify our speculation. Here we applied
the 5 times magnification as the optimal ratio of the WNN,
as is depicted as Fig. 6(b).

For both two networks, in each cross validation we used
the optimal increasing ratio to generate EEG frames 5 times,
respectively. And we picked the highest accuracy as the
results of this cross validation. We verified our method
in contrast with tensor decomposition. In this method, the
4-dimensional tensors, which was the same as the inputs of
CNN model, were solved by the TUCKER-3 decomposition.
Then we selected a good set of features from them by a
descending order of Fisher scores. Finally we trained an
SVM classifier using the Gaussian Radial Basis Function
kernel [46], a K-Nearest Neighbor (KNN) classifier using
Euclidean distance and a LDA classifier to compare with the
deep learning approach.

As depicted in Table 2, the average accuracy between all
subjects for CNN and WNN is 90.0% and 85.2%, respec-
tively. And compared with the tensor decomposition method,
both two networks achieved obviously better results. Espe-
cially for Subject 4, the poor performance in the tensor
decomposition method has been improved by our proposed
methods. The CNN method not only has the highest accuracy,
but also has small standard deviation. But the accuracies of
WNN method have rather high standard deviation, which may
be the influence of artificial EEG frames.

Then, we compared our proposed methods with previous
research by the public BCI dataset. In the BCI Competition II
dataset III, 50% trials were set as the training set, and the
remaining 50% were selected as the test set. And every
magnification was also tested 5 times by generating different
artificial EEG frames. The performance of the artificial EEG
frames is depicted as Table 3, and the highest accuracy of our
algorithm is obtained as 90.1%, which is better than 89.3%

VOLUME 7, 2019



Z. Zhang et al.: Novel Deep Learning Approach With Data Augmentation to Classify Motor Imagery Signals

IEEE Access

TABLE 2. Two networks with optimal artificial frames ratio compared with tensor decomposition method (5 fold cross validation).

Accuracy %(meanzstd)

KNN LDA SVM CNN WNN
Sub1 89.9+5.6 78.3+6.2 75442 925435 86.719.0
Sub2 917429 81.746.3 80.8+£5.6 95.842.9 90.843.5
Sub3 70.8£6.6 70.0+12.3 62.5+7.8 87.5£3.0 82.543.5
Sub4 68.3+7.0 67.5£7.5 66.7+£59 83.3+2.9 783454
Sub5 84.2+3.5 80+4.6  78.3+3.5 90.8+4.6 87.5+8.3
Average 81.0 75.5 72.3 90.0 85.2

TABLE 3. Performance of the artificial EEG frames for BCl competition
dataset.

Accuracy %(mean+std)

CNN WNN
OxDataset 77.94+0 88.0+0
1xDataset 88.9+1.9 90.1%1
2xDataset 85.6+2.2 86.74+2.5
3xDataset 86.4+2.6 87.3+1.7
4xDataset 83.64+2.9 85.0+2.6
5xDataset 829427 84.3%1.5

of the winner algorithm of the competition [47] and 88.2% of
deep network [48].

IV. DISCUSSION

We proposed two network models for motor imagery classi-
fication, and we generated the new artificial EEG frames to
help the network training by empirical mode decomposition.
However, both two networks were shallow networks. It is nec-
essary to try the deeper network for the motor imagery signal
classification. And we only detected the magnification of the
origin dataset, which was less than 10. We need to detect
larger artificial EEG frames for network training. Moreover,
the WNN model arose no convergence at the 6 times magnifi-
cation of the origin training. Therefore, we need to verify the
feasibility of our new proposed WNN model by actual motor
imagery dataset to exclude the influence of the artificial EEG
frames, and also evaluate the performance for the SSVEP
dataset.

A. THE ATTEMPT OF THE DEEP RESIDUAL NETWORK

For the EEG feature tensors made by complex Morlet
wavelets, we considered using the deep network to train the
weights for motor imagery classification. Residual network
was attempted to test deep network’s property in this study.
Deeper neural networks are more difficult to train, especially
for relatively small EEG dataset. As a result, we applied
a residual learning framework that can ease the training of
networks to guarantee the convergence and rapidity by the
short circuit path design. We applied the ResNet-18 model
and set the 4-dimensional tensor as the network input,
which was the same as the CNN model. We validated the
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performance of Residual network by comparing with the
CNN model, as is depicted as Fig. 7(a) and Fig. 7(b),
the ResNet-18 has faster convergence but the accuracy of the
test set is lower than that of CNN. And the loss of the test
set was abnormally rising as the iteration. Therefore, in this
study, we did not apply the deep network for motor imagery
classification.

B. THE INFLUENCE OF ARTIFICIAL EEG FRAMES

We applied the empirical mode decomposition algorithm
for expanding the origin training set to train the network.
For the CNN model, the artificial EEG frames improve
the classification accuracy at the optimal ratio. Towards
WNN model, although the network has the exception of
no convergence at 6 times magnification, it improves the
network classification result from 74.2% to 83.3% for Sub-
ject 1 at 5 times magnification. Therefore, we considered
the artificial EEG frames method is valid for both two
networks.

Furthermore, we also detected the larger artificial EEG
frames for both two neural networks. For the CNN model,
we tried the 20 times magnification of the origin training
set to test the classification performance. As is depicted as
Fig. 7(c), we found that it achieved better performance than
the previous optimal ratio. And it proves that the over 10 times
magnification of origin training set has the possibility of
further improving the classification effects. But for WNN,
at 10 times magnification it also has the poor performance
in motor imagery classification, as is depicted as Fig. 7(d).
We thought that the WNN model may need mass actual data
to train its network.

C. THE NEW PROPOSED WAVELET NEURAL NETWORK

In the EEG experiments, the new proposed WNN model
has rather high deviation, and the classification accuracy
is slightly lower than the CNN model. In order to verify
the network’s feasibility and exclude the influence of arti-
ficial EEG frames, we used the actual motor imagery big
dataset, which involves left/right hand motor imagery move-
ments recorded from 62 channels (with sampling frequency
500 Hz) with duration of two seconds with a four seconds’
break between the trials. The dataset was used in tensor
decomposition method for motor imagery classification [20]
and the data were collected over two sessions with a
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FIGURE 7. The comparisons of CNN and ResNet-18 for Subject 1 in accuracy and loss are depicted as Fig. 7(a) and Fig. 7(b), respectively.
In Fig. 7(c), the origin training set at 20 times magnification (20X) for CNN has better performance comparing with the previous optimal ratio.
In Fig. 7(d), the origin training set at 10 times magnification (10X) for WNN still has poor performance. And in Fig. 7(e) and Fig. 7(f), the new

proposed WNN is validated by comparing with CNN.

15 minutes’ break in between. The first session was used
as the training set, which included 140 trials (70 trials for
each class). And the second session was used as the test
set, which included 60 trials (30 trials for each class). Here,
the WNN had the same basic structure with the Table 1.
But we changed the first dense layer output dimension from
2 to 1, because we found that the multichannel EEG dataset
has enough spatial information. Therefore we can decrease
the wavelets feature for classification, and it significantly
reduced the parameters of the network and computation. As is
depicted in Fig. 7(e) and Fig. 7(f), the WNN has better
classification performance and smaller loss than the CNN.
However, each iteration of the WNN model takes almost
five times as long as the CNN. And we speculated that
it’s because the WNN lacks the consideration of parallel
computing.

Also, we used the SSVEP dataset to validate our proposed
method. In the SSVEP dataset, the EEG signals were sampled
at 256 Hz and only had one channel-Oz for one subject.
We extracted one-second EEG signals used for the classifi-
cation of WNN, which is evoked by 6 Hz and 8 Hz frequency
flicking. The training set had 120 trials and the testing set also
had 120 trials. The accuracy of the WNN model is 98.3%,
which proves that our model is valid for the classification of
SSVEP.

V. CONCLUSION
Deep learning network needs to obtain massive data to main-
tain the classification accuracy, but long period of the EEG
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acquisition may cause the fatigue of the subjects and data drift
of the motor imagery signals. To solve this dilemma, we pro-
posed a novel deep learning approach with data augmenta-
tion method to improve the classification accuracy of motor
imagery signals and avoid overfitting. We transformed EEG
data into tensors as inputs of the neural network by complex
Morlet wavelets. And we proposed two models—CNN and
WNN—to extract feature and classify motor imagery signals.
The empirical mode decomposition approach was utilized to
generate artificial EEG frames to train the networks. In the
experiments, the filter size and hyper-parameters were inves-
tigated, and we also investigated epoch size for both two
networks. The best value for batch size was found as 300.
To evaluate the performance of the proposed approach, both
CNN model and WNN model were compared with the tensor
decomposition methods. The experimental results show that
our new approaches achieve better results than the tensor
decomposition method. And we also validate our proposed
methods in the BCI Competition II dataset III. The accu-
racy of the winner algorithm of the competition was 89.3%,
and the accuracy performance of our proposed methods was
90.1%. Especially, for the WNN model, the larger generated
artificial EEG frames sometimes cause the network showing
the exception of no convergence. Therefore, to verify the
feasibility of the new proposed WNN model, we applied
the actual motor imagery dataset to exclude the influence of
the artificial EEG frames. According to the results, it can
be concluded that the WNN model has higher classification
accuracy and faster convergence rate than that CNN does.
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Also, we proved our WNN model is valid for the classifica-
tion of SSVEP.

However, relatively low computational efficiency of the
WNN is the limitation in our proposed methods. In the
future study, we will improve the low computational effi-
ciency by finding better network frames for parallel compu-
tation or the approximate representations of the input dictio-
naries of WNN model.
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