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ABSTRACT Three-phase induction motors (TPIMs) are prone to numerous faults due to their complicated
stator and rotor conditions and require a fast response, accurate, and intelligent diagnostic system. Recently
developed fault diagnostic systems for induction motors are based on machine learning approaches, but
their complex structure typically results in long training time. Moreover, they need to be retrained from
scratch if the system is not accurate. We apply incremental broad learning (IBL) method to the diagnosis
of TPIM faults. The IBL can train and retrain the network efficiently due to its flexible structure. The new
diagnostic framework also consists of feature extraction techniques (empirical mode decomposition and
sample entropy) and a non-negative matrix factorization (NMF) IBL approach. The experimental results
demonstrate that the IBL system is superior to some algorithms, such as deep belief networks, convolutional
neural networks, and extreme learning machine. Moreover, the IBL simplified by NMF is more accurate
than the IBL without NMF.

INDEX TERMS Fault diagnosis, feature extraction, incremental board learning, non-negative matrix
factorization, three-phase induction motor.

I. INTRODUCTION
Three-phase induction motors (TPIMs) are ubiquitous in
our daily lives due to their low cost, reasonably small size,
robustness, and low maintenance [1]. Their increased pop-
ularity has resulted in numerous studies having appeared in
the literature. Although TPIMs are reliable, they are prone
to some undesirable stresses, which cause faults that result
in failure. It is therefore necessary to constantly monitor
their health to prevent any serious accidents. The previous
work [2] has shown that the common problems with TPIMs
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include phase imbalances, short circuits, mechanical imbal-
ances, bent rotors, broken rotor bars, defects in the bearing
inner and outer raceway, and broken ball-bearings.

Currently, there are model-based, knowledge-based, and
data-driven fault diagnostic methods for TPIMs [3]–[5].
Model-based diagnostic methods are typically based on a
single analytical model, but no single model can diagnose all
possible faults, given the wide variety of motor designs and
configurations. Themodel-basedmethod is therefore difficult
to apply to motor diagnosis. The knowledge-based method
reaches a diagnosis based on a decision tree consisting of a
sequence of questions and answers. The diagnostic knowl-
edge is vague and limited due to the complexity of TPIMs.
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This method is therefore also not suitable for TPIM diag-
noses. The data-drivenmethod relies on signal-based analysis
techniques that are highly suitable for analyzing a system
whose domain information is insufficient or unknown, as is
the case with TPIMs. As a result, we propose our approach
based on these data-driven methods employing machine
learning to build classifiers to deal with fault diagnostic
problems.

Recently, several different kinds of machine learn-
ing methods have been applied to fault diagnosis: deep
belief networks (DBN) [6], [7], deep Boltzmann machines
(DBM) [8], support vector machine (SVM) [9], extreme
learning machines (ELM) [10], [31], and convolutional neu-
ral networks (CNN) [11], [12]. They are particularly suited
to AC motors where the relationship between motor cur-
rent and speed is nonlinear [13]. Although deep learning is
rather powerful, most of these networks suffer from time-
consuming training processes because there typically are a
great number of hyper parameters and complicated struc-
tures involved [14]. Recently, broad learning (BL) has been
proposed to improve this training performance [15]. Unlike
previous methods, broad learning contains two layers: an
input layer that consists of mapped features and enhancement
nodes, and an output layer. Despite this type of structure is
simple, it can lead to a significantly improved performance
by increasing the number of enhancement nodes. Therefore,
BL has a potential to improve both induction motor diag-
nosis accuracy and training speed. As BL is not designed
for fault diagnosis, the associated techniques, such as feature
extraction and selection for signal data processing, should
be carefully integrated with BL. In other words, this work is
not a straightforward application of BL. The techniques are
reviewed below.

Before training the BL to construct the fault diagnostic sys-
tem, the data needs to be acquired and processed. To increase
accuracy, useful fault features should be extracted using
signal processing. While Fast Fourier Transform (FFT) is
commonly used during signal processing, this method cannot
account for non-stationary signals that are commonly found
in TPIM diagnoses. The very nature of the signal requires a
time-frequency analysis [16]. A commonly proposed time-
frequency analysis method for processing non-stationary
signals is the short-time Fourier transform (STFT) [17].
However, this method has the inherent defect of producing
interrelated resolutions of time and frequency. Other methods
include wavelet transform or empirical mode decomposition.
Wavelet transform [18] suffers from energy leakage because
any signal characteristic that is not well correlated with the
shape of mother wavelet is either masked or completely
ignored. Empirical mode decomposition (EMD), has been
introduced as a useful tool for analyzing nonlinear and non-
stationary signals [19]. It disassembles a signal into many
intrinsic mode functions (IMFs) to extract the main features.
The analysis of every IMF can lead to a more accurate and
effective feature extraction from the original signal, but the
disassembling produces a multi-dimensional input to the fault

classifier. It is well known that the accuracy of the fault
classifier can be decreased when its input becomes multi-
dimensional. To resolve this problem, feature selection algo-
rithms should be employed to reduce the input dimensionality
to a manageable level. Sample Entropy is known as an effec-
tive feature selection algorithm [20] that is capable of finding
regularities in some IMFs based on signal statistics. Apart
from that, domain knowledge (DK) can also be employed
to represent system features in the problem domain. Domain
knowledge features are important information of a specific
field. Taking motor current signal as an example, maxi-
mum current, minimum current and average current are DK
features. The author’s previous work in [10] showed that
the addition of appropriate domain specific features could
enhance the accuracy of the diagnostic system. Motivated by
the above discussion, it is a good idea to integrate DK, EMD
and Sample Entropy for feature extraction and selection,
and produce representative and compact inputs (i.e. features)
to BL.

In general, if the diagnostic model is built by processed
training data and the existing machine learning algorithm,
the diagnostic system model cannot be modified once the
model has been trained. The same is true for the motor
fault diagnosis system. If the diagnostic system is inaccurate,
it requires a great effort to remodel the system, especially
for deep learning machines [15]. The same applies to the
original BL. To overcome this problem, an incremental broad
learning (IBL) algorithm [15] is considered in this study after
the system is trained by BL. This dynamic step-wise updat-
ing algorithm can update the output weight of newly added
enhancement nodes. As the IBL is designed to quickly update
the weights without having to re-run the entire training cycle,
this research employs IBL to remodel the fault diagnostic
system for TPIMs.

Nevertheless, the IBL system may contain some redun-
dancy nodes after the system completes training, which
may result in poor diagnostic precision. Thus, this diagnos-
tic system needs to be simplified through the use of low-
rank approximations, for which several approaches exist,
including singular value decomposition (SVD) [15] and non-
negative matrix factorization (NMF) [21]. The disadvantage
of the SVD algorithm is that it is difficult to interpret, and its
processing capability for noisy data is unstable. Especially
when dealing with high-dimensional data, decomposition
speed and precision will be very poor. The NMF algorithm
provides a new method to solve matrices based on a simple
iteration. This method converges quickly. The left and right
non-negative matrices typically require only a small storage
space. Therefore, this research is the first study to apply NMF
to simplify the network structure after IBL in order to reduce
the system error.

This research is organized as follows. Section II states the
proposed diagnostic framework while broad learning and the
related theory are illustrated in Section III. The experimental
setup and data per-processing are presented in Section IV.
Section V presents the experimental results and comparisons

VOLUME 7, 2019 17781



S. B. Jiang et al.: Efficient Fault Diagnostic Method for TPIMs Based on IBL and NMF

FIGURE 1. Proposed diagnostic framework for TPIMs based on
incremental broad learning (from data processing, over training, to
testing).

with previous approaches. Finally, conclusions are drawn in
the last section.

II. PROPOSED DIAGNOSTIC FRAMEWORK
The proposed TPIM fault diagnostic framework consists of
four sub-modules: (a) data acquisition and data processing,
(b) broad learning, (c) incremental broad learning, (d) struc-
ture simplification by NMF (Fig. 1).

A. DATA ACQUISITION
The data acquisition sub-module digitally detects four differ-
ent signals: sound waves, as well as windings A, B, and C
currents which are denoted as x1, x2, x3, and x4, respectively.
As the TPIM is supplied with three-phase symmetrical cur-
rents, it only needs two stator currents [22]. Thus, three only
signals are eventually used for demonstration purposes. They
are denoted as x1, x2, and x3, respectively. A band-limiting
filter is also used to reduce interference [23]. The sound-
signal x1, for instance, is divided into three independent
groups: (i) training dataset, (ii) validation dataset, and (iii)
test dataset, all of which are collected from experiments.

B. DATA PROCESSING
We use empirical mode decomposition (EMD) to decompose
raw signals. The training dataset is denoted as xk−EMD−Train,

the validation dataset as xk−EMD−Vali, and the test dataset as
xk−EMD−Test . To remove irrelevant and redundant informa-
tion from the extracted features, an effective statistical algo-
rithm called Sample Entropy (SampEn) is applied to select
the features of interest from xk−EMD−Train, xk−EMD−Vali,
and xk−EMD−Test . The results are then saved as xk−SE−Train,
xk−SE−Vali and xk−SE−Test , respectively. Features are normal-
ized to ensure that they contribute equally. Finally, the pro-
cessed training dataset, validation dataset and test dataset
are re-named to xk−Proc−Train, xk−Proc−Vali and xk−Proc−Test
respectively. In order to diagnose faults efficiently, proper
domain knowledge (DK) features [24] are added to the sig-
nals for sound, winding A current, and winding B current,
respectively.

C. BROAD LEARNING
The broad learningmodel is trained using the processed train-
ing dataset xk−Proc−Train. The output of the trained BL model
is evaluated by quantifying the training accuracy. The model
will complete successfully if the training accuracy reaches a
manually chosen target percentage. Otherwise, the model is
entered the phase of increment broad learning by increasing
its number of enhancement nodes.

D. INCREMENTAL BROAD LEARNING
The validation dataset xk−Proc−Vali serves as input to the
incremental broad learning sub-module. The number of
enhancement nodes is increased dynamically to increase
accuracy. The IBL model leads to over-fitting if the number
of enhancement nodes is very large. To avoid this, an optimal
number of enhancement nodes,N, should be determined. This
process is manually done by trial and error until the validation
accuracy meets the target percentage.

E. STRUCTURE SIMPLIFICATION
It should be noted that once the learning system completes,
the network may contain some redundancy nodes (due to
its broad expansion) which can be removed by simplifying
the system through low-rank approximations. The NMF is
applied to compress the structure of IBL in order to further
reduce the system error. To ensure the diagnostic accuracy
after compression, the system is returned to the incremental
broad learning sub-module if the diagnostic accuracy does not
meet the range of [TP± 0.025].

III. BROAD LEARNING AND RELATED THEORIES
A. BROAD LEARNING THEORY
Broad learning theory [15] is based on the traditional random
vector functional-link neural network (RVFLNN). Unlike the
typical RVFLNN that takes its input directly and establishes
enhancement nodes, BL uses the input to construct a set of
mapped features. This BL model presents the input data X
and projects the data, using φi(XW ei + βei), to become the
ith mapped feature Zi, where W ei are the random weights.
The concatenation of the first i group of mapping features is
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FIGURE 2. Broad learning network.

denoted as Zi ≡ [Z1, . . . ,Zi]. In a similar fashion, the jth
group of enhancement nodes, ξj(ZiWhj + βhj), is denoted as
H j, and the concatenation of the first j group of enhancement
nodes is denoted as H j

≡ [H1, . . . ,H j]. In practice, i and j
can be selected differently depending upon the complexity of
the modeling task. Furthermore, φi and φk can be different
functions for i 6= k . Similarly, ξj and ξr can be different
functions for j 6= r . Without loss of generality, the subscripts
of the ith random mappings φi and the jth random mappings
ξj are omitted.
For the BL model to take advantage of the sparse auto

encoder characteristics, it applies the linear inverse problem
and adjusts the initialW ei to obtain better features. The details
of the algorithm are given below.

Let X be the input dataset that consisting of Q samples,
each withM dimensions, and Y is the output matrix with Y ∈
RQ×C . For n feature mappings, it can be represented as:

Zi = φ(XW ei + βei), i = 1 . . . , n (1)

where W ei and βei are randomly generated. If we denote all
feature nodes as Zn ≡ [Z1, . . . ,Zn] and denote themth group
of enhancement nodes as

Hm ≡ ξ (ZnWhm + βhm) (2)

then the broad learning model can be represented as

Y = [Zn|Hm]Wm (3)

Wm
= [Zn|Hm]+Y (4)

Wm are the connecting weights for the broad structure and
can be computed easily through the ridge regression approxi-
mation of [Zn|Hm]+ using Eq.(4) [15]. Fig. 2 summarizes the
broad learning network.

B. THEORY OF INCREMENT ENHANCEMENT NODES
Under certain conditions, additional enhancement nodes can
be embedded in a learning network to improve its outcome in
case of failing and to accomplish an ideal performance. Let
Am = [Zn|Hm], and Am+1 ≡ [Am|ξ

(
ZnWhm+1

)
+ βhm+1)],

whereWhm+1 ∈ Rnk×p, and βhm+1 ∈ Rp, where k denotes the
number of nodes of each mapping feature and p is the number

FIGURE 3. Increment of p additional enhancement nodes.

of additional enhancement nodes. Linking weights and biases
between mapped features and the additional enhancement
nodes are created at random. The pseudoinverse of the new
matrix is thus:

(Am+1)
+
= [

(Am)+ − DBT

BT
] (5)

D = (Am)+ξ
(
ZnWhm+1 + βhm+1

)
(6)

BT =

{
(C)+ if C 6= 0(
1+ DTD

)−1
BTB(Am)+ if C = 0

(7)

C = ξ
(
ZnWhm+1

)
+ βhm+1)− A

mD (8)

where the superscript + represents a pseudoinverse. Again,
the new weights are

Wm+1
= [

Wm
− DBTY
BTY

] (9)

The incremental broad learning structure is shown in Fig. 3.
It is noteworthy that the pseudoinverse of the related matrix
is a result of the regularization approach. More specifically,
fast incremental learning can be achieved when the algorithm
calculates the pseudoinverse of the additional enhancement
nodes rather than the entire Am+1.

C. STRUCTURE SIMPLIFICATION THEORY
Incremental broad learning with increased number of
enhancement nodes may run the risk of producing redun-
dancy. Generally speaking, the structure can be simplified by
a series of low rank approximation methods. As mentioned
previously, NMF is employed to provide the structural sim-
plification.

Since the input dataset is normalized, the connecting
weight matrix Wm of IBL is non-negative. With a connect-
ing weight matrix of Wm

∈ Rn×m, a non-negative matrix
I ∈ Rn×r , and another non-negative matrix W r

∈ Rr×m,
the following equation is obtained:

Wm
≈ IW r (10)

whereWm can be decomposed into two small matrices [25].
m is the dimension of enhancement feature values, n is the
number of samples, and r is the reduced rank. Wm is an
original matrix. The right matrixW r is called the coefficient
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FIGURE 4. Test bench of TPIM.

matrix. The left matrix I is called the basic matrix. The
column vectors of the original matrix are the weighted sums
of all column vectors in the left matrix, while the weight coef-
ficient is the element of the corresponding column vectors of
the right matrix. In general, r should be chosen to be smaller
than m, thus, the dimension reduction of the original matrix
can be realized and the dimension reduction matrix of data
features can be obtained by replacing the original matrix with
the coefficient matrixW r :

W r
≈ I+Wm (11)

The resulting connecting weight matrixWm is thus signif-
icantly reduced through NMF.

IV. EXPERIMENTAL SETUP AND DATA PREPROCESSING
A. TEST RIG
We use the motor test bench, TCDJ-03A, as our experi-
mental platform. The experimental setup (Fig. 4) consists of
a platform that supplies the three-phase power to a TPIM
which in turn drives a generator. This test bench can measure
motor voltage, motor current, and motor speed. The TPIM
(220V and 1.1A) is wired using a star connection style. The
generator is connected to the TPIM through a coupler and
the generator behaves as a load that can be adjusted through
a variable resistance. A GDS-2202A oscilloscope is used
to measure TPIM currents and convert the current signal to
digital data. A microphone (Lenovo P121), connected to a
computer (Samsung R429), is used to acquire the acoustic
data. According to the National Standards of the People’s
Republic of China (GB3806-81), the distance between the
measuring point and the reflecting surface should be no less
than one meter and the angle between measuring points in the
microphone and airflow direction should be 45◦.

B. TEST SCHEME
The literature mentions mainly nine different fault cases
for TPIMs [26], [27], with only one normal case. The
fault cases are phase imbalance, short circuit, mechanical

FIGURE 5. Nine fault cases of a TPIM. D1: Normal. D2: Phase imbalance.
D3: Short circuit in stator winding A. D4: Mechanical imbalance. D5: Bent
rotor. D6: Broken rotor bar. D7: Bearing outer raceway defect. D8: Bearing
inner raceway defect. D9: Broken bearing ball.

FIGURE 6. Waveform of nine different TPIM winding currents A & B under
rated-load conditions (2.5 waveform periods).

imbalance, bent rotor, broken rotor bar, bearing outer raceway
defect, bearing inner raceway defect, and broken bearing ball.
In order to offer training data to the classification system,
each of the nine possible faults should be simulated through
artificial destruction (see Fig 5).

Each case is tested for three electric load conditions:
(i) an underload condition with a 0.8× rated current;
(ii) a rated load, and (iii) an overload condition with a 1.2×
rated.

C. SAMPLE DATA ACQUISITION
To construct and test the proposed diagnostic method,
the sample data must be acquired first. The raw signals, xk
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FIGURE 7. Raw acoustic data of nine fault cases under rated load
condition (data size: 8 × 105 data in 100 seconds).

FIGURE 8. Empirical mode decomposition of acoustic signal in normal
condition D1 (showing one sample with 1000 data points).

(k = 1, 2, 3), are simultaneously recorded by lab equipment.
FIGURE 6 shows the current waveform of windings A & B.
FIGURE 7 shows the raw acoustic data of the nine fault cases
under the rated load condition.

For each fault case, every electric load condition is tested
for 100 seconds generating 800,000 data points. In other
words, one case of each signal has 800,000 data points under
one load condition, which are then divided into 800 distinct
samples (of 1000 data points per sample).

FIGURE 9. SampEn value for different fault conditions and six IMFs.

D. FEATURE EXTRACTION BY EMD AND SAMPEN
EMD decomposes the acquired signal into q intrinsic mode
functions (IMFs) and a residual signal leaving the dimension
of each IMF unchanged (Fig. 8). Each classifier therefore has
a large number of input dimensions, which results in a poor
fault classification accuracy [28]. To overcome this problem,
an effective feature selection method is considered which
reduces the number of input dimensions. We use Sample
Entropy (SampEn) as an effective statistical algorithm to
calculate the representative features from each IMF, such
that the input dimension of each classifier is reduced from
1000 to 9. After several trials, it is found that the main
features of the motor faults are closely related to the first
six IMFs (Fig. 8). The SampEn values of IMF1 to IMF6 are
much greater than those of IMF7 to IMF9. Theory sug-
gests that a large value of SampEn signifies a high informa-
tion content [29]. We therefore only retain the SampEn of
IMF1 to IMF6 to represent the signal features, while the oth-
ers are discarded to reduce the input dimension to each fault
classifier.

The SampEn values for the nine fault cases exhibit different
SampEn values for each IMF (Fig. 9). The feature is expected
to be observable. It is very useful for classification.

E. DOMAIN KNOWLEDGE FEATURES
After completing the feature extraction by EMD and Sam-
pEn, additional domain features are extracted for the diag-
nosis as they contain important information for a specific
field. The motor stator current signal, minimum amplitude,
maximum amplitude, and average current voltage are used as
domain knowledge (DK) features. In addition, ten statistical
time-domain features are employed as DK features to analyze
the motor acoustic signal [30] (Tab. 1).

F. DISTRIBUTION OF PROCESSED DATA
In general, the raw data are divided into three subsets: train-
ing dataset, validation dataset, and test dataset. In order to
improve the diagnostic performance, the raw data are pro-
cessed by EMD, SampEn, DK, and normalization. Then,
each sample data set, xk, is divided into different subsets
(see Tab. 2).
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TABLE 1. Definition of common statistics in time-domain for acoustic
signal [31].

TABLE 2. Division of sample dataset into different subsets in one fault
case where Dk-Proc-Train denotes a processed training dataset,
Dk-Proc-Vali a processed validation dataset, and Dk-Proc-Test a
processed test dataset.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. RESULT AND DISCUSSION OF DIFFERENT FEATURE
EXTRACTION TECHNIQUES
Four kinds of feature extraction techniques are examined:
FFT, STFT, EMD + SampEn, and EMD+SampEn+DK.
Several parameters must be set a priori. In terms of DK,
winding currents A and B and the sound data have 3, 3, and
10DK features, respectively. For FFT, the feature size is set to
8000 as suggested by [32]. With STFT, the window function
is a hamming window [17]. In the EMD+SampEn extraction,
m and r need to be set in SampEn and we select their values as
2 and 0.2, respectively [19]. TABLE 3 indicates the number
of extracted features by using EMD + SampEn and DK.
As shown in TABLE III, the sound signal contains 16 features
which consist of 6 EMD+SampEn features (i.e. IMF1, IMF2,

TABLE 3. Number of extracted features from different signal types.

FIGURE 10. Diagnostic accuracies of different feature extractions.

IMF3, IMF4, IMF5, IMF6) and 10 DK features which is cal-
culated by the equations in TABLE I. The winding A current
signal contains 9 features which consist of 6 EMD+SampEn
features (i.e. IMF1, IMF2, IMF3, IMF4, IMF5, IMF6) and
3 DK features. The three DK features are maximum, mini-
mum and average values of winding A current respectively.
The type of features of winding B current signal is the same
as that of winding A current signal. To ensure that all features
contribute equally, all reduced features are normalized [33].

In order to prove the effectiveness of the EMD + SampEn
and DK techniques, we compare four different methods: FFT,
STFT, EMD + SampEn, and EMD + SampEn + DK. The
comparison is performed in IBL with 100 feature nodes and
240 enhancement nodes. Fig. 10 shows the best diagnostic
accuracy is the EMD + SampEn + DK approach. The worst
accuracy is obtained without the use of any feature extraction
technique. The main reason for this result is that EMD is a
self-adaptive time-frequency technique that can decompose
the signal into several IMFs and adapt to the signal itself.

B. RESULT AND DISCUSSION OF DIFFERENT
CLASSIFICATION METHODS
To prove the effectiveness of IBL, we compare the perfor-
mance of the following different classification methods: deep
belief network (DBN), convolutional neural network (CNN),
extreme learning machine (ELM), broad learning (BL), and
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incremental broad learning (IBL). For DBN, we employ a
5400-100-240-9 structure with 100 iteration and a learning
rate of 0.1 [34]. For CNN, we use an original deep CNN
structure (LeNet-5) which contains 7 layers. The kernel size
of convolution layer 1 is 5× 5. The pooling size of sampling
layer 2 is 2×2. The kernel size of convolution layer 3 is 5×5.
The pooling size of sampling layer 4 is 2×2. The kernel size
of convolution layer 5 is 5 × 5. The number of nodes of the
fully connected layer is 84. The number of nodes of the output
layer is 9. The learning rate is set as 0.1, while the activation
function is sigmoid [35]. For the extreme learning machine,
the number of hidden node is set as 340; the activation func-
tion is configured as a sigmoid function [36]. As for broad
learning, it follows the suggestion of [15]. In other words,
the regularization parameter, λ, for the ridge regression is set
to 10−8. For the enhancement nodes, a sigmoid function is
used to establish BL. Meanwhile, the associated parameters
W ei and βei, for i = 1, . . . , n are drawn from a standard
uniform distribution from within the interval [0, 1]. For the
incremental broad learning, 30 additional enhancement nodes
are added.

The results show that the highest accuracy is obtained for
IBL reaching 92.94% (Tab. 4). The second highest is obtained
for DBN with 92.71%, although the training cost is high with
378.7479 seconds. ELM with 340 hidden nodes produces the
fastest training time but only low accuracy. The accuracy
of ELM is improved to 92.52% by using 3000 instead of
340 hidden nodes, but the increase in hidden nodes comes
at the expense of an increased training time. In contrast, BL
reaches an accuracy of 91.61%, which is similar to DBN,
while requiring a very short training time of just 1.0018
seconds, making BL the most efficient method in the com-
parison. This is because DBN or CNN can only improve
their accuracy through a deep structure which is more time
intensive for training. BL, on the other hand, only contains
two layers which explains its much shorter training time.
ELM has three layers, which also results in short training
time. Even though the accuracy of BL is not the best (Tab. 4),
its accuracy can be improved to 92.94 by using incremental
broad learning (IBL) to add 30 enhancement nodes, at a low
cost of an additional training time of 0.0497 seconds.

C. RESULT AND DISCUSSION OF DIAGNOSTIC ACCURACY
While IBL can improve accuracy efficiently by increasing the
number of enhancement nodes, it suffers from over-fitting.
Therefore, the number of enhancement nodes should be opti-
mized.

In the beginning, we fix the number of feature nodes
at 100 and start the optimization with an initial number
of 30 enhancement nodes, to which the model is expanded
with an additional 30 enhancement nodes at every iteration
until reaching 300 nodes (after 10 iteration). While the ini-
tial accuracy of the BL model starts out as being the low-
est (Fig. 11), it increases as the number of enhancement
nodes is increased reaching a maximum value of 92.94% for
240 enhancement nodes. A further increase in nodes leads to

TABLE 4. Comparison of diagnostic accuracies and training time for
different methods.

FIGURE 11. Accuracies of different numbers of enhancement nodes.

a drop in accuracy due to over-fitting. The optimal number
of enhancement nodes is thus around 240, which requires
1 original training and 7 incremental trainings to obtain.

In order to ensure that the best enhancement node number
is close to 240, additional more number of enhancement
nodes between 210 and 270 is also tested. Staring with 210,
the model is further expanded with an additional 10 enhance-
ment nodes at every iteration until reaching 270. The interval
between 210 and 270 in Fig.11 shows the extra test result and
the optimal number of enhancement nodes is indeed 240.

D. RESULT AND DISCUSSION OF RETRAINING TIME
To prove the effectiveness of retraining time of increment
broad learning, the training time and retraining time are com-
pared for the same number of enhancement nodes (100). The
training time is the longest (0.71006 seconds) for the initial
30 enhancement nodes, while being much shorter for all sub-
sequent iteration (Fig. 12). This is because the IBL algorithm
is not necessary to change its former weight. It merely needs
to calculate the weight of additional nodes which results
in faster retraining times. The total training time for deter-
mining optimal accuracy is thus 1.0515 seconds requiring
8 iteration.
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FIGURE 12. Training time of increment broad learning.

E. RESULT AND DISCUSSION OF STRUCTURE
SIMPLIFICATION
After incremental broad learning, the expanded nodes are
redundant. This complicated structure may increase the
model diagnostic error. The NMF algorithm is applied to
compress its structure and reduce its diagnostic error. This
is illustrated by comparing the performance of IBL, SVD-
IBL, and NMF-IBL (Tab. 5). In SVD-IBL and NMF-IBL, the
network structure is compressed to 90% enhancement nodes.
These three diagnostic systems are tested ten times. Then,
the rootmean square error (RMSE) and the standard deviation
(SD) are calculated as

RMSE =

√√√√√ N∑
i=1

(
xobs,i − xmodel,i

)2
N

(12)

SD =

√√√√√ N∑
i=1
(xi − x̄)2

N − 1
(13)

RMSE is very sensitive to the reflection of large or small
errors in a group of measurements, and can therefore be a
good indicator for the precision of the model. xobs,i denotes
the accuracy of the ith test. xmodel,i denotes the true model
accuracy. The smaller the RMSE, the higher the precision of
the model.

The RMSEs for these three systems are reduced as the total
number of nodes is increased (Tab. 5). This is because the
higher the number of nodes the higher the accuracy (except
when over-fitting). After many trials, RMSE can be reduced
to 0.2467 for a total number of nodes of 340 (100, 240).
This means that it has enough nodes to ensure its accuracy.
The SD for NMF-IBL is less than for IBL or SVD-IBL
because NMF can effectively reduce the number of redundant
nodes, leading to a more simplified structure. SVD-IBL can
reduce the number of enhancement nodes but is unstable. The
RSME of the NMF-IBL system is improved from 0.3878 to
0.2467 and the SD from 0.4628 to 0.2412 when the structure
of nodes is simplified from (100, 240) to (100, 216).

TABLE 5. Performance comparison of IBL and NMF-IBL.

VI. CONCLUSIONS
In this research, a novel diagnostic framework to efficiently
detect TPIM faults is proposed. A framework combining
feature extraction, broad learning, incremental broad learn-
ing and NMF-IBL, is developed to successfully improve the
accuracy, training and retraining time. Raw training data of
the TPIM acoustic signal and winding A & B currents are
acquired experimentally before processing the data using fil-
ters, EMD, SampEn, DK, and normalization. In a second step,
the processed data are used for training a diagnostic system by
using a broad learning algorithm. The model can be retrained
through incremental broad learning if the desired accuracy
is not achieved. Lastly, the system structure is simplified by
applying NMF. The effectiveness of the proposed scheme is
verified by using a test rig. The experimental results clearly
demonstrate that incremental broad learning is very efficient
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in terms of diagnostic accuracy and training speed. The main
original results of this research can be summarized as follows:

1. A novel diagnostic framework based on IBL is pro-
posed to diagnose both stator and rotor faults in TPIMs.

2. A feature extraction approach for processing raw data,
in combination with EMD, SampEn, DK, is applied to
improve diagnostic accuracy.

3. An incremental broad learning method is applied to
retrain the diagnostic system and improve both accu-
racy and training speed. Although DBN and CNN are
capable of improving system accuracy, their training
time is very long. ELM can train quickly, but its accu-
racy is poor unless increasing the number of hidden
nodes; even so, it still needs a long training time.

4. To our best knowledge, this is the first study to apply
NMF to simplify the IBL structure in order to reduce
RMSE and SD. The resulting NMF-IBL model is more
accurate than the IBL without NMF.

The proposed method can also be applied to other similar
motor diagnostic problems like direct current motors or per-
manent magnet synchronous motors. However, a lot of work
still needs to be done, including the improvement of the
EMD+SampEn and DK feature extraction method. We only
compare four kinds of feature extraction methods and further
work is needed to extend this comparison to include different
methods. The number of incremental nodes is determined
manually which can be improved by devising an automatic
selection through particle swarm optimization or a similar
algorithm. To improve accuracy, one could also try to increase
the number of feature nodes or inputs instead of increasing
the number of enhancement nodes. Lastly, NMF is a low-rank
approximation to simplify the structure of IBL and additional
study is needed to find a better alternative.
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